
Visible-Light-Induced C(sp2)−C(sp3) Cross-Dehydrogenative-
Coupling Reaction of N‑Heterocycles with N‑Alkyl‑N‑methylanilines
under Mild Conditions
Hong-Yu Zhang, Jianjun Chen, Cong-Cong Lu, Ya-Ping Han, Yuecheng Zhang,* and Jiquan Zhao*

Cite This: https://doi.org/10.1021/acs.joc.1c01207 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Disclosed herein is a cross-dehydrogenative-cou-
pling reaction of N-heterocycles including 1,2,4-triazine-3,5(2H,
4H)-diones and quinoxaline-2(1H)-ones with N-methylanilines to
form C(sp2)−C(sp3) under visible-light illumination and ambient
air at room temperature. In this process, easily available
Ru(bpy)3Cl2·6H2O serves as the catalyst, and air acts as the
green oxidant. This method features high atom economy,
environmental friendliness, and convenient operation and provides
an efficient and practical access to aminomethyl-substituted N-
heterocycles with extensive functional group compatibility in 40−
86% yields.

■ INTRODUCTION

N-Heterocycles, such as 1,2,4-triazine-3,5(2H,4H)-dione (6-
azauracil) and quinoxalin-2(1H)-one, are privileged scaffolds
and commonly found in a wide range of biologically active
molecules, natural products, and synthetic pharmaceuticals.1,2

As shown in Figure 1, diclazuril is a broad-spectrum
anticoccidial drug on the market and applicable to treat
coccidiosis in chicken.2a Furthermore, 6-azauridine which is an
analogue of uridine shows effective antiviral activity and is
utilized in clinics against pathogenic flaviviruses.2b Other
examples shown in Figure 1 also exhibit distinct bioactivity and
medicinal properties, such as the c-MeT kinase inhibitor, 5-
HT2C receptor agonist, and cannabinoid CB2 receptor
agonist.2c−e

Although 1,2,4-triazine-3,5(2H,4H)-dione derivatives are of
interest in pharmaceutical chemistry, the direct and efficient
synthesis methods for 1,2,4-triazine-3,5(2H,4H)-dione deriva-
tives have not been well established. The traditional methods
are based on the nucleophilic substitution or cross-coupling
reactions of 3-halo-1,2,4-triazine-3,5(2H,4H)-dione, which
suffer from limitations such as the requirement of prefunction-
alized substrates, low atom economy, and harsh conditions.3

The newly developed C−H functionalization strategy shows its
superiority in short steps, high atom economy, and mild
conditions,4 but only a few of the examples of direct
functionalization of 1,2,4-triazine-3,5(2H,4H)-dione have
been achieved.5−7 In 2018, the Xu group gave a pioneering
example for the C−H functionalization of 1,2,4-triazine-
3,5(2H,4H)-dione to synthesize C(CH3)2CF3-substituted
1,2,4-triazine-3,5(2H,4H)-dione in a moderate yield (Scheme
1, equation a).5 In 2020, Meng and Li groups cooperatively

disclosed an elegant C−H difluoromethylation of heterocycles,
and 1,2,4-triazine-3,5(2H,4H)-dione was selected as a
substrate providing 6-(difluoromethyl)-1,2,4-triazine-3,5-
(2H,4H)-dione in a good yield (Scheme 1, equation b).6

Recently, the Kim group described a novel C−H methylation
of heterocycles with sulfur ylides and found that a range of
1,2,4-triazine-3,5(2H,4H)-diones matched well with the stand-
ard conditions (Scheme 1, equation c).7 In view of the conflict
between the significance of 1,2,4-triazine-3,5(2H,4H)-dione
derivatives and the scarcity of synthesis methods for them, it is
in urgent demand to develop the convenient and direct C−H
functionalization of 1,2,4-triazine-3,5(2H,4H)-diones.
In addition, over the past decade, various protocols for the

C−H functionalization of quinoxalin-2(1H)-ones, including
alkylation,8 arylation,9 acylation,10 amination,11 alkoxylation,12

phosphorylation,13 sulfenylation,14 and so forth,15 have been
accomplished, but the direct introduction of diverse amino-
methyl groups into quinoxalin-2(1H)-ones via C−H function-
alization is extremely rare. In 2020, Chen and Yu groups
cooperatively reported a visible-light-induced addition reaction
of quinoxalin-2(1H)-ones with N-aryl glycines achieving 3-
aminomethyl-substituted 3,4-dihydroquinoxalin-2(1H)-ones
(Scheme 1, equation d).16 This hydro-aminomethyl addition
transformation features the utilization of recyclable g-C3N4 as

Received: May 24, 2021

Articlepubs.acs.org/joc

© XXXX American Chemical Society
A

https://doi.org/10.1021/acs.joc.1c01207
J. Org. Chem. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

H
E

L
M

H
O

L
T

Z
-Z

E
N

T
R

U
M

 H
E

R
E

O
N

 o
n 

A
ug

us
t 3

1,
 2

02
1 

at
 1

9:
32

:4
9 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hong-Yu+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jianjun+Chen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Cong-Cong+Lu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ya-Ping+Han"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yuecheng+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jiquan+Zhao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.joc.1c01207&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.1c01207?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.1c01207?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.1c01207?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.1c01207?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.1c01207?fig=abs1&ref=pdf
pubs.acs.org/joc?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.joc.1c01207?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/joc?ref=pdf
https://pubs.acs.org/joc?ref=pdf


the catalyst, mild conditions, and easy operation. However,
compared with N-aryl glycines which have to undergo
decarboxylation to generate aminomethyl radicals, N-methyl-
aniline derivatives are regarded as more environmentally
friendly and higher atom-economic aminomethyl radical
precursors.17 Therefore, the exploration of C−H amino-
methylation of quinoxalin-2(1H)-ones with N-methylanilines
is still meaningful and challenging. Over the past years, the
visible-light-induced cross-dehydrogenative coupling (CDC)
reaction has emerged as a popular and ideal strategy for the
step- and atom-economical construction of C−C bonds due to
the advantages such as high efficiency, mild reaction
conditions, and low energy consumption.18 Herein, we disclose
the first visible-light-induced CDC reactions of N-heterocycles
including 1,2,4-triazine-3,5(2H,4H)-diones and quinoxalin-
2(1H)-ones with N-methylanilines (Scheme 1, equation e).
Thanks to the features of low catalyst loading, using molecular
oxygen in ambient air as an oxidant and a wide range of

functional tolerance, this method offers an environmentally
benign and synthetically efficient protocol to potentially
pharmacoactive 3-aminomethyl-substituted 1,2,4-triazine-3,5-
(2H,4H)-dione or quinoxalin-2(1H)-one derivatives in mod-
erate to high yields.

■ RESULTS AND DISCUSSION

Our investigation was started by employing 1-methylquinox-
alin-2(1H)-one (1a) and N,N-dimethylaniline (2a) as the
model substrates to optimize the reaction conditions (Table
1). Initially, diverse solvents, such as CH3CN, dimethylforma-
mide (DMF), dimethyl ether (DME), acetone, and N-methyl-
2-pyrrolidone (NMP), were tested in the presence of rose
bengal (5 mol %) as the photocatalyst under blue light
irradiation and ambient air at room temperature (Table 1,
entries 1−5). Fortunately, DMF was found to be the effective
solvent, and the expected product (3a) was obtained in 18%
yield. Subsequently, a series of other photocatalysts including
eosin B, eosin Y, fac-Ir(ppy)3, and Ru(bpy)3Cl2·6H2O were
examined (Table 1, entries 6−9). Among them, Ru(bpy)3Cl2·
6H2O was proved to be the most suitable and delivered
product 3a in 24% yield. In addition, the yield of product 3a
increased to 32% in the presence of 3 equiv of N,N-
dimethylaniline, but a further increase in the amount of N,N-
dimethylaniline was slightly helpful (Table 1, entry 10). Next,
various oxidants, including O2, K2S2O8, di-tert-butyl peroxide
(DTBP), tert-butyl hydroperoxide (TBHP), and cumene
hydroperoxide (CHP), were employed instead of air (Table
1, entries 11−15). Fortunately, the reaction with CHP as the
oxidant provided the target product in a yield of 58%.
Changing the loading of CHP or Ru(bpy)3Cl2·6H2O did not
enhance the reaction efficiency (Table 1, entries 16−19).
Subsequently, we investigated the dosage of the solvent and
found that 1 mL of DMF was appropriate offering the desired
product in a yield of 64% (Table 1, entries 20−21). Next, a
number of bases including K2CO3, 1,8-diazabicyclo[5.4.0]-
undec-7-ene (DBU), Et3N, and CH3COOK were investigated,
and DBU was found to be the best one with the yield of 3a
increasing from 64 to 72% (Table 1, entries 22−25). However,
the yield of 3a was not further increased by using 0.5 or 1.5
equiv of DBU (Table 1, entries 26 and 27). To our great
surprise, the yield of 3a dramatically increased to 83% under an
air atmosphere without CHP (Table 1, entry 28). Therefore,
the optimal reaction conditions were achieved, which are blue
light as the light source, 2 mol % of Ru(bpy)3Cl2·6H2O as the
photocatalyst, and 1.0 equiv of DBU as the additive in 1.0 mL
of DMF under ambient air at room temperature.

Figure 1. Representation of 1,2,4-triazine-3,5(2H,4H)-dione and quinoxalin-2(1H)-one derivatives with bioactivity.

