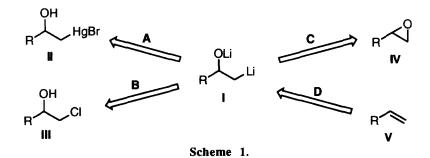
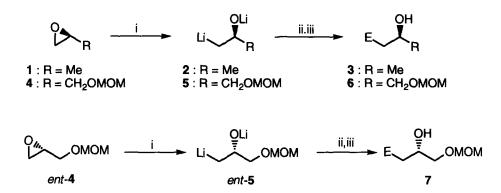


0957-4166(95)00249-9


Chiral β-Oxidofunctionalised Organolithium Compounds from Epoxides: EPC-Synthesis of 1,3-Diols

Abderrazak Bachki[†], Francisco Foubelo and Miguel Yus*

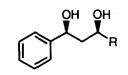

Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain

Abstract: The reductive opening of (S)-propylene oxide (1) with lithium powder and a catalytic amount of DTBB (5 mol %) in THF at -78°C followed by treatment with different carbonyl compounds [Bu¹CHO, PhCHO, (CH₂)₅CO and PhCOMe] at the same temperature leads, after hydrolysis with water to the expected chiral 1,3-diols 3. The same methodology applied to both (*R*) and (*S*) protected epoxyalcohols 4 yields the expected enantiomerically pure compounds 6 and 7, wich are monoprotected 1,2,4-triols; carbonation of these last two starting materials affords hydroxyacids 6d and 7d.

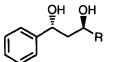
Functionalised organolithium compounds¹ are interesting intermediates in synthetic organic chemistry because their ability to transfer the functionality to an electrophilic reagent giving, in general, polyfunctionalised structures. In the particular case of β -oxidofunctionalised derivatives of the type I, which can be considered as d^2 reagents following Seebach's nomenclature², three different routes have been reported for their preparation: (a) mercury-lithium transmetallation from hydroxymercurials II³ (route A); (b) chlorine-lithium exchange from chlorohydrins III⁴ (route B); (c) reductive ring opening of epoxides IV⁵ (route C). Intermediates I are unstable species, which should be prepared and handled at low temperature (-78°C) in order to avoid decomposition, mainly by β -elimination giving olefins V⁶ (route D). The chiral version of intermediates I has been achieved following route B⁷, existing, to our best knowledge, only one example of application of route C to this purpose, namely in one of the steps of the synthesis of calcitriol lactone⁸. On the other hand, we discovered recently a very efficient method⁹ to lithiate different oxygenated¹⁰, nitrogenated¹¹ or sulfur-containing¹² substrates as well as saturated heterocycles¹³ or polychlorinated materials¹⁴ by using lithium powder and a catalytic amount of an arene, naphthalene or 4,4'-di-*tert*-butylbiphenyl (DTBB) being the most widely used. In this paper we describe the application of this methodology to the reductive opening of chiral epoxides, so chiral 1,3-diols¹⁵ are prepared as a typical example of EPC-synthesis¹⁶.

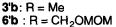
The reaction of commercially available (*S*)-propylene oxide $(1)^{17a}$ with an excess of lithium powder in the presence of a catalytic amount of DTBB (5 mol %) in THF at -78°C led to a solution of intermediate 2, which after reaction with different electrophiles [Bu⁴CHO, PhCHO, (CH₂)₅CO and PhCOMe] at the same temperature followed by hydrolysis with water afforded the expected chiral compounds 3 (Scheme 2 and Table 1, entries 1-7). When the carbonyl compound was prochiral a *ca.* 1:1 diastereoisomers mixture (3/3²) was obtained, which could be separated by flash chromatography (silica gel, hexane/ethyl acetate), so both enantiomerically pure diastereoisomers 3 and 3² were obtained in pure form¹⁸.

