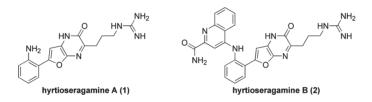
Hyrtioseragamines A and B, New Alkaloids from the Sponge *Hyrtios* Species

Yohei Takahashi,[†] Yoshiro linuma,[†] Takaaki Kubota,[†] Masashi Tsuda,[†] Mitsuhiro Sekiguchi,[‡] Yuzuru Mikami,[§] Jane Fromont,[∥] and Jun'ichi Kobayashi*^{,†}

Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan, Astellas Pharm, Inc., Tsukuba 350-8585, Japan, Medical Mycology Research Center, Chiba University, Chiba 260-0856, Japan, and Western Australian Museum, Perth, WA 6000, Australia


jkobay@pharm.hokudai.ac.jp

Received November 27, 2010

ORGANIC LETTERS 2011

Vol. 13, No. 4 628–631

ABSTRACT

Two novel alkaloids with a furo[2,3-*b*]pyrazin-2(1*H*)-one moiety and a guanidino group, hyrtioseragamines A (1) and B (2), have been isolated from an Okinawan marine sponge *Hyrtios* species. The structures of 1 and 2 were elucidated on the basis of spectroscopic data and chemical conversions. Compounds 1 and 2 are the first natural products possessing a furo[2,3-*b*]pyrazine-related moiety.

Marine sponges have been recognized as a rich source of bioactive secondary metabolites with unprecedented skeletons.¹ During our continuing search for bioactive substances from marine sponges,² we have investigated extracts of an Okinawan marine sponge *Hyrtios* sp. (SS-985) and isolated two novel alkaloids, hyrtioseragamines A (1) and B (2), possessing a furo[2,3-*b*]pyrazin-2(1*H*)-one and a guanidino group. Here we describe the isolation and structure elucidation of 1 and 2.

The sponge *Hyrtios* sp. (SS-985, 2.85 kg) collected off Seragaki, Okinawa was extracted with MeOH. The MeOH extract was partitioned between *n*-hexane and H_2O , and the aqueous layer was successively extracted with CHCl₃, EtOAc, and *n*-BuOH. CHCl₃- and *n*-BuOH-soluble materials of the extract were subjected to C₁₈ column chromatography followed by repeated C₁₈ HPLC to afford hyrtioseragamines A (**1**, 12.6 mg, 4.4×10^{-4} % wet weight)³ and B (**2**, 2.2 mg, 7.7×10^{-5} %)⁴ together with known β -carboline alkaloids, gesashidine A⁵ and dragmacidonamines A and B.⁶

(5) Iinuma, Y.; Kozawa, S.; Ishiyama, H.; Tsuda, M.; Fukushi, E.; Kawabata, J.; Fromont, J.; Kobayashi, J. J. Nat. Prod. 2005, 68, 1109–1110.

[†] Hokkaido University.

[‡] Astellas Pharm, Inc.

[§]Chiba University.

Western Australian Museum.

⁽¹⁾ Blunt, J. W.; Copp, B. R.; Munro, M. H. G.; Northcote, P. T.; Prinsep, M. R. Nat. Prod. Rep. 2010, 27, 165–237.

⁽²⁾ Kura, K.; Kubota, T.; Fromont, J.; Kobayashi, J. Bioorg. Med. Chem. Lett. 2011, 21, 267–270.

⁽³⁾ Hyrtioseragamine A (1): yellow amorphous solid; UV (MeOH) λ_{max} 214 (log ε 4.3), 238 (4.1 sh), 270 (3.9), and 389 nm (4.1); IR (film) ν_{max} 3343, 3171, 2922, 2604, 1645, 1548, and 1470 cm⁻¹; ¹H and ¹³C NMR (CD₃OD) see Table 1; ESIMS (pos.) m/z 327 [M+H]⁺; HRE-SIMS (pos.) m/z 327.15700 ([M+H]⁺, calcd for C₁₆H₁₉N₆O₂, 327.15640).