Scheme 1. C−H Functionalization of 1,2,4-Triazine-
3,5(2H,4H)-diones and Hydro-aminomethyl Addition of
Quinoxalin-2(1H)-ones
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With the optimal reaction conditions established, the scope
of the present transformation was further investigated by
employing different quinoxalin-2(1H)-ones as substrates and
N-methylanilines as aminomethyl radical precursors (Table 2).
First, several quinoxalin-2(1H)-ones with different N-sub-
stituent groups such as ethyl, benzyl, allyl, and ester groups
were examined to react with N,N-dimethylaniline (3b−3f). As
expected, N-ethyl-substituted quinoxalin-2(1H)-one was also
well compatible with the optimal reaction conditions and gave
the corresponding product 3b in a good yield of 72%.
However, for the other N-substituted quinoxalin-2(1H)-ones,
CHP was utilized as the oxidant instead of ambient air in order
to obtain the corresponding products in moderate to good
yields. Quinoxalin-2(1H)-ones with electron-donating groups
could provide the expected products in good yields (3g−3i).

Next, we continued to explore the substrate range with a series
of N,N-dimethylanilines bearing the electron-donating or
electron-withdrawing groups on the benzene ring. N,N-
Dimethylanilines with electron-donating methyl, ethyl, or
methoxy groups at the para or meta position on the benzene
ring reacted well to give the target products in good to
excellent yields (3j−3m). On the other hand, N,N-
dimethylanilines with electron-withdrawing bromine atoms at
the para position on the benzene ring offered the
corresponding product 3n in a moderate yield of 49%. It was
assumed that the reaction became more challenging in the
cases where one methyl was replaced by ethyl, n-butyl, allyl, or
even benzyl in N,N-dimethylaniline. Fortunately, the reaction
exclusively took place on the N-methyl group and afforded the
corresponding in moderate yields (3o−3r). Other amino-
methyl sources including 4-dimethylaminopyridine, 2-phenyl-
1,2,3,4-tetrahydroisoquinoline, and so forth, were also tested in
the reaction with 1-methylquinoxalin-2(1H)-one, but no
corresponding products were detected (Figure S6, Supporting
Information).
In consideration of the significance of 1,2,4-triazine-3,5-

(2H,4H)-dione derivatives, we further verified the feasibility of
this methodology for the modification of 1,2,4-triazine-
3,5(2H,4H)-diones (Table 3). To our delight, 1,2,4-triazine-
3,5(2H,4H)-diones with diverse N-substituent groups includ-
ing methyl, benzyl, 4-fluorobenzyl, allyl, and acetophenone
groups matched with the present transformation well, and the
target products were received in good to high yields (5a−5e).
The reaction with 4b as the substrate could be readily scaled
up to 1.5 mmol, and the target product 5b was obtained in a
satisfactorily isolated yield of 78%. Subsequently, a variety of
N,N-dimethylanilines with electron-donating groups, such as
methyl, ethyl, or methoxy groups on the benzene ring,
progressed successfully under the optimal conditions and
afforded the corresponding products in good yields (5f−5i).
Furthermore, the reaction was also investigated with other
dialkylanilines having two different N-alkyl groups, for
instance, N-butyl-N-methylaniline, N-allyl-N-methylaniline,
and N-benzyl-N-methylaniline. Satisfyingly, C−C bond for-
mation highly selectively took place on the N-methyl carbon,
and the aminomethyl-substituted products were obtained in
moderate to good yields (5j−5l). Besides, N,N-dimethylnaph-
thalen-1-amine and N,N-diethylaniline were attempted as
special substrates and offered the corresponding products in
good yields of 75 and 78%, respectively (5m−5n). What
surprised us was the reaction of N-methylaniline with free NH
groups was also carried out smoothly under the standard
conditions and provided the corresponding C−C cross-
coupling product 5o in a satisfactory yield of 53%.
After studying the range of substrates, several control

experiments were carried out to clarify the mechanism of the
reaction (Scheme 2). When 3.0 equiv of 2,2,6,6-tetramethyl-1-
piperidinyloxy (TEMPO) was added under the standard
reaction conditions, the reaction was completely inhibited
and a TEMPO-adduct 6a was detected by high-resolution mass
spectrometry (HRMS) (Scheme 2, equation A). This result
suggested that the transformation might involve a single-
electron transfer. When 3.0 equiv of 1,4-diazabicyclo[2.2.2]-
octane as singlet oxygen scavengers was added in the model
reaction, the target product was obtained in 45% yield, which
excluded the possibility that the singlet oxygen might be a
reactive intermediate in this transformation (Scheme 2,
equation B). Besides, an iminium ion species 7a was observed

Table 1. Selected Reaction Condition Optimizationa

entry photocatalyst oxidant solvent yield (%)b

1c,d,e rose bengal air CH3CN 17
2c,d,e rose bengal air DMF 18
3c,d,e rose bengal air DME 13
4c,d,e rose bengal air acetone 15
5c,d,e rose bengal air NMP trace
6c,d,e eosin B air DMF 18
7c,d,e eosin Y air DMF 15
8c,e fac-Ir(ppy)3 air DMF 12
9c,e Ru(bpy)3Cl2·6H2O air DMF 24
10e Ru(bpy)3Cl2·6H2O air DMF 32(29f)
11e Ru(bpy)3Cl2·6H2O O2 DMF 11
12e Ru(bpy)3Cl2·6H2O K2S2O8 DMF n.d.
13e Ru(bpy)3Cl2·6H2O DTBPg DMF trace
14e Ru(bpy)3Cl2·6H2O TBHPh DMF 51(50i)
15e Ru(bpy)3Cl2·6H2O CHPj DMF 58
16e,k Ru(bpy)3Cl2·6H2O CHP DMF 53
17e,l Ru(bpy)3Cl2·6H2O CHP DMF 36
18e,m Ru(bpy)3Cl2·6H2O CHP DMF 50
19e,d Ru(bpy)3Cl2·6H2O CHP DMF 45
20 Ru(bpy)3Cl2·6H2O CHP DMF 64
21n Ru(bpy)3Cl2·6H2O CHP DMF 61
22o Ru(bpy)3Cl2·6H2O CHP DMF 65
23p Ru(bpy)3Cl2·6H2O CHP DMF 72
24q Ru(bpy)3Cl2·6H2O CHP DMF 59
25r Ru(bpy)3Cl2·6H2O CHP DMF 64
26s Ru(bpy)3Cl2·6H2O CHP DMF 70
27t Ru(bpy)3Cl2·6H2O CHP DMF 69
28p Ru(bpy)3Cl2·6H2O air DMF 83

aUnless specifically noted otherwise, reaction conditions are 1a (0.3
mmol), 2a (3.0 equiv), catalyst (2 mol %), oxidant (1.0 equiv., except
for an air or O2 atmosphere), and solvent (1.0 mL), stirring at room
temperature under an argon atmosphere about 12 h. bYield of the
isolated product. c2a (2.0 equiv). dPhotocatalyst (5 mol %). eSolvent
(1.5 mL). fstirring for 28 h. gDi-tert-butyl peroxide. htert-Butyl
hydroperoxide (70% in water). iTBHP 5.5 M in decane. jCHP
(contains ca. 20% aromatic hydrocarbon). kOxidant (1.5 equiv).
lOxidant (0.5 equiv). mPhotocatalyst (1 mol %). nSolvent (0.5 mL).
oK2CO3 as the additive (1.0 equiv). pDBU (1,8-diazabicyclo[5.4.0]-
undec-7-ene) as the additive (1.0 equiv). qEt3N as the additive (1.0
equiv). rCH3COOK as the additive (1.0 equiv). sDBU as the additive
(0.5 equiv). tDBU as the additive (1.5 equiv).
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when the model reaction was stopped at 4 h (Scheme 2,
equation C). When the reaction was performed in the absence
of the photocatalyst, hardly any desired product was detected,
suggesting that the photocatalyst played an important role in
the process of electron transfer (Scheme 2, equation D). In
addition, the formation of the product did not take place in the
dark (Scheme 2, equation E). This indicated that visible-light
irradiation was essential to initiate catalytic reactions. More-
over, the on/off visible-light irradiation experiments also
confirmed the great influence of continuous illumination
(Figure 2).
On the basis of the aforementioned results and previous

literature studies,19 a plausible mechanism pathway is proposed
in Scheme 3. Initially, Ru(bpy)3

2+ is photoexcited by visible-
light irradiation to generate excited *Ru(bpy)3

2+. Subse-
quently, a single-electron-transfer process between excited
*Ru(bpy)3

2+ and N,N-dimethylaniline (2a) takes place to
furnish Ru(bpy)3

+ and the cation radical of N,N-dimethylani-
line (8a).19b Then, Ru(bpy)3

+ is oxidized by aerial oxygen or
CHP to regenerate ground-state Ru(bpy)3

2+.19e Meanwhile,
with the assistance of DBU, 8a undergoes deprotonation to
generate α-amino radical 9a which is sequentially oxidized to

iminium ion species 7a.19c Next, the electrophilic addition of
7a to 1-methylquinoxalin-2(1H)-one (1a) provides the cation
intermediate 10a.19f Finally, the target product 3a is obtained
through H+ elimination from intermediate 10a with the aid of
DBU.
In conclusion, we have developed, for the first time, an

efficient and atom-economic visible-light-induced C(sp3)−
C(sp2) cross-dehydrogenation-coupling reaction between
1,2,4-triazine-3,5(2H,4H)-diones/quinoxalin-2(1H)-ones and
N,N-dimethylanilines. The method was also applicable to
other N-methylaniline derivatives such as N,N-diethylaniline,
dialkylanilines with two different N-alkyl groups, and even N-
methylaniline. This protocol had the advantages of cheap and
easily available starting materials and catalysts, ambient air as
the green oxidant, eco-friendly energy source, mild reaction
conditions, a broad functional-group tolerance in good yields,
high scalability, and operational simplicity, so it is promising to
provide an ideal method for organic synthesis and
pharmaceutical chemistry.

