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A ruthenium cyclic biscarbene complex reacted with a H,O
molecule under mild conditions to produce n’-oxapentadienyl
complex, that proved to be the intermediate in the catalytic
hydrative cyclization of a diyne.

Ruthenacyclopentatrienes, which are cyclic biscarbenes produced
by the oxidative cyclization of two alkyne components in a low-
valent ruthenium complex (Fig. 1), have attracted considerable
attention as key intermediates in transition-metal-catalyzed multi-
component coupling processes. Kirchner, Saa, and our group
have independently reported that the [2+2+ 2] cycloadditions of
alkynes with other unsaturated molecules catalyzed by
Cp*RuCl(cod) (1: Cp* = 1n’-CsMes, cod 1,5-cyclooctadiene)
proceed via a ruthenacyclopentatriene.>® Recently, Dixneuf,
Trost et al. have reported interesting coupling processes
between alkynes with protic oxygen nucleophiles such as
carboxylic acids, water, and alcohols.*? Although the involve-
ment of ruthenacyclopentatriene intermediates was proposed
for these novel catalytic processes, no direct evidence on the
reaction of ruthenacyclopentatrienes with non-acidic oxygen
nucleophiles such as water has been provided thus far.
We wish to report a concrete evidence in which a fused
ruthenacyclopentatriene reacted with a water molecule via a
novel activation mode, giving rise to an m>-oxapentadienyl
ruthenium complex and/or a bicyclic furan.

In an attempt to purify crude bicyclic ruthenacyclo-
pentatriene 3 formed from 1 and 1,7-diphenyl-4-oxahepta-
1,6-diyne (2) by neutral alumina column chromatography,
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Fig. 1 Ruthenium complexes 3 and 4. ORTEP drawing of 4 is shown
with 50% probability ellipsoids. All hydrogen atoms are omitted for
clarity.
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new complex 4 was obtained (Fig. 1). The single-crystal
X-ray analysis unambiguously showed that 4 is a half-open
oxaruthenocene possessing a five-membered oxacycle-fused
n>-oxapentadienyl ligand. The Ru—O and Ru—C bond lengths
(2.167-2.235 A) are similar to those in previously characterized
examples.® Although the relevant half-open oxaruthenocenes
have already been reported by several groups, this is the first
example of the formation of an n°-oxapentadienyl ligand from
a cyclic biscarbene complex involving a novel activation mode
of a water molecule (vide infra).

In order to obtain further insights into the formation of 4,

we examined the reaction of 3 with water under various
conditions (Table 1). It was observed that 3 slowly reacted
with water in a tetrahydrofuran (THF) solution at 25 °C to
afford 4 along with small amounts of dihydrofuryl ketone 5
and bicyclic furan 6 (entry 1). Obviously, 5 was produced by
the protonolysis of 4, whereas the formation of 6 cannot be
clearly explained. To the best of our knowledge, this is the first
example of the formation of a furan from a metallacycle by
utilizing a water molecule as an oxygen source.” Because the
chloride ligand was observed to be lost during the transfor-
mation of 3 into 4, we examined the chlorine abstraction
from 3 using various silver salts. The addition of a silver salt
significantly accelerated the reaction: 3 was completely con-
sumed within a few hours. When AgBF, was added, the yields
of 4 reached 44% (entry 2). It should be noted that the
reactions in the presence of the silver salt produced considerable
amounts of 6. Moreover, the reaction in the presence of
AgNO; resulted in an almost exclusive formation of 6
(entry 3). It is assumed that the concomitant formations of
Bronsted acids such as HBF,4 or HNOj3 play an important role
in the formation of 6 when the corresponding silver salts are
added. In fact, the reaction in the presence of Ag,O selectively
afforded 4 in 71% yield (entry 4). The selective formation of 4

Table 1 Reaction of 3 with water in the presence of additives

additive O o
3 4 + Ph Ph + Ph \ / Ph

H,O/THF _

(1:1.5)

25°C 0’5 0’s
Run Additive Time/h Yields of 4, 5, and 6“ (%)
1 None 6" 54,5,3
2 AgBF,’ 1 44, —, 34
3 AgNO5* 1 7,—, 52
4 Ag,0° 2 71 (60)",
5 ALO5® 4 79 (73)4, —, —

“ Yields were determined by 'H NMR analysis. * 84% conversion.
¢ 1.1 equiv. of Ag™ per 3. ¢ Yields of isolated product. ¢ 3 : ALO; =

1

0 2.5 w/w.