⁽⁴⁾ Hyrtioseragamine B (2): yellow amorphous solid; UV (MeOH) $\lambda_{max} 222$ (log ϵ 4.4), 250 (4.1 sh), 280 (3.8 sh), and 373 nm (4.0); IR (film) $\nu_{max} 3353$, 3152, 2936, 2722, 1680, 1631, 1554, and 1453 cm⁻¹; ¹H and ¹³C NMR (CD₃OD) see Table 1; ESIMS (pos.) *m/z* 497 [M+H]⁺; HRESIMS (pos.) *m/z* 497.20467 ([M+H]⁺, calcd for C₂₆H₂₅N₈O₃, 497.20441).

⁽⁶⁾ Pedpradab, S.; Edrada, R.; Ebel, R.; Wrey, V.; Proksch, P. J. Nat. Prod. 2004, 67, 2113–2116.

	1					2				
position	δ_{C} (mult.)		$\delta_{\rm H}({\rm mult.},J{\rm in}{\rm Hz})$	HMBC (H to C)	position	δ_{C} (mult.)		$\delta_{\mathrm{H}}(\mathrm{mult.}, J \mathrm{in} \mathrm{Hz})$	HMBC (H to C)	
1	144.6	С			1	135.4	С			
2	120.6	CH	7.03 (brd, 8.0)	4,6	2	131.2	CH	7.67 (m)	1, 4, 6	
3	132.6	CH	$7.25 (\mathrm{ddd}, 8.0, 7.8, 1.4)$	1, 2, 5	3	133.3	CH	7.72 (m)	1	
4	121.8	CH	6.91 (ddd, 7.8, 7.6, 1.0)	2, 3, 5, 6	4	131.6	CH	7.71 (m)	6	
5	129.9	CH	7.64 (dd, 7.8, 1.4)	1, 3, 7	5	130.9	CH	8.16 (m)	1, 3, 7	
6	117.4	С			6	129.1	С			
7	158.5	С			7	154.8	С			
8	100.3	CH	6.94 (s)	7, 8a, 12a	8	103.2	CH	6.88 (s)	7, 12a	
8a	127.8	С			8a	127.3	С			
10	159.1	С			10	158.9	С			
11	148.7	С			11	150.9	С			
12a	148.2	С			12a	148.6	С			
14	31.3	CH_2	2.91^{b} (t, 7.2)	10, 11, 15, 16	14	31.3	CH_2	2.82^{b} (t, 7.2)	10, 11, 15, 16	
15	27.8	CH_2	2.08^{b} (quin, 7.2)	11, 14, 16	15	27.6	CH_2	1.97 ^b (quin, 7.2)	11, 14, 16	
16	42.7	CH_2	3.34^{b} (t, 7.2)	14, 15, 18	16	42.6	CH_2	3.25^{b} (t, 7.2)	14, 15, 18	
18	159.6	С			18	159.6^{c}	С			
					2'	146.3	С			
					3'	100.3	CH	7.15(s)	2', 4', 4'a, 2'-CC	
					4'	159.5^{c}	С			
					4′a	119.6	С			
					5'	124.8	CH	8.71 (d, 8.2)	4′, 4′a, 7′, 8′a	
					6'	130.4	CH	7.91 (dd, (8.2, 7.8)	4'a, 5', 6', 8'	
					7'	136.9	CH	8.12 (dd, 7.8, 8.4)	5′, 8′a	
					8'	123.1	CH	8.25 (d, 8.4)	4', d', 4'a, 6', 7'	
					8′a	140.9	С			
					2'-CO	164.0	С			

Table 1. ¹H and ¹³C NMR Data of Hyrtioseragamines A (1) and B (2) in CD₃OD at 300 K^{*a*}

^{*a* 1}H and ¹³C NMR spectra were recorded at 600 and 150 MHz, respectively. ^{*b*} 2H. ^{*c*} Interchangeable. ^{*d*} The correlation observed through four bonds due to a long-range coupling.