Table 2. Substrate Scope of Various Quinoxalin-2(1H)-onesa

aGeneral conditions: 1 (0.3 mmol), 2 (0.9 mmol), Ru(bpy)3Cl2·6H2O (2.0 mol %), and DBU (1.0 equiv) in 1.0 mL of DMF irradiated with a 25
W blue LED under an air atmosphere for 12 h; yield of the isolated product. bCHP was used as the oxidant under an argon atmosphere.
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Table 3. Substrate Scope of Various 1,2,4-Triazine-3,5(2H, 4H)-dionesa

aGeneral conditions: 4 (0.3 mmol), 2 (0.9 mmol), Ru(bpy)3Cl2·6H2O (2.0 mol %), and DBU (1.0 equiv) in 1.0 mL of DMF irradiated with a 25
W blue LED under an air atmosphere for 12 h; yield of the isolated product. bScaled up to 1.5 mmol 4b.

Scheme 2. Control Experiments
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■ EXPERIMENTAL SECTION
General. All reactions involving air- and moisture-sensitive

reagents were carried out under an argon atmosphere. 1H, 13C{1H},
and 19F{1H} NMR spectra were recorded on a Bruker AC-P 400
spectrometer (400 MHz for 1H, 100 MHz for 13C{1H}, and 376 MHz
for 19F{1H}) in CDCl3 [with trimethylsilyl (TMS) as the internal
standard]. Chemical shifts (δ) were measured in parts per million
relative to TMS δ = 0 for 1H or to chloroform δ = 77.0 for 13C as the
internal standard. Coupling constants, J, are reported in Hertz. Mass
data were measured using a Thermo Scientific DSQ II mass
spectrometer. High-resolution mass spectra were recorded on a
quadrupole time-of-flight mass spectrometer using electrospray
ionization (ESI) as an ionization method. Melting points were
obtained using a Shanghai Inesa WRS-3 melting point apparatus. The
starting materials were purchased from Energy Chemical or J&K
Chemicals and used without further purification. Solvents were dried
and purified according to the procedure from the “Purification of
Laboratory Chemicals” book. The reaction procedure was monitored
through thin-layer chromatography (TLC), which was performed
using 0.25 mm silica gel plates (60 F254) and was visualized using a
UV lamp (254 nm). As for cyclic voltammetry experiments, a
CHI760E electrochemical workstation was used. The crude products
were purified by flash column chromatography on silica gel using
petroleum ether/ethyl acetate as an eluent, and the reported yields are
the actual isolated yields of pure products. The purity of products was
determined by high-performance liquid chromatography (HPLC)
with a Shimadzu LC-20AD system.
General Procedure for the Preparation of Various Quinox-

alin-2(1H)-ones. The substrates of various quinoxalin-2(1H)-ones 1
were synthesized according to procedures described in the previous
literature studies.9a,20

General Procedure for the Preparation of Various 1,2,4-
Triazine-3,5(2H,4H)-diones. The substrates of various 1,2,4-

triazine-3,5(2H,4H)-diones 4 were synthesized according to proce-
dures described in the previous literature studies.21

General Procedure for the Preparation of Various N-
Methylanilines. To a stirred solution of N-methylaniline (30
mmol) and Et3N (75 mmol) in MeCN (30 mL), various
halogenoalkanes (51 mmol) were added, and the mixture was heated
to reflux for 16 h. Then, the solution was added with brine (50 mL)
and extracted with CH2Cl2 (3 × 50 mL). The organic layer was
separated, dried over anhydrous Na2SO4, and filtered. The solvent was
removed under reduced pressure to obtain a crude product, which
was purified by column chromatography on silica gel to afford the
alkylated N-methylanilines 2.

General Procedure of Aminomethylation of N-Heterocycles
(Condition for 3a−3b, 3h, 3j−3l, 3n−3r, and 5a−o). N-
Heterocycle derivatives (1 and 4) (0.3 mmol) and Ru(bpy)3Cl2·
6H2O (0.02 equiv., 0.006 mmol) were added to an oven-dried
reaction vessel (dimension: 20 mL) equipped with a magnetic stir bar.
Subsequently, anhydrous DMF (1.0 mL), DBU (1.0 equiv., 0.3
mmol), and N-methylaniline derivatives (2) (3.0 equiv., 0.9 mmol)
were added successively through respective syringes. The mixture was
stirred at room temperature under an air atmosphere and irradiated
with a 25 W blue light-emitting diode (LED) lamp until the substrate
was consumed completely (TLC monitoring, about 12 h). Then, the
reaction mixture was quenched with water (20 mL) and extracted
with ethyl acetate (20 mL × 3). The organic layer was separated,
dried over anhydrous Na2SO4, and filtered. The solvent was removed
under reduced pressure to obtain a crude product, which was purified
by column chromatography on silica gel using petroleum ether/ethyl
acetate as an eluent to afford the pure product.

General Procedure of Aminomethylation of Quinoxalin-
2(1H)-ones (Condition for 3c−3g, 3i, and 3m). Quinoxalin-
2(1H)-one derivatives (1) (0.3 mmol) and Ru(bpy)3Cl2·6H2O (0.02
equiv., 0.006 mmol) were added to an oven-dried reaction vessel
(dimension: 20 mL) equipped with a magnetic stir bar. Then, the
vessel was evacuated and backfilled with argon three times.

Figure 2. On/off visible-light irradiation experiments.

Scheme 3. Proposed Reaction Mechanism
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Subsequently, anhydrous DMF (1.0 mL), DBU (1.0 equiv., 0.3
mmol), CHP (1.0 equiv., 0.3 mmol), and N-methylaniline derivatives
(2) (3.0 equiv., 0.9 mmol) were added successively through respective
syringes. The mixture was stirred at room temperature under an argon
atmosphere and irradiated with a 25 W blue LED lamp until the
substrate was consumed completely (TLC monitoring, about 12 h).
Then, the reaction mixture was quenched with water (20 mL) and
extracted with ethyl acetate (20 mL × 3). The organic layer was
separated, dried over anhydrous Na2SO4, and filtered. The solvent was
removed under reduced pressure to obtain a crude product, which
was purified by column chromatography on silica gel using petroleum
ether/ethyl acetate as an eluent to afford the pure product.
Scaled-Up Reaction Condition for 5b. 2,4-Dibenzyl-1,2,4-

triazine-3,5(2H,4H)-dione (1.5 mmol) and Ru(bpy)3Cl2·6H2O (0.02
equiv., 0.03 mmol) were added to an oven-dried reaction vessel
(dimension: 120 mL) equipped with a magnetic stir bar.
Subsequently, anhydrous DMF (5.0 mL), DBU (1.0 equiv., 1.5
mmol), and N,N-dimethylaniline (3.0 equiv., 4.5 mmol) were added
successively through respective syringes. The mixture was stirred at
room temperature under an air atmosphere and irradiated with a 25
W blue LED lamp until the substrate was consumed completely (TLC
monitoring, about 12 h). Then, the reaction mixture was quenched
with water (100 mL) and extracted with ethyl acetate (100 mL × 3).
The organic layer was separated, dried over anhydrous Na2SO4, and
filtered. The solvent was removed under reduced pressure to obtain a
crude product, which was purified by flash column chromatography
on silica gel (petroleum ether/ethyl acetate = 15:1 as an eluent) to
afford the product 5b (78% yield, 483.1 mg) as a white solid.
Control Experiment A. 1-Methylquinoxalin-2(1H)-one (1a) (0.3

mmol), Ru(bpy)3Cl2·6H2O (0.02 equiv., 0.006 mmol), and 2,2,6,6-
tetramethyl-1-piperidinyloxy (3.0 equiv., 0.9 mmol) were added to an
oven-dried reaction vessel (dimension: 20 mL) equipped with a
magnetic stir bar. Subsequently, anhydrous DMF (1.0 mL), DBU (1.0
equiv., 0.3 mmol), and N,N-dimethylaniline (2a) (3.0 equiv., 0.9
mmol) were added successively through respective syringes. The
mixture was stirred at room temperature under an air atmosphere and
irradiated with a 25 W blue LED lamp for 12 h. However, no target
product 3a was detected by TLC (petroleum ether/ethyl acetate =
4:1 as a spread solvent). Compound 6a was detected by HRMS (ESI)
m/z: calcd for C17H28KN2O

+ [M + K]+, 315.1833; found, 315.1837.
Control Experiment B. 1-Methylquinoxalin-2(1H)-one (1a) (0.3

mmol), Ru(bpy)3Cl2·6H2O (0.02 equiv., 0.006 mmol), and 1,4-
diazabicyclo[2.2.2]octane (3.0 equiv., 0.9 mmol) were added to an
oven-dried reaction vessel (dimension: 20 mL) equipped with a
magnetic stir bar. Subsequently, anhydrous DMF (1.0 mL), DBU (1.0
equiv., 0.3 mmol), and N,N-dimethylaniline (2a) (3.0 equiv., 0.9
mmol) were added successively through respective syringes. The
mixture was stirred at room temperature under an air atmosphere and
irradiated with a 25 W blue LED lamp for 12 h. Then, the reaction
mixture was quenched with water (20 mL) and extracted with ethyl
acetate (20 mL × 3). The organic layer was separated, dried over
anhydrous Na2SO4, and filtered. The solvent was removed under
reduced pressure to obtain a crude product, which was purified by
flash column chromatography on silica gel (petroleum ether/ethyl
acetate = 4:1 as an eluent) to afford the product 3a in 45% yield.
Control Experiment C. 1-Methylquinoxalin-2(1H)-one (1a) (0.3

mmol) and Ru(bpy)3Cl2·6H2O (0.02 equiv., 0.006 mmol) were added
to an oven-dried reaction vessel (dimension: 20 mL) equipped with a
magnetic stir bar. Subsequently, anhydrous DMF (1.0 mL), DBU (1.0
equiv., 0.3 mmol), and N,N-dimethylaniline (2a) (3.0 equiv., 0.9
mmol) were added successively through respective syringes. The
mixture was stirred at room temperature under an air atmosphere and
irradiated with a 25 W blue LED lamp for 4 h. The target product 3a
was detected by TLC (petroleum ether/ethyl acetate = 4:1 as a spread
solvent). Compound 7a was detected by HRMS (ESI) m/z: calcd for
C8H10N

+ [M]+, 120.0808; found, 120.0815.
Control Experiment D. 1-Methylquinoxalin-2(1H)-one (1a) (0.3

mmol) was added to an oven-dried reaction vessel (dimension: 20
mL) equipped with a magnetic stir bar. Subsequently, anhydrous
DMF (1 mL), DBU (1.0 equiv., 0.3 mmol), and N, N-dimethylaniline

(2a) (3.0 equiv., 0.9 mmol) were added successively through
respective syringes. The mixture was stirred at room temperature
under an air atmosphere and irradiated with a 25 W blue LED lamp
for 12 h. The target product 3a was not detected by TLC (petroleum
ether/ethyl acetate = 4:1 as a spread solvent).