1556 | Chem. Commun., 2011, 47, 1556-1558

This journal is © The Royal Society of Chemistry 2011


http://dx.doi.org/10.1039/c0cc04345a
http://pubs.rsc.org/en/journals/journal/CC
http://pubs.rsc.org/en/journals/journal/CC?issueid=CC047005

Published on 29 November 2010. Downloaded by State University of New York at Stony Brook on 28/10/2014 23:04:32.

View Article Online

presumably requires neutral reaction conditions; hence, we
employed neutral alumina as an acid scavenger. As a result, 4
was exclusively produced in the highest yield of 79%, albeit
with a reaction rate slower than those observed in the presence
of silver additives (entry 5).

Dixneuf et al. proposed that 2:1 coupling of aryl-
alkynes with carboxylic acids is initiated by protonation of
ruthenacycles.* This assumption was supported by their DFT
calculations for protonated ruthenacycle intermediates.*”
However, the protonation of ruthenacycles by water seems
to be unrealistic, because water is a much weaker proton
donor (by 10>~10° times) than carboxylic acids (pK, = 2-5).
Thus, we investigated on the protonation of a model
ruthenacycle composed of the [CpRu]™ fragment and two
acetylene molecules using the density functional theory (DFT)
calculations. The DFT calculations suggest that the protona-
tion of the cationic model complex is highly unlikely because
of the considerably large activation energy (27.6 kcal mol™") of
this process (ESIt Fig. S1). Hence, alternative mechanisms
should be operative during the reactions of cationic ruthenacycle
with water. A reasonable option involves a hydroxylated
ruthenacycle as proposed by Trost and coworkers.’ Such an
intermediate could be produced by the addition of a water
molecule to one of the carbene carbons, followed by deproto-
nation. However, no stationary point could be located for the
model water adduct A (Scheme 1). Thus, we investigated
the hydroxo ligand migration with model B, because the
deprotonation of an aquo precursor can afford such a
hydroxo complex and a similar migration of PR3 ligands has
previously been reported by Kirchner and others.>* DFT
calculations suggest that 1,2-migration of the hydroxo ligand
takes place with an activation energy of 16.9 kcal mol™!
via TS-BC (Fig. 2). This activation barrier is much lower
than that of the protonation of the cationic ruthenacycle
shown in Fig. S1 (ESIf{). The formation of the hydroxy-
lated ruthenacycle C is estimated to be endothermic by
6.2 kcal mol™".
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Scheme 1 Formation of hydroxo complex B.
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Subsequently, the B-H abstraction took place through
a late transition state, TS-CD, with an activation barrier of
18.8 kcal mol™'. The Ru-H and O-H distances are 1.72 and
1.34 A, respectively. The formation of hydride complex D is
estimated as exothermic by 8.1 kcal mol~!. The subsequent
1,2-H shift was found to be very facile. This process was
estimated to proceed via an early transition state (TS-DE): the
Ru-H bond was elongated by only 0.06 A when compared
with D. The activation energy was estimated to be very small
(2.4 kcal mol™). The formation of c-allyl complex E bearing
a side-on bound formyl ligand from D was found to be
exothermic by 6.6 kcal mol™!.