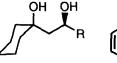
Scheme 2. Reagents and conditions: i, Li, DTBB cat. (5 mol %), THF, -78°C; ii, E⁺ = BuⁱCHO, PhCHO, (CH₂)₅CO, PhCOMe, -78°C; iii, H₂O, -78 to 20°C.

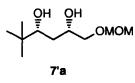


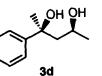
 $6a: R = CH_2OMOM$

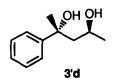

3a: R = Me




 $6'a: R = CH_2OMOM$

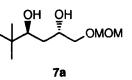

 $6b: R = CH_2OMOM$

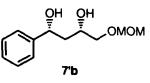




3c: R = Me**6c** : $R = CH_2OMOM$

3'a: R = Me


.OMOM


OH

OH.

7b

3b: R = Me

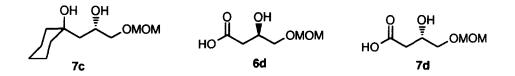


Table 1. Preparation of Chiral 1,3-Diols 3, 6 and 7

Entry	Starting material	Intermediate	Electrophile E+	Producta			
				No.	$R_{f^{b}}$ or mp ^c	[α] _D ^{20d}	Yield (%)e
1	1	2	ButCHO	3a	45℃	+7.2	63
2				3'a	85°C	+45.2	
3	1	2	PhCHO	3b	0.21	-33.2	64
4				3'b	0.27	+55.2	
5	1	2	(CH ₂) ₅ CO	3c	0.45	+2.6	68
6	1	2	PhCOMe	3d	0.41	+31.2	62
7				3'd	0.34	-27.0	
8	4	5	Bu^tCHO	6a	0.44	-10.2	67
9				6'a	0.30	+20.0	
10	4	5	PhCHO	6b	0.31	-22.6	69
11				6'b	0.24	+31.1	
12	4	5	(CH ₂) ₅ CO	6c	0.32	-4.8	58
13	ent- 4	ent-5	ButCHO	7a	0.30	-17.2	63
14				7'a	0.44	+12.0	
15	ent-4	ent-5	PhCHO	7 b	0.24	-33.2	66
16				7'b	0.31	+26.4	
17	ent- 4	ent-5	(CH ₂) ₅ CO	7c	0.32	+4.0	60

^a All products **3**, **6**, and **7** were >95% pure (GLC and 300 MHz ¹H NMR) and were fully characterised by spectroscopic means (IR, ¹H and ¹³C NMR, and MS). ^b Silica gel, hexane/ethyl acetate: 2/1. ^c From hexane/ethyl acetate. ^d In dichloromethane, c=1.0. ^e Global yield of *ca.* 1:1 mixture of diastereoisomers.

The possibility of applying this methodology for the preparation of polyols¹⁵ was explored starting from the protected epoxides 4^{19} . Following the same procedure described for epoxide 1 the expected chiral compounds 6 and 7 were obtained through the corresponding enantiomeric intermediates 5 and *ent*-5 (Scheme 2 and Table 1, entries 8-17). Also in this case the reaction with pivalaldehyde and benzaldehyde afforded a *ca*. 1:1 diastereoisomers mixture (6/6' or 7/7'), which was separated chromatographically allowing the preparation of enantiomerically pure diastereoisomers¹⁸. For starting materials 4 and *ent*-4 the carbonation reaction was studied, so both enantiomeric hydroxyacids 6d and 7d were isolated in pure form with modest isolated yields (30 and 24%, respectively)²⁰. The optical purity of the obtained compounds is related to the starting materials 1, 4 and *ent*-4, since no racemisation has never been observed for this type of systems^{7,8}, so this procedure represents a typical example of EPC-synthesis¹⁶. Finally, we think that this methodology can potentially be applied for the synthesis of desoxysugars²¹.