Control Experiment E. 1-Methylquinoxalin-2(1H)-one (1a) (0.3
mmol) and Ru(bpy)3Cl2·6H2O (0.02 equiv., 0.006 mmol) were added
to an oven-dried reaction vessel (dimension: 20 mL) which was
equipped with a magnetic stir bar and wrapped in tinfoil.
Subsequently, anhydrous DMF (1 mL), DBU (1.0 equiv., 0.3
mmol), and N,N-dimethylaniline (2a) (3.0 equiv., 0.9 mmol) were
added successively through respective syringes. The mixture was
stirred in the dark at room temperature under an air atmosphere for
12 h. The target product 3a was not detected by TLC (petroleum
ether/ethyl acetate = 4:1 as a spread solvent).

Characterization of the Products. 1-Methyl-3-((methyl-
(phenyl)amino)methyl)quinoxalin-2(1H)-one (3a). The crude prod-
uct was purified by flash column chromatography on silica gel
(petroleum ether/ethyl acetate = 4:1 as an eluent) to afford the
product 3a (83% yield, 69.3 mg) as a yellow solid, mp 86−88 °C. 1H
NMR (400 MHz, CDCl3): δ 7.80 (d, J = 8.0 Hz, 1H), 7.51 (dd, J =
8.0 Hz, J = 8.0 Hz, 1H), 7.28 (dd, J = 8.0 Hz, J = 8.0 Hz, 2H), 7.20
(dd, J = 8.0 Hz, J = 8.0 Hz, 2H), 6.90 (d, J = 8.0 Hz, 2H), 6.70 (dd, J
= 8.0 Hz, J = 8.0 Hz, 1H), 4.74 (s, 2H), 3.68 (s, 3H), and 3.20 (s,
3H); 13C{1H} NMR (100 MHz, CDCl3): δ 156.5, 154.8, 149.7,
133.2, 132.6, 130.4, 130.2, 129.0, 123.6, 116.5, 113.6, 112.6, 55.3,
39.7, and 28.9; and HRMS (ESI) m/z: calcd for C17H18N3O

+ [M +
H]+, 280.1444; found, 280.1444. Purity: 99% (HPLC: a Shim-pack
VP-ODS column, MeOH/H2O = 80:20, flow rate = 1 mL/min, λ =
254 nm, and tR = 7.369 min).

1-Ethyl-3-((methyl(phenyl)amino)methyl)quinoxalin-2(1H)-one
(3b). The crude product was purified by flash column chromatog-
raphy on silica gel (petroleum ether/ethyl acetate = 4:1 as an eluent)
to afford the product 3b (73% yield, 64.3 mg) as a yellow solid, mp
106−107 °C. 1H NMR (400 MHz, CDCl3): δ 7.82 (d, J = 8 Hz, 1H),
7.51 (dd, J = 8.0 Hz, J = 8.0 Hz, 1H), 7.29 (dd, J = 8.0 Hz, J = 8.0 Hz,
2H), 7.24−7.19 (m, 2H), 6.90 (d, J = 8 Hz, 2H), 6.68 (dd, J = 8.0 Hz,
J = 8.0 Hz, 1H), 4.75 (s, 2H), 4.31 (q, J = 8.0 Hz, 2H), 3.20 (s, 3H),
and 1.38 (t, J = 8.0 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ
156.5, 154.3, 149.7, 132.9, 132.1, 130.7, 130.2, 129.0, 123.4, 116.5,
113.5, 112.6, 55.2, 39.6, 37.2, and 12.5; and HRMS (ESI) m/z: calcd
for C18H20N3O

+ [M + H]+, 294.1601; found, 294.1599. Purity: 98%
(HPLC: a Shim-pack VP-ODS column, MeOH/H2O = 80:20, flow
rate = 1 mL/min, λ = 254 nm, and tR = 17.679 min).

1-Benzyl-3-((methyl(phenyl)amino)methyl)quinoxalin-2(1H)-
one (3c). The crude product was purified by flash column
chromatography on silica gel (petroleum ether/ethyl acetate = 4:1
as an eluent) to afford the product 3c (50% yield, 53.4 mg) as a
yellow solid, mp 141−143 °C. 1H NMR (400 MHz, CDCl3): δ 7.82
(d, J = 8 Hz, 1H), 7.39 (dd, J = 8 Hz, J = 8 Hz, 1H), 7.33−7.22 (m,
9H), 6.93 (d, J = 8 Hz, 2H), 6.70 (dd, J = 8 Hz, J = 8 Hz, 1H), 5.49
(s, 2H), 4.81 (s, 2H), and 3.23 (s, 3H); 13C{1H} NMR (100 MHz,
CDCl3): δ 156.7, 154.9, 149.7, 135.1, 132.9, 132.5, 130.5, 130.19,
129.0, 129.0, 127.8, 126.9, 123.7, 116.6, 114.4, 112.6, 55.2, 45.8, and
39.7; and HRMS (ESI) m/z: calcd for C23H22N3O

+ [M + H]+,
356.1757; found, 356.1755. Purity: 99% (HPLC: a Shim-pack VP-
ODS column, MeOH/H2O = 80:20, flow rate = 1 mL/min, λ = 254
nm, and tR = 11.958 min).

1-Allyl-3-((methyl(phenyl)amino)methyl)quinoxalin-2(1H)-one
(3d). The crude product was purified by flash column chromatog-
raphy on silica gel (petroleum ether/ethyl acetate = 4:1 as an eluent)
to afford the product 3d (72% yield, 66.2 mg) as a yellow solid, mp
115−116 °C. 1H NMR (400 MHz, CDCl3): δ 7.82 (d, J = 8 Hz, 1H),
7.48 (dd, J = 8 Hz, J = 8 Hz, 1H), 7.31−7.19 (m, 4H), 6.90 (d, J = 8
Hz, 2H), 6.69 (dd, J = 8 Hz, J = 8 Hz, 1H), 5.98−5.89 (m, 1H), 3.76
(s, 3H), 3.36 (s, 3H), and 2.45 (s, 3H); 13C{1H} NMR (100 MHz,
CDCl3): δ 156.6, 154.4, 149.7, 132.8, 132.4, 130.6, 130.5, 130.1,
129.0, 123.6, 118.2, 116.6, 114.2, 112.6, 55.2, 44.4, and 39.6; and
HRMS (ESI) m/z: calcd for C19H20N3O

+ [M + H]+, 306.1601;
found, 306.1591. Purity: 99% (HPLC: a Shim-pack VP-ODS column,
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MeOH/H2O = 90:10, flow rate = 1 mL/min, λ = 254 nm, and tR =
5.181 min).
Methyl 2-(3-((methyl(phenyl)amino)methyl)-2-oxoquinoxalin-

1(2H)-yl)acetate (3e). The crude product was purified by flash
column chromatography on silica gel (petroleum ether/ethyl acetate
= 4:1 as an eluent) to afford the product 3e (64% yield, 65.0 mg) as a
yellow solid, mp 113−115 °C. 1H NMR (400 MHz, CDCl3): δ 7.84
(d, J = 8 Hz, 1H), 7.49 (dd, J = 8 Hz, J = 8 Hz, 1H), 7.31 (dd, J = 8
Hz, J = 8 Hz, 1H), 7.22 (dd, J = 8 Hz, J = 8 Hz, 2H), 7.05 (d, J = 8
Hz, 1H), 6.90 (d, J = 8 Hz, 2H), 6.69 (dd, J = 8 Hz, J = 8 Hz, 1H),
5.03 (s, 2H), 4.76 (s, 2H), 3.78 (s, 3H), and 3.19 (s, 3H); 13C{1H}
NMR (100 MHz, CDCl3): δ 167.6, 156.4, 154.3, 149.6, 132.7, 132.3,
130.8, 130.4, 129.0, 124.0, 116.6, 113.0, 112.6, 55.2, 53.0, 43.3, and
39.5; and HRMS (ESI) m/z: calcd for C19H20N3O3

+ [M + H]+,
338.1499; found, 338.1499. Purity: 99% (HPLC: a Shim-pack VP-
ODS column, MeOH/H2O = 80:20, flow rate = 1 mL/min, λ = 254
nm, and tR = 6.037 min).
tert-Butyl 2-(3-((methyl(phenyl)amino)methyl)-2-oxoquinoxalin-

