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A MECHANISTIC STUDY OF PYRROLE FORMATION IN THE
HBF4-CATALYZED THERMOLYSIS OF CYCLOPROPYL KETIMINES.

Harry H. Wasserman® and James M. Fukuyamat
Department of Chemistry, Yale University, New Haven, CT 06511 USA

Summary: A study of the HBF4.catalyzed rearrangement of 1-(1-piperidinojcyclopropy! ketimines
to 2-substituted pyrroles has been conducted using carbon-13 labeled starting material. The results
support the formation of a bicyclic aziridine-containing intermediate.

In a previous communication,! we reported that the HBF 4-catalyzed rearrangement of 1-(1-
piperidino)cyclopropyl ketimines 1 leads to 2-substituted pyrroles 3 (Scheme 1). The reaction is
related to the HBr-catalyzed cyclopropyl ketimine rearrangement 2.3 which, with 1 yields 2-pyrroline
derivatives 2 in the presence of the nucleophilic (bromide) counterion. When a non-nucleophilic
counterion (BF47) is used, pyrrole farmation (3) takes place in both alky! and aryl cases.4
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Two pathways have been considered for this rearrangement.4In path a (Scheme 2), the
bridged ion, formed on protonation, undergoes a bond recrganization analogous to the vinyl
cyclopropane rearrangement by attack of the benzylamino group at one of the methylene groups of
the cyclopropane. The resulting ring opening would yield a pyrroline which could then be
converted to the pyrrote by acid-catalyzed loss of the piperidino group. In path b, a cyclopropyl
carbinyl cation rearranges to the cyclobuty! ion, stabilized by the adjacent piperidina group. Attack
of the neighboring benzylamina group produces a bicyclic intermediate 4 which undergoes ring-
opening in acid to form the highly stabilized carbonium ion 5. Loss of a proton from 5, double bond
shift in acid and loss of piperidine would yield the pyrrole.
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We sought to distinguish between these two mechanisms using 1-(1-piperidino)cyclopropy!

ketimines detived from 1-cyano-1-(1-piperidino)cyclopropane enriched with carbon-13 at the 1-
position. Depending upon the pathway followed, the resulting pyrrole product would be 13-

enriched either at the 3-pasition (path a) or the 5 position (path b).

The enriched material was prepared using BaCO3 {90%13C) as the carbon-13 source and
the pyrrole syntheses carried out as outlined in Scheme 3.5 An analysis of the 1-cyaro-1-(1-
piperidino)cyclopropane starting material was consistent with 80% 13C enrichment of the 1-carbon

of the cyclopropane ring (39.9ppm).

Scheme 3
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a: Ba'3C03, Hz504, -78°C; b: HCI; ¢: DCC, piperidine; d: Na, Et20, TMSCI; e: KON, AcOH; f: R2Li, HaO*;

g: R1NHa; h: HBF 4-OMes
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Table 1 lists the observed 13C NMR peaks for the three pyrroles formed in this study, and the
assignment to the ring carbon atoms 2, 3, 4 and 5. In each case, the 13C absorption corresponding
to the 5-position of the substituted pyrrole was strikingly enhanced in accord with 90% isotopic
entichment at that site. The chemical shift assignments were determined by coupled and
decoupled 13C spectra and are in agreement with the substituent chemical shift effects proposed by
Abraham® for substituted pyrroles.

Table 1. Carbon-13 Chemical Shifts

Pyrrole R2 Enhanced Signal C(2) C(3) C(4) C(5)
Substituent (ppm)
-t-Bu 115.9 141.8 102.4 107.9 115.9
-Ph 118.9 132.1 105.9 110.0 118.9
-Me 116.2 127.4 105.8 108.3 116.2
-Me2 128.6 106.4 108.7 115.6

a: values obtained from reference 6

The above results are clearly in accord with mechanism b involving the bicyclic intermediate
4 formed by a well-precedented cyclopropyl carbiny! cation rearrangement followed by
intramolecular attack by the neighboring secondary amino group. This pathway is thus favored in
the absence of a good nucleophilic counterion which can open the cyclopropyl group by the
displacement reaction pictured in Stevens' mechanism (Scheme 4).2

Scheme 4
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