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ABSTRACT: Indoles are an important class of molecules. This
paper describes an efficient palladium-catalyzed synthesis of
indoles from 2-iodostyrenes and di-t-butyldiaziridinone with a
simultaneous installation of two C−N bonds. The reaction process
likely proceeds through the oxidative insertion of Pd to aryl iodide
and subsequent vinyl C−H activation to from a pallada(II)cycle
intermediate, which is bisaminated by di-t-butyldiaziridinone to
give the indole product.

I ndoles are important moieties contained in various
biologically active molecules, pharmaceuticals, materials,

and fine chemicals.1 While numerous methods have been
developed,2 the search for new reaction processes to this class
of molecules is of constant interest. Metal-catalyzed direct C−
H amination provides an attractive approach to indole
synthesis and has received much attention.3−5 In most cases,
the reaction process usually involves the formation of one C−
N bond with preexisting nitrogen in substrates.
Previously we have found that α-methylstyrene can be

converted to spiroindoline 4 with palladium catalyst and di-t-
butyldiaziridinone (1) (Scheme 1, eq a).6 The reaction likely

involved a series of processes including allylic and aromatic C−
H activation to form pallada(II)cycle 2, which was intercepted
by di-t-butyldiaziridinone (1) to generate spiroindoline 4 via
pallada(IV)cycle 3. Subsequently, we demonstrated that
palladacycle 6 resulting from a Heck/aryl C−H activation
process can be efficiently captured by di-t-butyldiaziridinone
(1) to from indoline 8 (Scheme 1, eq b).7−9 The bisamination
process from a palladacycle allows the simultaneous formation
of two C−N bonds and presents great potential for the
synthesis of structurally diverse azacycles.

To further exploit this process, we have been investigating a
possible indole synthesis from 2-iodostyrenes such as 9a
(Scheme 2). We envisioned that palladium species 10

(generated from the oxidative addition of 9a) could undergo
an allyl C−H activation (path a)10 to in situ form palladacycle
11, which could react with di-t-butyldiaziridinone (1) to
generate indoline 12. In the end, indole 14a could be formed
from 12 upon aromatization. Alternatively, 10 could undergo a
vinyl C−H activation (path b)11 to give palladacycle 13, which
could be converted to indole 14a via the bisamination with di-
t-butyldiaziridinone (1). In principle, 2-iodostyrene 9a could
also undergo a series of transformations as described in
Scheme 1 (eq a) to give a spiroindoline like 4 by an initiation
of the reaction at the allylic position with a four-membered
Pd(II) species resulting from the oxidative addition of Pd0 to
di-t-butyldiaziridinone (1).6 The success for the desired indole
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Scheme 1. Formation of Azacycles Via Palladacycles

Scheme 2. Formation of Indoles Via Palladacycles
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formation requires that aryl iodide can compete with di-t-
butyldiaziridinone (1) for the oxidative addition by Pd0

catalyst to start the envisioned reaction sequence as described
in Scheme 2. Herein, we report our preliminary studies on this
subject.
2-Iodostyrene 9a was used as the substrate for our initial

studies. To our delight, indole 14a was isolated in 55% yield
when 9a was treated with 5 mol % Pd(PPh3)4, di-t-
butyldiaziridinone (1) (1.5 equiv), and Cs2CO3 (2.0 equiv)
in PhCH3 at 100 °C for 48 h (Table 1, entry 1). Studies

showed that the reaction outcome could be further influenced
by additives (Table 1, entries 2 and 3). The reaction yield was
dramatically increased to 91% with the addition of 5 mol %
PivOH (Table 1, entry 3). The PivO− is likely bound to the Pd
and facilitates the deprotonation of the C−H activation step.12