1(2H)-yl)acetate (3f). The crude product was purified by flash
column chromatography on silica gel (petroleum ether/ethyl acetate
= 4:1 as an eluent) to afford the product 3f (72% yield, 81.4 mg) as
yellow oily liquid. 1H NMR (400 MHz, CDCl3): δ 7.81 (d, J = 8 Hz,
1H), 7.48 (dd, J = 8 Hz, J = 8 Hz, 1H), 7.29 (dd, J = 8 Hz, J = 8 Hz,
1H), 7.21 (dd, J = 8 Hz, J = 8 Hz, 2H), 7.03 (d, J = 8 Hz, 1H), 6.88
(d, J = 8 Hz, 2H), 6.68 (dd, J = 8 Hz, J = 8 Hz, 1H), 4.93 (s, 2H),
4.75 (s, 2H), 3.18 (s, 3H), and 1.46 (s, 9H); 13C{1H} NMR (100
MHz, CDCl3): δ 166.1, 156.3, 154.2, 149.6, 132.6, 132.3, 130.6,
130.2, 129.0, 123.8, 116.5, 113.0, 112.5, 83.2, 55.1, 44.0, 39.5, and
28.0; and HRMS (ESI) m/z: calcd for C22H26N3O3

+ [M + H]+,
380.1969; found, 380.1969. Purity: 98% (HPLC: a Shim-pack VP-
ODS column, MeOH/H2O = 80:20, flow rate = 1 mL/min, λ = 254
nm, and tR = 9.773 min).
1,7-Dimethyl-3-((methyl(phenyl)amino)methyl)quinoxalin-

2(1H)-one (3g). The crude product was purified by flash column
chromatography on silica gel (petroleum ether/ethyl acetate = 4:1 as
an eluent) to afford the product 3g (80% yield, 70.1 mg) as yellow
oily liquid. 1H NMR (400 MHz, CDCl3): δ 7.69 (d, J = 8 Hz, 1H),
7.20 (dd, J = 8 Hz, J = 8 Hz, 2H), 7.12 (d, J = 8 Hz, 1H), 7.07 (s,
1H), 6.90 (d, J = 8 Hz, 2H), 6.68 (dd, J = 8 Hz, J = 8 Hz, 1H), 4.71
(s, 2H), 3.67 (s, 3H), 3.19 (s, 3H), and 2.49 (s, 3H); 13C{1H} NMR
(100 MHz, CDCl3): δ 155.2, 154.9, 149.7, 140.9, 133.1, 130.8, 130.0,
128.9, 124.9, 116.4, 113.7, 112.6, 55.3, 39.6, 28.8, and 22.1; and
HRMS (ESI) m/z: calcd for C18H20N3O

+ [M + H]+, 294.1601;
found, 294.1593. Purity: 98% (HPLC: a Shim-pack VP-ODS column,
MeOH/H2O = 80:20, flow rate = 1 mL/min, λ = 254 nm, and tR =
9.120 min).
1,6,7-Trimethyl-3-((methyl(phenyl)amino)methyl)quinoxalin-

2(1H)-one (3h). The crude product was purified by flash column
chromatography on silica gel (petroleum ether/ethyl acetate = 4:1 as
an eluent) to afford the product 3h (86% yield, 79.2 mg) as yellow
oily liquid. 1H NMR (400 MHz, CDCl3): δ 7.57 (s, 1H), 7.20 (dd, J =
8 Hz, J = 8 Hz, 2H), 7.04 (s, 1H), 6.90 (d, J = 8 Hz, 2H), 6.68 (dd, J
= 8 Hz, J = 8 Hz, 1H), 4.71 (s, 2H), 3.67 (s, 3H), 3.19 (s, 3H), 2.39
(s, 3H), and 2.31 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ
155.1, 154.8, 149.7, 140.0, 132.5, 131.2, 131.0, 130.4, 128.9, 116.4,
114.1, 112.6, 55.3, 39.5, 28.8, 20.6, and 19.1; and HRMS (ESI) m/z:
calcd for C19H22N3O

+ [M + H]+, 308.1757; found, 308.1751. Purity:
>99% (HPLC: a Shim-pack VP-ODS column, MeOH/H2O = 90:10,
flow rate = 1 mL/min, λ = 254 nm, and tR = 6.298 min).
1-Ethyl-6,7-dimethyl-3-((methyl(phenyl)amino)methyl)-

quinoxalin-2(1H)-one (3i). The crude product was purified by flash
column chromatography on silica gel (petroleum ether/ethyl acetate
= 4:1 as an eluent) to afford the product 3i (63% yield, 60.9 mg) as a
yellow solid, mp 133−135 °C. 1H NMR (400 MHz, CDCl3): δ 7.58
(s, 1H), 7.20 (dd, J = 8 Hz, J = 8 Hz, 2H), 7.06 (s, 1H), 6.90 (d, J = 8
Hz, 2H), 6.68 (dd, J = 8 Hz, J = 8 Hz, 1H), 4.71 (s, 2H), 4.29 (q, J =
8 Hz, 2H), 3.19 (s, 3H), 2.40 (s, 3H), 2.31 (s, 3H), and 1.37 (t, J = 8
Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ 155.2, 154.4, 149.8,
140.0, 132.4, 131.4, 130.7, 130.1, 129.0, 116.4, 113.9, 112.6, 55.3,
39.6, 37.1, 20.7, 19.1, and 12.6; and HRMS (ESI) m/z: calcd for

C20H24N3O
+ [M + H]+, 322.1914; found, 322.1919. Purity: 99%

(HPLC: a Shim-pack VP-ODS column, MeOH/H2O = 70:30, flow
rate = 1 mL/min, λ = 254 nm, and tR = 36.525 min).

1-Methyl-3-((methyl(p-tolyl)amino)methyl)quinoxalin-2(1H)-
one (3j). The crude product was purified by flash column
chromatography on silica gel (petroleum ether/ethyl acetate = 4:1
as an eluent) to afford the product 3j (85% yield, 74.6 mg)
(conditionsb) as yellow oily liquid. 1H NMR (400 MHz, CDCl3): δ
7.81 (d, J = 8 Hz, 1H), 7.51 (dd, J = 8 Hz, J = 8 Hz, 1H), 7.32−7.25
(m, 2H), 7.01 (d, J = 8 Hz, 2H), 6.83 (d, J = 8 Hz, 2H), 4.70 (s, 2H),
3.68 (s, 3H), 3.16 (s, 3H), and 2.22 (s, 3H); 13C{1H} NMR (100
MHz, CDCl3): δ 156.7, 154.7, 147.6, 133.2, 132.6, 130.3, 130.1,
129.5, 125.7, 123.5, 113.5, 112.9, 55.5, 39.7, 28.9, and 20.2; and
HRMS (ESI) m/z: calcd for C18H20N3O

+ [M + H]+, 294.1601;
found, 294.1605. Purity: 99% (HPLC: a Shim-pack VP-ODS column,
MeOH/H2O = 90:10, flow rate = 1 mL/min, λ = 254 nm, and tR =
5.555 min).

1-Methyl-3-((methyl(m-tolyl)amino)methyl)quinoxalin-2(1H)-
one (3k). The crude product was purified by flash column
chromatography on silica gel (petroleum ether/ethyl acetate = 4:1
as an eluent) to afford the product 3k (86% yield, 75.3 mg) as yellow
oily liquid. 1H NMR (400 MHz, CDCl3): δ 7.81 (d, J = 8 Hz, 1H),
7.53−7.49 (m, 1H), 7.31−7.24 (m, 2H), 7.09 (dd, J = 8 Hz, J = 8 Hz,
1H), 6.71 (d, J = 8 Hz, 2H), 6.51 (d, J = 8 Hz, 1H), 4.73 (s, 2H), 3.68
(s, 3H), 3.18 (s, 3H), and 2.29 (s, 3H); 13C{1H} NMR (100 MHz,
CDCl3): δ 156.6, 154.8, 149.7, 138.7, 133.2, 132.6, 130.4, 130.2,
128.9, 123.6, 117.5, 113.6, 113.3, 109.8, 55.3, 39.7, 28.9, and 22.0; and
HRMS (ESI) m/z: calcd for C18H20N3O

+ [M + H]+, 294.1601;
found, 294.1595. Purity: 99% (HPLC: a Shim-pack VP-ODS column,
MeOH/H2O = 90:10, flow rate = 1 mL/min, λ = 254 nm, and tR =
3.059 min).

3-(((4-Ethylphenyl) (methyl)amino)methyl)-1-methylquinoxalin-
2(1H)-one (3l). The crude product was purified by flash column
chromatography on silica gel (petroleum ether/ethyl acetate = 4:1 as
an eluent) to afford the product 3l (79% yield, 69.7 mg) as yellow oily
liquid. 1H NMR (400 MHz, CDCl3): δ 7.81 (d, J = 8 Hz, 1H), 7.50
(dd, J = 8 Hz, J = 8 Hz, 1H), 7.31−7.24 (m, 2H), 7.05 (d, J = 8 Hz,
2H), 6.86 (d, J = 8 Hz, 2H), 4.70 (s, 2H), 3.67 (s, 3H), 3.17 (s, 3H),
2.52 (q, J = 8 Hz, 2H), and 1.17 (t, J = 8 Hz, 3H); 13C{1H} NMR
(100 MHz, CDCl3): δ 156.8, 154.8, 147.8, 133.2, 132.6, 132.4, 130.4,
130.2, 128.4, 123.6, 113.6, 55.6, 39.7, 28.9, 27.8, and 16.0; and HRMS
(ESI) m/z: calcd for C19H22N3O

+ [M + H]+, 308.1757; found,
308.1759. Purity: 98% (HPLC: a Shim-pack VP-ODS column,
MeOH/H2O = 85:15, flow rate = 1 mL/min, λ = 254 nm, and tR =
8.447 min).

