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GRAPHICAL ABSTRACT

Abstract For the purpose of developing novel photovoltaic materials and organic photovoltaic

devices with good performance characteristics, 5-cyano-2,20:50,200-terthiophene (3T-CN)

and 5-cyano-2,20:50,200:500,200 0-tetrathiophene (4T-CN) were synthesized. The 3T-CN and

4T-CN were donor–acceptor oligothiophene derivatives possessing mesogenic properties.

The photovoltaic properties of 3T-CN and 4T-CNwere studied. The rigid and flexible photo-

voltaic devices were fabricated using 3T-CN, 4T-CN, and 3,4,9,10-perylenetertracarboxylic

dianhydride (PTCDA). The results showed that the -CN group played an important role in

increasing short circuit current density (Isc) and power conversion efficiency (PCE). Both

rigid device glass-ITO/4T-CN/PTCDA/Al and flexible device PET-ITO (indium tin oxides

coated with polyethylene terephthalate)/4T-CN/PTCDA/Al had greater Isc and PCE com-

pared with rigid device glass-ITO/4T/PTCDA/Al. It was possible that the -CN group, with

strong electron-withdrawing character, and mesogenic properties of 4T-CN enhanced the

efficiency by promoting forward interfacial electron transfer.

Keywords Cyano group; mesogenic property; oligothiophene derivative; photovoltaic

property; rigid and flexible photovoltaic devices
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1. INTRODUCTION

Organic photovoltaic devices have attracted a great deal of attention because of
their light weight, processability, and ease of material design on the molecular level.
When Tang[1] discovered that bringing a donor and an acceptor together in one cell
could dramatically increase power conversion efficiency (PCE), a major break-
through came in the field of organic photovoltaics. The concept of heterojunction
has since been widely exploited in dye–dye, polymer–dye, polymer–polymer, and
polymer–fullerene blend photovoltaic devices. Recently, organic photovoltaic devices
employing polymer–fullerene heterojunctions have been shown to have PCE
approaching 6–7.4%,[2] obtained through variations in the processing techniques.
However, all these organic photovoltaic devices were processed on rigid glass sub-
strates. Although Maher et al. reported flexible polythiophene organic photovoltaic
devices,[3] there have been few studies of flexible oligothiophe derivative organic
photovoltaic devices. As long as organic photovoltaic devices require rigid glass sub-
strates, they will offer only limited advantages compared with silicon.

It is well known that the PCE is dependent on the short circuit current density
(Isc) and the open circuit voltage (Voc). Although encouraging progress has been made
in recent years with 6–7.4% PCE, the Isc and Voc are still not high. The search for new
materials with good performance characteristics to improve the Isc and Voc has been a
subject of importance. In our previous works,[4] we found that intermolecular hydro-
gen bonding between donor and acceptor contributed to enhancement of the Voc and
PCE. Oligothiophenes with well-defined structures have recently received a great deal
of attention not only as model compounds for conducting polythiophenes but also as
a new class of functional p-electron systems. A variety of oligothiophenes have been
synthesized,[5] and their molecular and crystal structures; self-ordering; and electro-
chemical, photophysical, optical, and electrical properties have all been studied. In
addition, their potential application in field-effect transistors, photovoltaic devices,
and organic electroluminescent devices has been investigated.

In this article, we address the aim of developing new organic photovoltaic
materials and increasing the Isc based on oligothiophene derivatives. We herein report
the synthesis of 5-cyano-2,20:50,200-terthiophene (3T-CN) and 5-cyano-2,20:50,200:500,
2000-tetrathiophene (4T-CN) (Scheme 1). Because the -CN group has strong

Scheme 1. Molecular structures of 3T-CN, 4T-CN, and PTCDA.
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electron-withdrawing character, 3T-CN and 4T-CN are conjugated donor–acceptor
systems. It is expected that the -CN group plays an important role in increasing short
circuit current density (Isc) and PCE. The rigid and flexible photovoltaic devices were
fabricated using 3T-CN, 4T-CN, and 3,4,9,10-perylenetertracarboxylic dianhydride
(PTCDA). The performance characteristics of devices were investigated.