The haptotropic rearrangement from the vy-formylallyl
complex to an m’-oxapentadienyl one was investigated using
higher models including a 2,5-dihydrofuran moiety (Fig. 3).
This modification helps us to simplify further investigations by
avoiding the s-cis/s-trans conformational change of the diene
moiety at the expense of computational efficiency. As a result,
we could find that the y-formylallyl complex F was trans-
formed into the final n’-oxapentadienyl complex H through
an intermediate, o-allyl complex G with an end-bound formyl
group (the Ru—-O and Ru-C bond distances are 2.06 and
3.04 A, respectively). The initial side-on to end-on isomerization
of F was estimated to occur with almost no barrier via an
early transition state (TS-FG). The formation of G is thermo-
dynamically favorable because of relatively large exothermicity
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Fig. 3 Reaction profile for haptotropic rearrangement.
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Fig. 2 Reaction profile for transformation of hydroxo complex B into c-allyl complex E.
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of —21.0 kcal mol~!. Subsequent rearrangement to H took
place with the dissociation of the formyl group. This process
was estimated to require activation energy of 11.8 kcal mol™".
The thermodynamically favorable formation of 1 -oxapentadienyl
complex H (the Ru-O and Ru-C bond lengths are
between 2.22 A and 2.25 1&) is estimated to proceed with an
exothermicity of 14.9 kcal mol~!. The entire rearrangement
pathway was found to be a downbhill process with a considerable
exothermicity of 35.9 kcal mol™".

We anticipated that mn’-oxapentadienyl complexes are
possible intermediates in the hydrative cyclization that trans-
forms diynes into cycloalkenyl ketones. In fact, ketone
product 5 was obtained in the reaction of 3 with water, albeit
in a low yield (Table 1, entry 1). To investigate the role of the
oxapentadienyl complex in hydrative cyclization, the forma-
tion of 5 from 4 was examined. As is expected in the case of 18e
complexes, 4 was inert to nucleophilic reaction and it remained
intact after refluxing in an aqueous THF solution for 6 h. In
contrast, 'H NMR analysis indicated that 4 decomposed even
under weakly acidic conditions (4.2 mM HCI, 1 equiv.). In the
presence of diphenylphosphinoethane (dppe, 1.05 equiv.),
86% of 4 was consumed at 70 °C for 12 h to afford 5 and a
dppe complex 7 in 85% and 86% NMR yields, respectively
(Scheme 2). These results indicate that Brensted acid plays an
indispensable role in the formation of 5 from 4. Because
the Cp*RuCl fragment was restored effectively, a series of
transformations were expected to proceed catalytically. In
fact, an aqueous THF solution of diyne 2 was heated in the
presence of 5 mol% 1 for 24 h to obtain 5 in 64% isolated yield
(Scheme 2). Interestingly, the combination of 5 mol% each of
4 and HCI effectively catalyzed the hydrative cyclization to
afford § in a higher isolated yield of 88%, although 4 itself
exhibited no catalytic activity.

In conclusion, we observed novel transformation modes of a
water molecule with a ruthenium cyclic biscarbene complex.

HCI (1 equiv) O Ph
| -, Ph +

|
dppe _—Ru
(1.05 equiv) PhoP = /"~
H,O/THF (1:5) o {_PPh,
70°C, 12 h
585% (NMR) 7 86% (NMR)
/%Ph 5 mol % Ru cat.
o — = 5 cat.1:64%
N —— py  HOTHF (15) cat. 4 + HCI: 88%

T reflux, 24 h

Scheme 2 Catalytic formation of ketone 5 from diyne 2.

Under a neutral condition, bicyclic ruthenacyclopentatriene 3
reacts with H,O to afford new half-open oxaruthenocene
complex 4 possessing an n’-oxapentadienyl ligand. On the
other hand, bicyclic furan 6 was predominantly formed in the
presence of silver salts such as AgINOj via the incorporation of
one oxygen atom from a water molecule. The DFT calcula-
tions suggested that the cationic ruthenacycle undergoes
1,2-migration of the hydroxo ligand to form the hydroxylated
ruthenacycle. Subsequent B-H elimination followed by
1,2-hydride migration produces the y-formylallyl complex,
which finally evolves into the m’-oxapentadienyl complex.
The isolated complex 4 proved to be an intermediate in the
catalytic hydrative cyclization of diynes.
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