3-(((4-Methoxyphenyl)(methyl)amino)methyl)-1-methylquinox-
alin-2(1H)-one (3m). The crude product was purified by flash column
chromatography on silica gel (petroleum ether/ethyl acetate = 4:1 as
an eluent) to afford the product 3m (72% yield, 66.8 mg) as yellow
oily liquid. 1H NMR (400 MHz, CDCl3): δ 7.83 (d, J = 8 Hz, 1H),
7.54−7.51 (m, 1H), 7.33−7.26 (m, 2H), 6.92 (d, J = 8 Hz, 2H), 6.81
(d, J = 8 Hz, 2H), 4.65 (s, 2H), 3.73 (s, 3H), 3.70 (s, 3H), and 3.11
(s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ 156.8, 154.8, 151.8,
144.7, 133.2, 132.6, 130.4, 130.2, 123.6, 114.6, 114.6, 113.6, 56.4,
55.8, 39.9, and 29.0; and HRMS (ESI) m/z: calcd for C18H20N3O2

+

[M + H]+, 310.1550; found, 310.1540. Purity: 99% (HPLC: a Shim-
pack VP-ODS column, MeOH/H2O = 80:20, flow rate = 1 mL/min,
λ = 254 nm, and tR = 3.733 min).

3-(((4-Bromophenyl) (methyl)amino)methyl)-1-methylquinoxa-
lin-2(1H)-one (3n). The crude product was purified by flash column
chromatography on silica gel (petroleum ether/ethyl acetate = 4:1 as
an eluent) to afford the product 3n (49% yield, 52.3 mg) as yellow
oily liquid. 1H NMR (400 MHz, CDCl3): δ 7.80 (d, J = 8 Hz, 1H),
7.56−7.52 (m, 1H), 7.34−7.24 (m, 4H), 6.75 (d, J = 8 Hz, 2H), 4.72
(s, 2H), 3.70 (s, 3H), and 3.17 (s, 3H); 13C{1H} NMR (100 MHz,
CDCl3): δ 156.0, 154.7, 148.6, 133.2, 132.5, 131.6, 130.4, 130.4,
123.7, 114.2, 113.6, 108.4, 55.1, 39.8, and 29.0; and HRMS (ESI) m/
z: calcd for C17H17BrN3O

+ [M + H]+, 358.0550; found, 358.0550.
Purity: 97% (HPLC: a Shim-pack VP-ODS column, MeOH/H2O =
90:10, flow rate = 1 mL/min, λ = 254 nm, and tR = 4.892 min).
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3-((Ethyl(phenyl)amino)methyl)-1-methylquinoxalin-2(1H)-one
(3o). The crude product was purified by flash column chromatog-
raphy on silica gel (petroleum ether/ethyl acetate = 4:1 as an eluent)
to afford the product 3o (58% yield, 51.1 mg) as yellow oily liquid. 1H
NMR (400 MHz, CDCl3): δ 7.81 (d, J = 8 Hz, 1H), 7.50 (dd, J = 8
Hz, J = 8 Hz, 1H), 7.31−7.24 (m, 2H), 7.18 (dd, J = 8 Hz, J = 8 Hz,
2H), 6.83 (d, J = 8 Hz, 2H), 6.64 (dd, J = 8 Hz, J = 8 Hz, 1H), 4.72
(s, 2H), 3.69−3.64 (m, 5H), and 1.25 (t, J = 8 Hz, 3H); 13C{1H}
NMR (100 MHz, CDCl3): δ 156.6, 154.8, 148.4, 133.2, 132.7, 130.4,
130.1, 129.1, 123.6, 116.0, 113.6, 112.4, 52.6, 45.8, 28.9, and 12.1; and
HRMS (ESI) m/z: calcd for C18H20N3O

+ [M + H]+, 294.1601;
found, 294.1608. Purity: 99% (HPLC: a Shim-pack VP-ODS column,
MeOH/H2O = 90:10, flow rate = 1 mL/min, λ = 254 nm, and tR =
3.498 min).
3-((Butyl(phenyl)amino)methyl)-1-methylquinoxalin-2(1H)-one

(3p). The crude product was purified by flash column chromatog-
raphy on silica gel (petroleum ether/ethyl acetate = 4:1 as an eluent)
to afford the product 3p (50% yield, 48.0 mg) as yellow oily liquid. 1H
NMR (400 MHz, CDCl3): δ 7.79 (d, J = 8 Hz, 1H), 7.49 (dd, J = 8
Hz, J = 8 Hz, 1H), 7.27 (dd, J = 8 Hz, J = 8 Hz, 2H), 7.16 (dd, J = 8
Hz, J = 8 Hz, 2H), 6.80 (d, J = 8 Hz, 2H), 6.62 (dd, J = 8 Hz, J = 8
Hz, 1H), 4.73 (s, 2H), 3.68 (s, 3H), 3.58 (t, J = 8 Hz, 2H), 1.72−1.64
(m, 2H), 1.44−1.35 (m, 2H), and 0.96 (t, J = 8 Hz, 3H); 13C{1H}
NMR (100 MHz, CDCl3): δ 156.4, 154.7, 148.5, 133.0, 132.6, 130.3,
130.0, 129.0, 123.5, 115.8, 113.5, 112.2, 53.0, 51.5, 29.2, 28.8, 20.4,
and 14.1; HRMS (ESI) m/z: calcd for C20H24N3O

+ [M + H]+,
322.1914; found, 322.1913. Purity: 99% (HPLC: a Shim-pack VP-
ODS column, MeOH/H2O = 90:10, flow rate = 1 mL/min, λ = 254
nm, and tR = 6.812 min).
3-((Allyl(phenyl)amino)methyl)-1-methylquinoxalin-2(1H)-one

(3q). The crude product was purified by flash column chromatog-
raphy on silica gel (petroleum ether/ethyl acetate = 4:1 as an eluent)
to afford the product 3q (43% yield, 39.5 mg) as yellow oily liquid. 1H
NMR (400 MHz, CDCl3): δ 8.13−8.11 (m, 3H), 7.88−7.81 (m, 2H),
7.52−7.37 (m, 5H), 3.66 (s, 3H), 3.39 (s, 3H), and 2.44 (s, 3H);
13C{1H} NMR (100 MHz, CDCl3): δ 156.5, 154.7, 148.8, 134.2,
133.1, 132.6, 130.4, 130.1, 128.9, 123.6, 116.4, 116.1, 113.5, 112.5,
53.9, 52.6, and 28.9; and HRMS (ESI) m/z: calcd for C19H20N3O

+

[M + H]+, 306.1601; found, 306.1601. Purity: 98% (HPLC: a Shim-
pack VP-ODS column, MeOH/H2O = 70:30, flow rate = 1 mL/min,
λ = 254 nm, and tR = 21.005 min).
3-((Benzyl(phenyl)amino)methyl)-1-methylquinoxalin-2(1H)-

one (3r). The crude product was purified by flash column
chromatography on silica gel (petroleum ether/ethyl acetate = 4:1
as an eluent) to afford the product 3r (40% yield, 42.1 mg) as a yellow
solid, mp 106−108 °C. 1H NMR (400 MHz, CDCl3): δ 7.83 (d, J = 8
Hz, 1H), 7.52 (dd, J = 8 Hz, J = 8 Hz, 1H), 7.31−7.21 (m, 6H), 7.14
(dd, J = 8 Hz, J = 8 Hz, 2H), 6.81 (d, J = 8 Hz, 2H), 6.66 (dd, J = 8
Hz, J = 8 Hz, 1H), 4.89 (s, 2H), 4.86 (s, 2H), and 3.68 (s, 3H);
13C{1H} NMR (100 MHz, CDCl3): δ 156.4, 154.7, 149.0, 139.2,
133.2, 132.7, 130.4, 130.2, 129.1, 128.6, 126.8, 123.7, 116.6, 113.6,
112.6, 55.4, 53.1, and 28.9; and HRMS (ESI) m/z: calcd for
C23H22N3O

+ [M + H]+, 356.1757; found, 356.1752. Purity: 99%
(HPLC: a Shim-pack VP-ODS column, MeOH/H2O = 80:20, flow
rate = 1 mL/min, λ = 254 nm, and tR = 13.461 min).
2,4-Dimethyl-6-((methyl(phenyl)amino)methyl)-1,2,4-triazine-

3,5(2H,4H)-dione (5a). The crude product was purified by flash
column chromatography on silica gel (petroleum ether/ethyl acetate
= 15:1 as an eluent) to afford the product 5a (73% yield, 57.6 mg) as
a white solid, mp 108−109 °C. 1H NMR (400 MHz, CDCl3): δ 7.23
(dd, J = 8 Hz, J = 8 Hz, 2H), 6.86 (d, J = 8 Hz, 2H), 6.73 (dd, J = 8
Hz, J = 8 Hz, 1H), 4.42 (s, 2H), 3.59 (s, 3H), 3.34 (s, 3H), and 3.09
(s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ 156.4, 149.1, 148.9,
140.6, 129.1, 117.0, 112.6, 52.1, 39.7, 39.4, and 27.1; and HRMS
(ESI) m/z: calcd for C13H17N4O2

+ [M + H]+, 261.1346; found,
261.1343. Purity: >99% (HPLC: a Shim-pack VP-ODS column,
MeOH/H2O = 85:15, flow rate = 1 mL/min, λ = 254 nm, and tR =
14.716 min).
2,4-Dibenzyl-6-((methyl(phenyl)amino)methyl)-1,2,4-triazine-

3,5(2H,4H)-dione (5b). The crude product was purified by flash

column chromatography on silica gel (petroleum ether/ethyl acetate
= 15:1 as an eluent) to afford the product 5b (75% yield, 92.8 mg) as
a white solid, mp 130−132 °C. 1H NMR (400 MHz, CDCl3): δ 7.47
(d, J = 8 Hz, 2H), 7.31−7.19 (m, 10H), 6.78 (dd, J = 8 Hz, J = 8 Hz,
3H), 5.04 (s, 2H), 4.99 (s, 2H), 4.45 (s, 2H), and 3.06 (s, 3H);
13C{1H} NMR (100 MHz, CDCl3): δ 155.9, 148.8, 148.7, 140.9,
135.4, 135.3, 129.5, 129.1, 128.9, 128.6, 128.6, 128.2, 128.1, 116.9,
112.6, 55.4, 51.9, 44.2, and 39.5; and HRMS (ESI) m/z: calcd for
C25H25N4O2

+ [M + H]+, 413.1972; found, 413.1977. Purity: >99%
(HPLC: a Shim-pack VP-ODS column, MeOH/H2O = 85:15, flow
rate = 1 mL/min, λ = 254 nm, and tR = 24.488 min).