The molecular formula, $C_{16}H_{18}N_6O_2$, of hyrtioseragamine A (1) was established by HRESIMS (m/z 327.15700 [M+H]⁺, Δ +0.60 mmu). ESIMS (m/z 335 [M+D]⁺) using CD₃OD as a mobile phase revealed that 7 out of 18 hydrogen atoms were H/D exchangeable. IR absorptions indicated the existence of OH and/or NH (ν_{max} 3343 and 3171 cm⁻¹) groups and a carbonyl group (1645 cm⁻¹), while UV absorptions (λ_{max} 270 and 389 nm) were attributed to a conjugated aromatic functionality.

The ¹H NMR (Table 1) spectrum of **1** measured in CD₃-OD contained eight proton signals, three of which were sp³ methylene protons and five of which were sp² methine protons. In the ¹³C NMR (Table 1) spectrum of **1**, three sp³ methylenes were observed in the aliphatic carbon region from $\delta_{\rm C}$ 20 to 50. On the other hand, five sp² methines and eight sp² quaternary carbons were observed in aromatic and carbonyl carbons region from $\delta_{\rm C}$ 100 to 160. The sp² quaternary carbon observed in the low-field region (C-18, $\delta_{\rm C}$ 159.6) and a positive coloration in the Sakaguchi test implied the presence of a guanidino group.

The ¹H-¹H COSY and HMBC spectrum of **1** in CD₃OD at 300 K revealed the presence of a 1,2-disubstituted benzene ring (C-1-C-6) (Figure 1a). The chemical shift at C-1 ($\delta_{\rm C}$ 144.6) suggested that an amino group was attached to C-1. The connectivity of C-6 to C-8 was elucidated from HMBC cross-peaks of H-5/C-7 and H-8/C-7 and the

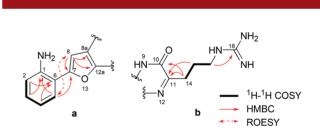
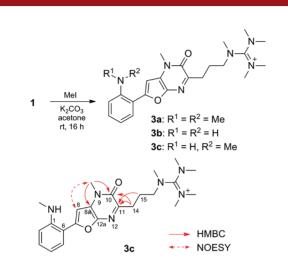
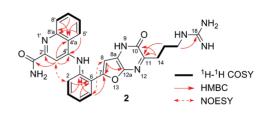


Figure 1. Selected 2D NMR correlations for two partial structures (a and b) of hyrtioseragamine A (1) in CD_3OD at 300 K.

ROESY correlation of H-5/H-8. The chemical shift of C-7 ($\delta_{\rm C}$ 158.5) indicated that C-7 was connected to an oxygen atom (O-13). H-8 showed a large ${}^{1}J_{\rm CH}$ value (180.0 Hz) and HMBC cross-peaks to C-8a ($\delta_{\rm C}$ 127.8) and C-12a ($\delta_{\rm C}$ 148.2), indicating the existence of a 2,3,5-trisubstituted furan ring. On the other hand, ${}^{1}{\rm H}{-}^{1}{\rm H}$ COSY correlations and the HMBC correlation of H-16/C-18 suggested the existence of a 1-propylguanidino group (Figure 1b). The connection of C-14 to C-10 via C-11 was disclosed by HMBC correlations of H₂-14/C-10, H₂-14/C-11, and H₂-15/C-11. The strong IR absorption at 1645 cm⁻¹ and the chemical shift of C-10 ($\delta_{\rm C}$ 159.1) and C-11 ($\delta_{\rm C}$ 148.7) indicated that C-10 and C-11 were an amide carbonyl and an imino carbon, respectively.

Furthermore, it was implied by the molecular formula of hyrtioseragamine A (1) that C-10 and C-11 in the partial structure **b** were connected to C-8a or C-12a in the partial structure **a** via N-9 and N-12 (Figure 1).




