Carbon Dioxide Activation as an η^1 -C Metallocarboxylate: Metallocarboxylate Ester Derivatives as a C₁ Template in Co-ordinated Ligand Reactions

Thomas Forschner, Kevin Menard, and Alan Cutler*

Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12181, U.S.A.

In tetrahydrofuran the reaction between Fp_2Mg [$Fp = Fe(CO)_2(\eta-C_5H_5)$] and CO_2 gives the symmetrical metallocarboxylate $(FpCO_2)_2Mg$, which can be alkylated to give the ester $FpCO_2Me$; its activated ester $FpC(OMe)_2$ + serves as a C_1 template for reduction to $FpCH_2OMe$.

Stoicheiometric studies using transition organometallic complexes will provide valuable insight into reducing ligated CO_2^1 into other C_1 ligands. Homogeneous CO_2 fixation can be approached by converting an η^1 -C metallocarboxylate, MCO_2^- , CO_2 complex into its metallocarboxylic ester (i.e., alkoxycarbonyl)² derivative, which subsequently functions as a C_1 template in co-ordinated ligand transformations. Several of these (η^1 -C) CO_2 adducts have been characterized, but only one can be alkylated and provides an ester.³ Metallocarboxylates are instead transformed into 2:1 CO_2 adducts having

metallacycle $MCO_2C(O)O$ or chelated $MC(O)OCO_2^{-N}a^+$ structures.⁴ These facilitate the metal-induced reductive disproportionation of CO_2 ,⁵ leaving CO and/or CO_3^{2-} bound to the metal. We now report (i) conditions for selectively ligating CO_2 as a metallocarboxylate $FpCO_2^{-}$ (1) $[Fp = Fe(CO)_2(\eta-C_5H_5)]$ and converting it into a known⁶ ester $FpCO_2Me$ (2) and (ii) reducing its activated ester $FpC(OMe)_2^{+}$ (3) into $FpCH_2OMe$ (6), Scheme 1.

Reaction conditions for selectively generating the metallocarboxylate (1) are critical. In previous studies it was found that treatment of Fp-Na+ in tetrahydrofuran (THF) with CO₂ gave only the 2:1 adduct FpC(O)OCO₂-Na+, which disproportionates⁷ above -40 °C to release Na₂CO₃ and is protonated⁸ to give FpCO+. Attempted alkylation of this adduct with methyl iodide or trifluoromethanesulphonate affords only FpMe. By using the Mg^{II} counterion, however, we can now intercept the 1:1 CO₂ adduct as a metallocarboxylate (FpCO₂)₂Mg (1). The chelated Mg^{II} blocks both deleterious CO₂ dissociation (which accounts for the above alkylation at Fe) and 2:1 CO₂ binding pathways.

Yellow-brown THF solutions of $(FpCO_2)_2Mg$ (1) were generated by purging the orange-yellow Fp_2Mg complex⁹ with CO_2 (dried over P_2O_5) at -90 °C (5 min) and then warming to 25 °C. Treatment with methyl trifluoromethanesulphonate (2 equiv.) gave $FpCO_2Me$ (2) [71% by quantitative i.r.: v(CO) 1648 cm⁻¹], unchanged Fp_2 (12%), and trace amounts of

$$Fp^{-} \xrightarrow{CO_{2}} Fp - C_{-} \xrightarrow{MeOSO_{2}CF_{3}} Fp - C \xrightarrow{X} Fp - C_{+} + C_{+$$

Scheme 1

FpMe. The lower isolated yields of (2) reflect the interference of polymerized THF, induced by MeOSO₂CF₃, during the pentane extraction–crystallization procedure. Protonation (4 equiv. HBF₄·OEt₂) of (2) *in situ*, however, afforded FpCO+BF₄- (81% after reprecipitation from MeNO₂-Et₂O); although acidification of (1) also gave FpCO+ (91% yield) (Scheme 2).