2,4-Bis(4-fluorobenzyl)-6-((methyl(phenyl)amino)methyl)-1,2,4-
triazine-3,5(2H,4H)-dione (5c). The crude product was purified by
flash column chromatography on silica gel (petroleum ether/ethyl
acetate = 15:1 as an eluent) to afford the product 5c (77% yield, 103.2
mg) as a white solid, mp 131−132 °C. 1H NMR (400 MHz, CDCl3):
δ 7.49−7.45 (m, 2H), 7.20 (dd, J = 8 Hz, J = 8 Hz, 2H), 7.16−7.14
(m, 2H), 7.01−6.96 (m, 2H), 6.91 (dd, J = 8 Hz, J = 8 Hz, 2H), 6.76
(dd, J = 8 Hz, J = 8 Hz, 3H), 5.00 (s, 2H), 4.94 (s, 2H), 4.47 (s, 2H),
and 3.07 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ 163.77 (d, J
= 72 Hz), 161.31 (d, J = 68 Hz), 155.8, 148.7, 148.6, 140.9, 131.5 (d,
J = 80 Hz), 131.2 (d, J = 29 Hz), 131.0 (d, J = 35 Hz), 130.8 (d, J =
80 Hz), 129.1, 117.0, 115.6 (d, J = 89 Hz), 115.4 (d, J = 88 Hz),
112.5, 54.6, 51.7, 43.4, and 39.6; 19F{1H} NMR (376 MHz, CDCl3):
δ −113.5 (d, J = 13 Hz, 1F) and −113.6 (d, J = 14 Hz, 1F); and
HRMS (ESI) m/z: calcd for C25H23F2N4O2

+ [M + H]+, 449.1784;
found, 449.1781. Purity: 99% (HPLC: a Shim-pack VP-ODS column,
MeOH/H2O = 85:15, flow rate = 1 mL/min, λ = 254 nm, and tR =
11.913 min).

2,4-Diallyl-6-((methyl(phenyl)amino)methyl)-1,2,4-triazine-3,5-
(2H,4H)-dione (5d). The crude product was purified by flash column
chromatography on silica gel (petroleum ether/ethyl acetate = 15:1 as
an eluent) to afford the product 5d (80% yield, 74.7 mg) as a white
solid, mp 113−115 °C. 1H NMR (400 MHz, CDCl3): δ 7.23 (dd, J =
8 Hz, J = 8 Hz, 2H), 6.86 (d, J = 8 Hz, 2H), 6.73 (dd, J = 8 Hz, J = 8
Hz, 1H), 5.90−5.81 (m, 1H), 5.32−5.21 (m, 2H), 4.53−4.50 (m,
4H), 4.44 (s, 2H), and 3.09 (s, 3H); 13C{1H} NMR (100 MHz,
CDCl3): δ 155.8, 148.9, 148.4, 141.2, 131.3, 130.3, 129.1, 119.4,
119.3, 117.1, 112.8, 54.0, 52.3, 43.0, and 39.5; and HRMS (ESI) m/z:
calcd for C17H21N4O2

+ [M + H]+, 313.1659; found, 313.1655. Purity:
99% (HPLC: a Shim-pack VP-ODS column, MeOH/H2O = 85:15,
flow rate = 1 mL/min, λ = 254 nm, and tR = 6.382 min).

6-((Methyl(phenyl)amino)methyl)-2,4-bis(2-oxo-2-phenylethyl)-
1,2,4-triazine-3,5(2H,4H)-dione (5e). The crude product was purified
by flash column chromatography on silica gel (petroleum ether/ethyl
acetate = 15:1 as an eluent) to afford the product 5e (64% yield, 89.5
mg) as a yellow solid, mp 67−69 °C. 1H NMR (400 MHz, CDCl3): δ
7.97 (dd, J = 8 Hz, J = 8 Hz, 4H), 7.62 (dd, J = 8 Hz, J = 8 Hz, 2H),
7.50(dd, J = 8 Hz, J = 8 Hz, 4H), 7.25−7.21 (m, 2H), 6.86 (d, J = 8
Hz, 2H), 6.74 (dd, J = 8 Hz, J = 8 Hz, 1H), 5.39−5.38 (m, 4H), 4.47
(s, 2H), and 3.03 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ
191.4, 190.3, 155.8, 149.1, 149.1, 141.9, 134.5, 134.4, 134.2, 134.2,
129.1, 129.0, 128.9, 128.2, 128.1, 117.3, 112.9, 57.6, 52.4, 46.6, and
38.9; and HRMS (ESI) m/z: calcd for C27H25N4O4

+ [M + H]+,
469.1870; found, 469.1867. Purity: 99% (HPLC: a Shim-pack VP-
ODS column, MeOH/H2O = 90:10, flow rate = 1 mL/min, λ = 254
nm, and tR = 4.552 min).

2,4-Dibenzyl-6-((methyl(p-tolyl)amino)methyl)-1,2,4-triazine-
3,5(2H,4H)-dione (5f). The crude product was purified by flash
column chromatography on silica gel (petroleum ether/ethyl acetate
= 15:1 as an eluent) to afford the product 5f (80% yield, 102.1 mg) as
a yellow solid, mp 88−90 °C. 1H NMR (400 MHz, CDCl3): δ 7.46
(d, J = 7 Hz, 2H), 7.29−7.22 (m, 8H), 7.01 (d, J = 8 Hz, 2H), 6.72
(d, J = 8 Hz, 2H), 5.02 (s, 2H), 4.97 (s, 2H), 4.41 (s, 2H), 3.02 (s,
3H), and 2.26 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ 155.9,
148.7, 146.7, 141.1, 135.5, 135.3, 129.6, 129.4, 128.8, 128.6, 128.5,
128.1, 128.1, 126.1 112.9, 55.3, 52.1, 44.1, 39.5, and 20.3; and HRMS
(ESI) m/z: calcd for C26H27N4O2

+ [M + H]+, 427.2129; found,
427.2122. Purity: >99% (HPLC: a Shim-pack VP-ODS column,
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MeOH/H2O = 85:15, flow rate = 1 mL/min, λ = 254 nm, and tR =
27.237 min).
2,4-Dibenzyl-6-((methyl(m-tolyl)amino)methyl)-1,2,4-triazine-

3,5(2H,4H)-dione (5g). The crude product was purified by flash
column chromatography on silica gel (petroleum ether/ethyl acetate
= 15:1 as an eluent) to afford the product 5g (72% yield, 91.9 mg) as
yellow oily liquid. 1H NMR (400 MHz, CDCl3): δ 7.47 (d, J = 6 Hz,
2H), 7.32−7.22 (m, 8H), 7.09 (dd, J = 8 Hz, J = 8 Hz, 1H), 6.60 (dd,
J = 8 Hz, J = 8 Hz, 3H), 5.04 (s, 2H), 4.99 (s, 2H), 4.44 (s, 2H), 3.05
(s, 3H), and 2.28 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ
156.0, 149.0, 148.8, 141.1, 138.8, 135.6, 135.4, 129.6, 129.1, 128.9,
128.7, 128.7, 128.3, 128.2, 118.0, 113.4, 109.9, 55.5, 51.9, 44.2, 39.6,
and 22.0; and HRMS (ESI) m/z: calcd for C26H27N4O2

+ [M + H]+,
427.2129; found, 427.2126. Purity: 98% (HPLC: a Shim-pack VP-
ODS column, MeOH/H2O = 85:15, flow rate = 1 mL/min, λ = 254
nm, and tR = 14.372 min).
2,4-Dibenzyl-6-(((4-ethylphenyl) (methyl)amino)methyl)-1,2,4-

triazine-3,5(2H,4H)-dione (5h). The crude product was purified by
flash column chromatography on silica gel (petroleum ether/ethyl
acetate = 15:1 as an eluent) to afford the product 5h (74% yield, 97.3
mg) as yellow oily liquid. 1H NMR (400 MHz, CDCl3): δ 7.46 (d, J =
6 Hz, 2H), 7.31−7.25 (m, 8H), 7.04 (d, J = 8 Hz, 2H), 6.75 (d, J = 8
Hz, 2H), 5.03 (s, 2H), 4.99 (s, 2H), 4.41 (s, 2H), 3.03 (s, 3H), 2.57
(q, J = 8 Hz, 2H), and 1.21 (t, J = 8 Hz, 3H); 13C{1H} NMR (100
MHz, CDCl3): δ 155.9, 148.7, 146.9, 141.2, 135.5, 135.3, 132.7,
129.4, 128.9, 128.6, 128.6, 128.4, 128.2, 128.1, 112.8, 55.3, 52.1, 44.1,
39.5, 27.8, and 16.0; and HRMS (ESI) m/z: calcd for C27H29N4O2

+

[M + H]+, 441.2285; found, 441.2285. Purity: 98% (HPLC: a Shim-
pack VP-ODS column, MeOH/H2O = 85:15, flow rate = 1 mL/min,
λ = 254 nm, and tR = 19.486 min).
2,4-Dibenzyl-6-(((4-methoxyphenyl) (methyl)amino)methyl)-