REFERENCES AND NOTES

- † Ph. D. Student from the Hassan II University of Casablanca (Morocco).
- 1. For a review see, for instance: Nájera, C.; Yus, M. Trends Org. Chem. 1991, 2, 155-181.
- 2. Seebach, D. Angew. Chem. Int. Ed. Engl. 1979, 18, 239-258.
- 3. Barluenga, J.; Fañanás, F. J.; Villamaña, J.; Yus, M. J. Org. Chem. 1982, 47, 1560-1564, and references cited therein.
- 4. Barluenga, J.; Flórez, J.; Yus, M. J. Chem. Soc., Perkin Trans. 1 1983, 3019-3026, and references cited therein.
- 5. Cohen, T.; Jeong, I.-H.; Mudryk, B.; Bhupathy, M.; Awad, M. A. J. Org. Chem. 1990, 55, 1528-1536, and references cited therein.
- 6. See, for instance: Barluenga, J.; Yus, M.; Concellón, J. M.; Bernad, P. J. Org. Chem. 1983, 48, 3116-3118.
- 7. Nájera, C.; Yus, M.; Seebach, D. Helv. Chim. Acta. 1984, 67, 289-300.
- 8. Conrow, R. E. Tetrahedron Lett. 1993, 34, 5553-5554.
- 9. Yus, M.; Ramón, D. J. J. Chem. Soc., Chem. Commun. 1991, 398-400.
- 10. For the last paper in this field from our laboratory, see: Bachki, A.; Foubelo, F.; Yus, M. Tetrahedron Lett. 1994, 35, 7643-7646.
- 11. For the last paper in this field from our laboratory, see: Foubelo, F.; Yus, M. Tetrahedron Lett. 1994, 35, 4831-4834.
- 12. For the last paper in this field from our laboratory, see: Alonso, E.; Guijarro, D.; Yus, M. Tetrahedron 1995, 51, 2699-2708.
- 13. For the last paper in this field from our laboratory, see: Almena, J.; Foubelo, F.; Yus, M. Tetrahedron 1995, 51, 3365-3374
- 14. For the last paper in this field from our laboratory, see: Huerta, F. F.; Gómez, C.; Guijarro, A.; Yus, M. *Tetrahedron* **1995**, *51*, 3375-3388.
- 15. For a recent account on 1,3-polyol chains, see: Mori, Y.; Asai, M.; Okumura, A.; Furukawa, H. Tetrahedron Lett. 1995, 51, 5299-5314.
- 16. See, for instance: Seebach, D.; Hungerbühler, E. In *Modern Synthetic Method*; Shefold, R., Ed.; Salle+Sauerländer Verlag: Aarau, 1980; pp. 91-171.
- 17. (a) This compound is available from Aldrich in 99% purity. (b) These compounds are available from Aldrich in 96% purity.
- 18. The stereochemistry of 1,3-diols described in this paper was determined by ¹H NMR experiments.
- Both compounds 4 and ent-4 were prepared from the corresponding epoxyalcohols by successive treatment with n-butyllithium in THF and chloromethyl methyl ether (-78 to 20°C) in 96% isolated yield. Compound 4: R_f 0.16 (hexane); [α]_D²⁰ -1.6 (c 1.1, CH₂Cl₂). Compound ent-4: R_f 0.16 (hexane); [α]_D²⁰ +1.9 (c 1.2, CH₂Cl₂).
- Compound 6d: R_f 0.14 (hexane/ethyl acetate: 1/1); [α]_D²⁰ +2.3 (c 1.0, CH₂Cl₂). Compound 7d: R_f
 0.14 (hexane/ethyl acetate: 1/1); [α]_D²⁰ -2.7 (c 0.9, CH₂Cl₂).
- 21. This work was financially supported by DGICYT (PB91-0751) from the Ministerio de Educación y Ciencia (MEC) of Spain. A. B. thanks ASAC PHARMACEUTICAL INTERNATIONAL for a grant.

(Received in UK 17 July 1995)