The proposed chelate structure for the Mg^{II} metallocarboxylate (1) is in accord with its i.r. spectra and chemical reactivity. A symmetrical carboxylate structure conforms with its solution i.r.¹⁰ [v(CO₂-)_{asym} 1560 (br) cm⁻¹] absorption,† which disappears upon alkylation. No evidence was found for reductive disproportionation at room temperature: solutions, although unstable at 25 °C, remained homogeneous as Fp₂ and FpH (1:1) quantitatively formed. Extensive CO₂ dissociation from (1) did not occur since its reaction with methyl iodide (2 equiv., -50 °C to +25 °C; MeOH quench after 5 min at 25 °C) afforded only 13% FpMe (isolated yield) and a trace of (2).

The connection between $FpCO_2Me$ (2) and its activated ester $FpC(OMe)_2^+$ (3) is presently indirect, since attempted alkylation of (2) gave only $FpCO^+$. Neutral alkoxycarbonyls are not alkylated at the acyl-O unless a 2,5-dioxacyclopentylidene

complex (e.g., FpCOCH₂CH₂O+)¹¹ results. Instead alkoxide abstraction generally ensues.² Therefore (3) was procured by an unrelated procedure of Angelici.¹¹

Reduction of $FpC(OMe)_2^+$ (3) in CH_2Cl_2 (-80 °C) with one equivalent of LiHBEt₃ afforded the formyl acetal complex $FpCH(OMe)_2$ (4)‡ (82% yield) after pentane extraction.

$$[(7)-C_5H_5)Fe-CO \xrightarrow{\frac{1}{2}} Mg(THF)_4$$

$$CO \qquad \downarrow CO_2$$

$$Fp-C_1 \qquad Mg \xrightarrow{CH_3OSO_2CF_3} Fp-C_2 \qquad OMe$$

$$(1) \qquad (2)$$

$$HBF_4 \qquad Fp-CO +$$

$$Scheme 2$$

[†] Selected i.r. data in THF (v/cm^{-1}), (1) as Mg^{II} salt: 2015s, 1959s (CO) and 1560m (br) (CO₂); Mg^{II} derivative of FpCH₂CO₂H (ref. 14), (FpCH₂CO₂)₂Mg: 2018s, 1953s (CO) and 1604m (br) (CO₂) [closely resembles $v(CO_2)$ of (1) in appearance]; (KBr) 2018s, 1959s (CO) and 1590m (br), 1435m (br) (CO₂); (2): 2012s, 1974s (CO) and 1674m (C=O).

[‡] Compound (4) (yellow oil): 1 H n.m.r. (CDCl₃) δ 6.48 (s, 1 H, FeCH), 4.78 (s, 5 H, η -C₅H₅), and 3.28 (s, 6 H, OCH₃): 13 C n.m.r. (gated decoupled) δ 216.3 (CO), 115.8 (d sept., 1 J 166, 3 J 5 Hz, FeCH), 85.8 (d quint., η -C₅H₅), and 54.8 p.p.m. (d quart., 1 J 142, 3 J 5 Hz, OCH₃). A satisfactory elemental analysis was obtained.

Solutions of (4) are remarkably stable at room temperature (<10% decomposition after 16 h) in contrast with the extremely unstable formyl complex FpCHO.¹² Another recent synthesis of (4) entails methoxide addition to the methoxymethylidene salt (5).¹³ Several reductive procedures are available for converting (3) or (4) into FpCH₂OMe (6), Scheme 1. A CH₂Cl₂ solution of BH₃·SMe₂ (1.5 equiv.) thus causes the conversion of (4) into (6) (93% yield isolated after chromatography), whereas treatment of (3) with PPh₃Me+BH₄- (1.0 equiv.) gives a mixture of (6) (61%), FpMe (2%), and FpH (assayed as FpCl, 10%). Finally, HPF₆·OEt₂ protonates (4) to give (5) (90%), and our previously reported¹² BH₄- reduction of (5) then yields (6).