1,2,4-triazine-3,5(2H,4H)-dione (5i). The crude product was purified
by flash column chromatography on silica gel (petroleum ether/ethyl
acetate = 15:1 as an eluent) to afford the product 5i (78% yield, 103.8
mg) as a yellow solid, mp 76−78 °C. 1H NMR (400 MHz, CDCl3): δ
7.47 (d, J = 7 Hz, 2H), 7.32−7.23 (m, 8H), 6.80 (d, J = 4 Hz, 4H),
5.05 (s, 2H), 5.00 (s, 2H), 4.37 (s, 2H), 3.76 (s, 3H), and 2.99 (s,
3H); 13C{1H} NMR (100 MHz, CDCl3): δ 156.0, 152.0, 148.8,
143.7, 141.3, 135.5, 135.4, 129.5, 128.9, 128.7, 128.6, 128.3, 128.2,
114.7, 114.6, 55.8, 55.4, 52.9, 44.2, and 39.8; and HRMS (ESI) m/z:
calcd for C26H27N4O3

+ [M + H]+, 443.2078; found, 443.2075. Purity:
99% (HPLC: a Shim-pack VP-ODS column, MeOH/H2O = 85:15,
flow rate = 1 mL/min, λ = 254 nm, and tR = 9.756 min).
2,4-Dibenzyl-6-((butyl(phenyl)amino)methyl)-1,2,4-triazine-3,5-

(2H,4H)-dione (5j). The crude product was purified by flash column
chromatography on silica gel (petroleum ether/ethyl acetate = 15:1 as
an eluent) to afford the product 5j (76% yield, 104.2 mg) as a yellow
solid, mp 63−64 °C. 1H NMR (400 MHz, CDCl3): δ 7.48 (d, J = 6
Hz, 2H), 7.32−7.23 (m, 8H), 7.18 (dd, J = 8 Hz, J = 8 Hz, 2H), 6.72
(dd, J = 8 Hz, J = 8 Hz, 3H), 5.05 (s, 2H), 4.99 (s, 2H), 4.44 (s, 2H),
3.42 (t, J = 8 Hz, 2H), 1.60 (m, 2H), 1.34 (m, 2H), and 0.93 (t, J = 8
Hz, 2H); 13C{1H} NMR (100 MHz, CDCl3): δ 156.0, 148.8, 147.8,
141.0, 135.5, 135.3, 129.5, 129.2, 129.0, 128.7, 128.6, 128.2, 128.2,
116.4, 112.4, 55.4, 51.5, 50.1, 44.2, 29.4, 20.3, and 14.1; and HRMS
(ESI) m/z: calcd for C28H31N4O2

+ [M + H]+, 455.2442; found,
455.2438. Purity: 99% (HPLC: a Shim-pack VP-ODS column,
MeOH/H2O = 90:10, flow rate = 1 mL/min, λ = 254 nm, and tR =
5.048 min).
6-((Allyl(phenyl)amino)methyl)-2,4-dibenzyl-1,2,4-triazine-3,5-

(2H,4H)-dione (5k). The crude product was purified by flash column
chromatography on silica gel (petroleum ether/ethyl acetate = 15:1 as
an eluent) to afford the product 5k (73% yield, 96.5 mg) as a yellow
solid, mp 72−74 °C. 1H NMR (400 MHz, CDCl3): δ 7.47 (d, J = 6
Hz, 2H), 7.31−7.24 (m, 8H), 7.17 (dd, J = 8 Hz, J = 8 Hz, 2H),
6.77−6.71 (m, 3H), 5.87−5.78 (m, 1H), 5.16−5.02 (m, 6H), 4.45 (s,
2H), and 4.07 (d, J = 4 Hz, 2H); 13C{1H} NMR (100 MHz, CDCl3):
δ 155.9, 148.7, 148.0, 141.1, 135.4, 135.3, 133.9, 129.5, 129.1, 128.9,
128.7, 128.6, 128.2, 128.1, 116.9, 116.2, 112.6, 55.3, 53.7, 49.7, and
44.2; and HRMS (ESI) m/z: calcd for C27H27N4O2

+ [M + H]+,
439.2129; found, 439.2137. Purity: 99% (HPLC: a Shim-pack VP-

ODS column, MeOH/H2O = 85:15, flow rate = 1 mL/min, λ = 254
nm, and tR = 15.126 min).

2,4-Dibenzyl-6-((benzyl(phenyl)amino)methyl)-1,2,4-triazine-
3,5(2H,4H)-dione (5l). The crude product was purified by flash
column chromatography on silica gel (petroleum ether/ethyl acetate
= 15:1 as an eluent) to afford the product 5l (54% yield, 78.4 mg) as a
white solid, mp 113−115 °C. 1H NMR (400 MHz, CDCl3): δ 7.46
(d, J = 6 Hz, 2H), 7.31−7.26 (m, 10H), 7.21−7.14 (m, 5H), 6.76 (dd,
J = 8 Hz, J = 8 Hz, 3H), 5.03 (s, 2H), 5.01 (s, 2H), 4.69 (s, 2H), and
4.54 (s, 2H); 13C{1H} NMR (100 MHz, CDCl3): δ 155.9, 148.7,
148.4, 141.1, 138.7, 135.5, 135.4, 129.5, 129.2, 129.0, 128.7, 128.6,
128.6, 128.3, 128.2, 126.9, 126.7, 117.2, 112.9, 55.4, 55.2, 50.2, and
44.2; and HRMS (ESI) m/z: calcd for C31H29N4O2

+ [M + H]+,
489.2285; found, 489.2279. Purity: 98% (HPLC: a Shim-pack VP-
ODS column, MeOH/H2O = 85:15, flow rate = 1 mL/min, λ = 254
nm, and tR = 20.023 min).

2,4-Dibenzyl-6-((methyl(naphthalen-1-yl)amino)methyl)-1,2,4-
triazine-3,5(2H,4H)-dione (5m). The crude product was purified by
flash column chromatography on silica gel (petroleum ether/ethyl
acetate = 15:1 as an eluent) to afford the product 5m (75% yield,
103.8 mg) as yellow oily liquid. 1H NMR (400 MHz, CDCl3): δ
8.31−8.29 (m, 1H), 7.83−7.81 (m, 1H), 7.56 (d, J = 8 Hz, 1H),
7.47−7.43 (m, 4H), 7.37−7.21 (m, 9H), 7.15 (d, J = 8 Hz, 1H), 5.04
(s, 2H), 5.00 (s, 2H), 4.30 (s, 2H), and 2.92 (s, 3H); 13C{1H} NMR
(100 MHz, CDCl3): δ 155.8, 149.0, 148.8, 141.6, 135.6, 135.5, 134.8,
129.6, 129.5, 128.8, 128.7, 128.6, 128.3, 128.2, 128.1, 125.9, 125.6,
125.6, 123.9, 123.9, 116.6, 55.5, 55.0, 44.2, and 43.1; and HRMS
(ESI) m/z: calcd for C29H27N4O2

+ [M + H]+, 463.2129; found,
463.2128. Purity: 99% (HPLC: a Shim-pack VP-ODS column,
MeOH/H2O = 85:15, flow rate = 1 mL/min, λ = 254 nm, and tR =
5.450 min).

2,4-Dibenzyl-6-(1-(ethyl(phenyl)amino)ethyl)-1,2,4-triazine-3,5-
(2H,4H)-dione (5n). The crude product was purified by flash column
chromatography on silica gel (petroleum ether/ethyl acetate = 15:1 as
an eluent) to afford the product 5n (78% yield, 103.4 mg) as yellow
oily liquid. 1H NMR (400 MHz, CDCl3): δ 7.45−7.42 (m, 2H),
7.31−7.24 (m, 8H), 7.22−7.18 (m, 2H), 6.86 (d, J = 8 Hz, 2H), 6.72
(dd, J = 7 Hz, J = 7 Hz, 1H), 6.86 (q, J = 7 Hz, 1H), 5.16−5.00 (m,
4H), 3.39−3.22 (m, 2H), 1.44 (d, J = 7 Hz, 3H), and 0.98 (t, J = 7
Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ 155.5, 148.8, 147.8,
144.7, 135.6, 135.6, 129.4, 129.2, 128.8, 128.7, 128.6, 128.3, 128.1,
117.3, 114.1, 55.4, 52.3, 44.3, 39.3, 15.0, and 14.5; and HRMS (ESI)
m/z: calcd for C27H29N4O2

+ [M + H]+, 441.2285; found, 441.2285.
Purity: >99% (HPLC: a Shim-pack VP-ODS column, MeOH/H2O =
85:15, flow rate = 1 mL/min, λ = 254 nm, and tR = 15.515 min).

2,4-Dibenzyl-6-((phenylamino)methyl)-1,2,4-triazine-3,5-
(2H,4H)-dione (5o). The crude product was purified by flash column
chromatography on silica gel (petroleum ether/ethyl acetate = 10:1 as
an eluent) to afford the product 5o (53% yield, 63.8 mg) as a yellow
solid, mp 127−128 °C. 1H NMR (400 MHz, CDCl3): δ 7.45 (d, J = 2
Hz, 2H), 7.44−7.24 (m, 8H), 7.16 (dd, J = 8 Hz, J = 8 Hz, 2H), 6.74
(dd, J = 8 Hz, J = 8 Hz, 1H), 6.69−6.67 (m, 2H), 5.08 (s, 2H), 5.05
(s, 2H), 4.44 (t, J = 6 Hz, 1H), and 4.29 (d, J = 6 Hz, 2H); 13C{1H}
NMR (100 MHz, CDCl3): δ 155.7, 148.8, 146.9, 141.6, 135.4, 135.4,
129.4, 129.3, 128.8, 128.8, 128.7, 128.3, 128.2, 118.3, 113.5, 55.4,
44.3, and 43.5; and HRMS (ESI) m/z: calcd for C24H23N4O2

+ [M +
H]+, 399.1816; found, 399.1816. Purity: 99% (HPLC: a Shim-pack
VP-ODS column, MeOH/H2O = 70:30, flow rate = 1 mL/min, λ =
254 nm, and tR = 31.705 min).
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