Figure 2. Methylation of hyrtioseragamine A (1) and key 2D NMR correlations for septamethyl derivative (3c) of hyrtioseragamine A (1) in DMSO- d_6 at 350 K.

To elucidate the structure of hyrtioseragamine A, 1 was methylated by methyl iodide under basic conditions to afford three methylated derivatives 3a-3c (Figure 2). The HMBC spectrum of 3c recorded in DMSO- d_6 at 350 K showed cross-peaks of N-9-Me/C-8a, N-9-Me/C-10, H₂-14/ C-10, H₂-14/C-11, and H₂-15/C-11 (Figure 2). In addition, N-9-Me showed the NOESY correlation to H-8. These correlations disclosed that C-11 was connected to C-8a and C-12a via an amide bond (N-9 and C-10) and an imine nitrogen atom (N-12), respectively. Thus, the structure of hyrtioseragamine A was elucidated to be 1.

IR and UV spectra of hyrtioseragamine B (2) were similar to those of 1, implying the existence of OH and/ or NH (ν_{max} 3353 and 3152 cm⁻¹), carbonyl group(s) (ν_{max} 1631 cm⁻¹), and a conjugated aromatic system (λ_{max} 280 and 373 nm). The HRESIMS of 2 showed the molecular formula to be C₂₆H₂₄N₈O₃ (*m*/*z* 497.20467 [M+H]⁺, Δ +0.26 mmu).

The ¹H NMR (Table 1) spectrum of **2** included 10 sp² methine and 3 sp³ methylene protons, while the ¹³C NMR (Table 1) spectrum of **2** showed 13 sp² quaternary carbons, 10 sp² methines, and 3 sp³ methylenes. These data indicated that **2** had another aromatic ring in addition to the same partial structure as that of **1**.

Inspection of the ${}^{1}\text{H}{-}{}^{1}\text{H}{-}\text{COSY}$, HMBC, and ROESY spectra of **2** in CD₃OD at 300 K and comparison of ${}^{1}\text{H}$ and ${}^{13}\text{C}$ NMR data of **2** with those of **1** disclosed that **2** had the same partial structure as that of **1** (C-1–C-18) (Figure 3). Another 1,2-disubstituted benzene ring (C-4'a–C-8'a) in **2** was revealed by the ${}^{1}\text{H}{-}{}^{1}\text{H}$ COSY and HMBC spectra. The presence of a 2,4-disubstituted quinoline ring (C-1'–C-8') was deduced by HMBC correlations of H-5'/C-4', H-3'/C-2',

Figure 3. Selected 2D NMR correlations for hyrtioseragamine B (2) in CD₃OD at 300 K.

H-3'/C-4', and H-3'/C-4'a, the chemical shifts of C-2' ($\delta_{\rm C}$ 146.3) and C-8'a ($\delta_{\rm C}$ 140.9), and the ${}^{1}J_{\rm CH}$ value of CH-3' (169.8 Hz). Given the molecular formula of **2**, chemical shifts of C-2' ($\delta_{\rm C}$ 146.3) and C-4' ($\delta_{\rm C}$ 159.5), and the HMBC crosspeak of H-3' to a carbonyl carbon (C-2'-CO, $\delta_{\rm C}$ 164.0), it was indicated that an amino carbonyl group and an amino group were attached to C-2' and C-4', respectively. Additionally, the ROESY correlation of H-2/H-3' implied the connectivity of C-1 and C-4' via a secondary amino group (Figure 3).

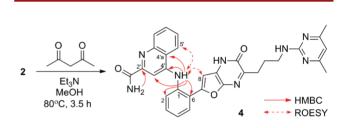
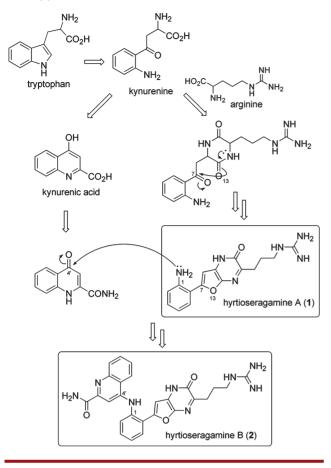



Figure 4. Chemical conversion of hyrtioseragamine B (2) into pyrimidine derivative (4) and key 2D NMR correlations for 4 in C_5D_5N at 300 K.