Acknowledgement is made to the Donors of the Petroleum Research Fund, administered by the American Chemical Society, and to the U.S. Department of Energy, Office of Basic Energy Research, for the support of this research.

Received, 1st September 1983; Com. 1181

References

- 1 R. Eisenberg and D. E. Hendrickson, *Adv. Catal.*, 1979, **28**, 79; T. Ito and A. Yamamoto, in 'Organic and Bio-organic Chemistry of Carbon Dioxide,' eds. S. Inoue and N. Yamazaki, Halsted Press, New York, 1982, ch. 3; R. P. A. Sneeden, in 'Comprehensive Organometallic Chemistry,' eds. G. Wilkinson, F. G. A. Stone, and E. W. Abel, Pergamon Press, New York, 1982, ch. 50.4.
- 2 R. J. Angelici, Acc. Chem. Res., 1972, 5, 335.

- 3 T. Herskovitz, J. Am. Chem. Soc., 1977, 99, 2391; S. Gambarotta, F. Arena, C. Floriani, and P. F. Zanazzi, ibid., 1982, 104, 5082; J. M. Maher, G. R. Lee, and N. J. Cooper, ibid., p. 6797; R. L. Harlow, J. B. Kinney, and T. Herskovitz, J. Chem. Soc., Chem. Commun., 1980, 813.
- T. Herskovitz and L. J. Guggenberger, J. Am. Chem. Soc., 1976,
 198, 1615; J. M. Maher and N. J. Cooper, ibid., 1980, 102, 7604.
- J. Chatt, M. Kubota, G. J. Leigh, F. C. March, R. Mason, and D. J. Yarrow, J. Chem. Soc., Chem. Commun., 1974, 1033; H. H. Karsch, Chem. Ber., 1977, 110, 2213; E. Carmona, F. González, M. L. Poveda, J. M. Marin, J. L. Atwood, and R. D. Rogers, J. Am. Chem. Soc., 1983, 105, 3365.
- 6 R. B. King, M. Bisnette, and A. Fronzaglia, *J. Organomet. Chem.*, 1966, **5**, 341; L. Busetto and R. J. Angelici, *Inorg. Chim. Acta*, 1968, **2**, 391; methoxide addition to FpCO+ also gives (2).
- 7 G. O. Evans, W. F. Walter, D. R. Mills, and C. A. Streit, J. Organomet. Chem., 1978, 144, C34.
- 8 T. Bodnar, E. Coman, K. Menard, and A. Cutler, *Inorg. Chem.*, 1982, **21**, 1275.
- G. B. McVicker, *Inorg. Chem.*, 1975, 14, 2087; M. Nitay and M. Rosenblum, *J. Organomet. Chem.*, 1977, 136, C23; A. Wong, M. Harris, and J. D. Atwood, *J. Organomet. Chem.*, 1977, 136, C23; A. Wong, M. Harris, and J. D. Atwood, *J. Am. Chem. Soc.*, 1980, 102, 4529.
- 10 G. B. Decon and R. J. Phillips, Coord. Chem. Rev., 1980, 33, 227.
- M. H. Quick and R. J. Angelici, J. Organomet. Chem., 1978, 160, 231; F. B. McCormick and R. J. Angelici, Inorg. Chem., 1981, 20, 1111; D. H. Bowen, M. Green, D. M. Grove, J. R. Moss, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1974, 1189; H. Moschi and R. J. Angelici, Organometallics, 1982, 1, 343.
- 12 A. R. Cutler, J. Am. Chem. Soc., 1979, 101, 604.
- C. P. Casey, H. Tukada, and W. H. Miles, Organometallics, 1982.
 1, 1083.
- 14 J. K. P. Ariyaratne, A. M. Bierrum, M. L. H. Green, M. Ishaq, C. K. Prout, and M. G. Swanwick, J. Chem. Soc. A, 1969, 1309.