EXPERIMENTAL

Materials

All solvents were purified and dried by ordinary methods. Glass-ITO (indium tin
oxides coated with glass), PET-ITO (indium tin oxides coated with polyethylene ter-
ephthalate), and N-chlorosulfonyl isocyanate (CSI) are commercially available.
2,20:50,200-Terthiophene (3T) was prepared by a Grignard coupling reaction of 2,5-
dibromothiophene with 2-bromomagnesiumthiophene in tetrahydrofuran (THF).
Likewise, 2,20:50,200:500,2000-teterthiophene (4T) was prepared by Grignard coupling
reaction of 2,50-dibromo-2,20-dithiophene with 2-bromomagnesiumthiophene in THF.

Characterization

1H NMR spectra were recorded on a Bruker Avanece 400 spectrometer in
CDCl3. Mass spectra (MS) were recorded on a Shimadzu GCMS-QP-2010. Fourier
transform–infrared (FT-IR) spectra were recorded on a Bruker Tensor 27. The
electronic absorption spectra of the thin film of materials were recorded with a
Thermospectronic (model HekOs c). Cyclic voltammetry was carried out on a
CHI-750-A voltammetric analyzer (Zhenhua Apparatus Co., Ltd., Shanghai). The
I-V characteristic of the device was measured with a Keithley electrometer (model
2400) source meter.

Synthesis

3T-CN[6] was prepared by the reaction of 3T with CSI in methylene chloride at
room temperature under a nitrogen atmosphere for 4 h, and then N,N-dimethylfor-
mamide (DMF) was added. The solution was stirred for 15 h and then hydrolyzed
with water. The aqueous solution was extracted with methylene chloride and washed
with brine and water. The solvent was removed under reduced pressure to give
3T-CN. The product was purified by silica-gel column chromatography using toluene
as the eluent. MS (EI): m=z 274 (Mþ); 1H NMR (400MHz, CDCl3): d (ppm)¼ 7.52
(d, 1H, ArH), 7.28 (d, 1H, ArH), 7.22 (d, 1H, ArH), 7.18 (d, 1H, ArH), 7.11 (s, 1H,
ArH), 7.10 (s, 1H, ArH), 7.04 (t, 1H, ArH); IR (KBr, cm�1): 2212 (nCN).

4T-CN was synthesized using analogous procedures with 4T. MS (EI): m=z 355
(Mþ); 1H NMR (400MHz, CDCl3): d (ppm)¼ 7.52 (d, 1H, ArH), 7.24 (d, 1H, ArH),
7.19 (s, 1H, ArH), 7.18 (s, 1H, ArH), 7.15–7.07 (m, 4H, ArH), 7.03 (t, 1H, ArH); IR
(KBr, cm�1): 2216 (nCN).

RESULTS AND DISCUSSION

Electrochemical cyclic voltammetry is performed for determining the energy
levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied
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molecular orbital (LUMO) of conjugated compounds. The cyclic voltammograms
of 3 T-CN and 4T-CN were done in the solution of tetra-n-butylammonium
perchlorate (0.1mol=L) in dichloromethane, and an Ag=AgCl electrode was used
as reference electrode. Both 3T-CN and 4T-CN exhibited one anodic oxidation
and one cathodic reduction wave. The first onset of oxidation potential and the first
onset of reduction potential were 1.51V and �0.62V vresus Ag=AgCl for 3T-CN,
and 1.12V and �0.58V versus Ag=AgCl for 4T-CN. According to literature,[7]

PTCDA exhibited one anodic oxidation and one cathodic reduction wave. The first
oxidation potential and the first reduction potential were 2.29V and �0.05V versus
Ag=AgCl for PTCDA. HOMO and LUMO energy levels were calculated according
to the following equations:[8]

HOMO ¼ �e ðEox þ 4:71ÞðeVÞ
LUMO ¼ �e ðEred þ 4:71ÞðeVÞ

where the unit of potential is V versus Ag=AgCl. The HOMO energy levels of
3 T-CN, 4T-CN, and PTCDA were �6.22 eV, �5.83 eV, and �7.00 eV, respectively.
The LUMO energy levels of 3T-CN, 4T-CN, and PTCDA were �4.09 eV, �4.13 eV,
and �4.66 eV, respectively. Figure 1 clearly shows that the LUMO of PTCDA was
less than the LUMO of 3T-CN and 4T-CN. If 3T-CN and 4T-CN were candidates
as electron-donor materials, and PTCDA was a candidate as the electron-acceptor
material, they would match well and might exhibit good photovoltaic properties.