To confirm the structure of hyrtioseragamine B (2) by 2D NMR cross-peaks from exchangeable protons, 2 was treated with 2,4-pentanedione under basic conditions to give a pyrimidine derivative (4) of 2 (Figure 4). Detailed analysis of 1D and 2D NMR spectra of 4 in C₅D₅N at 300 K supported the structure of **2**. The NH proton ($\delta_{\rm H}$ 9.85) in 4 exhibited HMBC correlations to C-2, C-6, C-3', C-4', and C-4'a, indicating the connection of C-1 and C-4' via a secondary amino group. This connectivity was supported by ROESY correlations from C-1-NH to H-8 and H-5'. Furthermore, the presence of two exchangeable protons coupling to each other ($\delta_{\rm H}$ 8.88 and 8.48, J =3.8 Hz) and the HMBC correlation from one of these ($\delta_{\rm H}$ 8.48) and H-3' to C-2' and a carbonyl carbon (C-2'-CO, $\delta_{\rm C}$ 168.0), respectively, suggested the existence of a primary amide group at C-2'. Thus, the structure of hyrtioseragamine B was elucidated to be 2.

To the best of our knowledge, hyrtioseragamines A (1) and B (2) are the first natural products possessing a furo-[2,3-*b*]pyrazine-related moiety. In addition, quinolinecarboxylic

⁽⁷⁾ Yin, S.; Boyle, G. M.; Carroll, A. R.; Kotiw, M.; Dearnaley, J.; Quinn, R. J.; Davis, R. A. J. Nat. Prod. **2010**, 73, 1586–1589 and references therein.

Scheme 1. Possible Biogenetic Path for Hyrtioseragamines A (1) and B (2)

acid derivatives from marine organisms are very rare.⁷ Biogenetically, **1** might be generated from tryptophan and arginine (Scheme 1).

A diketopyperazine ring might be formed by kynurenine, which is a metabolite of tryptophan, and arginine and nucleophilic addition of O-13 to C-7 followed by aromatization to produce 1. Hyrtioseragamine B (2) might be generated by nucleophilic addition of a primary amino group attached to C-1 of 1 to the carbonyl group of C-4 in a quinolone form of the kynurenic acid derivative. Since the diketopyperazine moiety is well-known to be a microbial metabolite, compounds 1 and 2 might be produced by symbiotic microbes of the sponge.

Hyrtioseragamines A (1) and B (2) showed antimicrobial activities against *Aspergillus niger* (MIC, 8.33 and 16.6 μ g/mL, respectively) and *Cryptococcus neoformans* (MIC, 33.3 and 16.6 μ g/mL, respectively). Compounds 1 and 2 did not show cytotoxicity (IC₅₀ > 10 μ g/mL) against murine lymphoma L1210 and human epidermoid carcinoma KB cells *in vitro*.

Acknowledgment. The authors thank Ms. S. Oka, Ms. A. Tokumitsu, and Ms. T. Komiya, Instrumental Analysis Division, Equipment Management Center, Creative Research Institution, Hokkaido University, for measurements of ESIMS; Dr. Eri Fukushi, Graduate School of Agriculture, Hokkaido University, for measurements of a part of NMR spectra; and Mr. Z. Nagahama and Mr. S. Furugen for their help with collection of the sponges. This work was partly supported by a research fellowship for young scientists from the Japan Society for the Promotion of Science (to Y.T.) and a Grant-in-Aid for Science Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Supporting Information Available. Detailed experimental section and 1D and 2D NMR data for hyrtioseragamines A and B and their derivatives. This material is available free of charge via the Internet at http://pubs.acs.org.