For most of the conjugated compounds, the absorbance in the visible region of
the thin film of the compound is an important parameter when they are used as photo-
voltaic materials. Figure 2 showed the electronic absorption spectra of the
vacuum-deposited 3T-CN, 4T-CN, and PTCDA films. The 3T-CN film absorbed
light in the wavelength range of 284–570 nm, the 4T-CN film absorbed light in the
wavelength range of 300–630 nm, and the PTCDA film absorbed light in the wave-
length range of 400–640 nm. All of the wavelength ranges were useful for photovoltaic

Figure 1. Energy levels of 3T-CN, 4T-CN, and PTCDA. (Figure is provided in color online.)
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conversion. Therefore, it is expected that the devices consisting of 3T-CN, 4T-CN,
and PTCDAmight respond to ultraviolet–visible light over a wide wavelength region.

To check the photovoltaic properties of 3T-CN and 4T-CN, we have fabricated
two rigid photovoltaic devices and two flexible photovoltaic devices, glass-ITO=
3T-CN= PTCDA=Al, glass-ITO=4T-CN=PTCDA=Al, PET-ITO=3T-CN=PTCDA=
Al, and PET-ITO=4T-CN=PTCDA=Al. The organic layers of 3T-CN, 4T-CN, and
PTCDA were deposited by vacuum deposition (vacuum pressure 4� 10�3 Pa). The
thicknesses of 3 T-CN, 4T-CN, and PTCDA films were about 80–100 nm,
80–100 nm, and 80–100 nm, respectively. A solar simulator (CMH-250, Aodite
Photoelectronic Technology Ltd., Beijing) with light intensity of 78.2 mW=cm2 was
used as light source.

Figure 3 showed the I-V curves of the two rigid devices under the illumination
of 78.2 mW=cm2 simulated sunlight. Figure 4 showed the current density–voltage
characteristics for two flexible devices under 78.2 mW=cm2 simulated sunlight
through the PET-ITO electrode. The photovoltaic properties are listed in Table 1.
The glass-ITO=3T-CN=PTCDA=Al and glass-ITO=4T-CN=PTCDA=Al devices
had Isc of 7.60mA=cm2 and 9.68mA=cm2 and PCE of 1.51% and 2.10%, respect-
ively, whereas the PET-ITO=3T-CN=PTCDA=Al and PET-ITO=4T-CN=PTCDA=
Al devices had Isc of 4.17mA=cm2 and 5.42mA=cm2 and PCE of 0.86% and 1.20%,
respectively.

Electronic absorption spectra of the vacuum-deposited 3T-CN and 4T-CN
films showed that the conjugated length of 4 T-CN was longer than that of
3 T-CN. An increase in oligothiophene length provides stronger light absorption
and promotes better p-p stacking or aggregation of the oligomers. Therefore, the
charge transport properties of 4 T-CN were better than that of 3T-CN, and the Isc
and PCE of the devices glass (or PET)-ITO=4T-CN=PTCDA=Al were greater than
that of the glass (or PET)-ITO=3T-CN=PTCDA=Al.

Figure 2. Electronic absorption spectra of the vacuum-deposited 3T-CN, 4T-CN, and PTCDA films.

(Figure is provided in color online.)
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The 4T does not contain a substituted group at the a position. However,
4 T-CN contains a -CN group at the a position. The -CN group can increase the
Isc and PCE of the devices. We have determined the photovoltaic properties of the
glass-ITO=4T=PTCDA=Al device under the same condition.[9] It was found that
the Isc and PCE of the glass-ITO=4T=PTCDA=Al device were 0.46mA=cm2 and
0.23%. In comparison to Isc and PCE of the glass-ITO=4T=PTCDA=Al device, the
Isc of the Glass-ITO=4T-CN=PTCDA=Al was increased from around 0.46mA=cm2

to 9.68mA=cm2, and the PCE was increased from 0.23% to 2.10%. These results
confirmed that the -CN group at the a position of oligothiophene affected the photo-
voltaic device performances. That is to say, the -CN group could increase the Isc and
PCE of the devices.

Figure 4. I-V curves of the two flexible devices under the illumination of 78.2mW=cm2 simulated sunlight

through the PET-ITO electrode. (Figure is provided in color online.)

Figure 3. I-V curves of the two rigid devices under the illumination of 78.2 mW=cm2 simulated sunlight

through the glass-ITO electrode. (Figure is provided in color online.)
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Oligothiophenes are crystal in nature because of their planar molecular struc-
tures. Vacuum-evaporated and spin-coated films of oligothiophenes have been reported
to be crystalline.[10,11] We observed the morphologies of films of 3T, 3T-CN, 4T, and
4T-CN by polarizing microscopy with a hot stage. It was found that 3T and 4T
exhibited crystalline states, whereas 3T-CN and 4T-CN films exhibited mesogenic
properties. The -CN group played an important role in forming mesogenic properties.
It was possible that the molecular orientation of vacuum-evaporated 3T-CN and
4T-CN films were better than that of vacuum-evaporated 3T and 4T films. The
mesogenic properties of 3T-CN and 4T-CN enhanced the efficiency by promoting
forward interfacial electron transfer.

Under the illumination, the dissociation of excitons diffusing to the heterojunc-
tion interface was described in Scheme 2. Because the films of 4T-CN (or 3T-CN)
possessing mesogenic property have better molecular orientation, the electron was
promoted from HOMO to LUMO of the donor, leaving a hole behind when the
vacuum-evaporated film of donor 4T-CN (or 3T-CN) was excited under the illumi-
nation of simulated sunlight. The electron and hole can dissociate. Because the
LUMO of the acceptor PTCDA was sufficiently less than the donor LUMO, the
excited electron would relax into the acceptor LUMO and in this way separate from
the hole. Charge separation was much more efficient at the donor–acceptor interface
than at the electrode interface.

Scheme 2. Exciton dissociation and charge transport at the donor–acceptor interface. (Figure is provided

in color online.)

Table 1. Photovoltaic properties of the devices under the illumination of

78.2mW=cm2 simulated sunlight

Voc (V) Isc (mA cm�2) F.F. (%) g (%)

Glass-ITO=3T-CN 0.65 7.60 23.9 1.51

Glass-ITO=4T-CN 0.83 9.68 20.3 2.10

PET-ITO=3T-CN 0.62 4.17 25.1 0.86

PET-ITO=4T-CN 0.80 5.42 21.7 1.20
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It was noteworthy that the I-V curves of the two rigid devices glass-ITO=
3T-CN= PTCDA=Al and glass-ITO=4T-CN=PTCDA=Al exhibited slope at
negative voltage. This effect could result from various factors, such as low shunt
resistance, mesogenic properties of 3T-CN and 4T-CN, or photoconductivity.
Further work is required to clarify this point.

CONCLUSION

In summary, for the purpose of developing novel photovoltaic materials and
organic photovoltaic devices with good performance characteristics, we have fabri-
cated rigid and flexible photovoltaic devices using 3T-CN, 4T-CN, and PTCDA.
It was found that 3T-CN and 4T-CN were not only donor–acceptor system but also
possessed mesogenic properties. Compared with devices using unsubstituted 4T, the
4 T-CN device had greater Isc and PCE. The -CN group at the a position of oligothio-
phene could increase the Isc and PCE of the device. It was possible that mesogenic
properties of 4 T-CN enhanced the efficiency by promoting forward interfacial
electron transfer.
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