Among the solvents examined (Table 1, entries 3−8), PhCH3
gave the best result (Table 1, entry 3). The reaction process
was further investigated with different Pd catalysts and ligands.
Among Pd catalysts studied (Table 1, entries 9−13),
Pd(TFA)2 (TFA = trifluoroacetic acid) was found to be the
most effective with PPh3 as ligand (Table 1, entry 13). With
Pd(TFA)2 as the catalyst, various ligands were subsequently

investigated for the reaction (Table 1, entries 14−27). The
product yield varied with the ligand used. Good yields were
obtained with some of the ligands. For example, indole 14a
was isolated in 83% yield with dppf [1,1 ′-bis-
(diphenylphosphino)ferrocene] (Table 1, entry 27). Overall,
Pd(PPh3)4 was found to be the choice of the catalyst.
To gain some insights about the reaction mechanism,

deuterium-labeling experiments with 9a′ and 9a″ were
prepared and examined for the reaction process (Scheme 3).

Subjecting 9a′ to the reaction conditions gave 14a′ in 52%
yield with 97% D at the 2-position of the indole. With 9a″ as
the substrate, indole 14a″ was obtained in 63% yield with 93%
D at the methyl group. These results suggest that the reaction
selectively proceeded through the oxidative addition of the Pd
to aryl iodide and subsequent vinyl C−H activation (Scheme
2, path b).
The efficient formation of indole 14a from 9a prompted us

to further explore the reaction substrate scope. As shown in
Table 2, the bisamination process can be extended to various
2-iodostyrenes (Table 2, entries 1−17). For disubstituted
terminal olefins, indoles 14a−14d were obtained in 61−90%
yields with Me, Et, Bu, and Ph substituents on the olefins
(Table 2, entries 1−4). Various substituents on the phenyl
groups, including Me, F, Cl, CF3, can be tolerated, giving the
corresponding substituted indoles (14e−14j) in 60−80%
yields. When a substituent such as an Me group was
introduced to the o-position of iodide, a low yield (25%)
was obtained for the indole product, possibly due to the steric
congestion (Table 2, entry 11). The reaction process can also
apply to trisubstituted olefins. Both an electron-donating group
like OMe and electron-withdrawing groups like CO2Et and
CN were compatible with the reaction, giving the correspond-
ing 2,3-disubstituted indoles (14l−14n) in 76−96% yields
(Table 2, entries 12−14). Cyclic olefin 9o was also effective for
the reaction, giving six-membered ring-fused indole 14o in
90% yield (Table 2, entry 15). Under the reaction conditions,
carbazole 14p was obtained with 90% yield when the olefin
was replaced with a phenyl group (Table 2, entry 16).8a

Thiophene fused indole 14q was obtained in 58% yield from 3-
(2-iodophenyl)thiophene 9q (Table 2, entry 17). However, no
reaction was observed when the thiophene was replaced with a
furan group.
The reaction can also be performed on a relatively large

scale. For example, 1.61 g of indole 14a was obtained in 86%
yield (Scheme 4). As illustrated in the case of 14a, the t-butyl
group can be removed with CF3SO3H/cyclohexane, giving
deprotected indole in 70% yield (Scheme 5).

Table 1. Studies on Reaction Conditionsa

entry catalyst ligand additive solvent
yieldb

(%)

1 Pd(PPh3)4 PhMe 55
2 Pd(PPh3)4 PivOK PhMe 61
3 Pd(PPh3)4 PivOH PhMe 91
4 Pd(PPh3)4 PivOH mesitylene 83
5 Pd(PPh3)4 PivOH 1,4-dioxane 73
6 Pd(PPh3)4 PivOH DCE 39
7 Pd(PPh3)4 PivOH MeCN 34
8 Pd(PPh3)4 PivOH DMF 31
9 Pd(dba)2 PPh3 PivOH PhMe 58
10 Pd(OAc)2 PPh3 PivOH PhMe 66
11 PdCl2 PPh3 PivOH PhMe 62
12 Pd(NO3)2 PPh3 PivOH PhMe 30
13 Pd(TFA)2 PPh3 PivOH PhMe 80
14 Pd(TFA)2 P(o-tolyl)3 PivOH PhMe 44
15 Pd(TFA)2 P(p-tolyl)3 PivOH PhMe 67
16 Pd(TFA)2 P(p-MeOPh)3 PivOH PhMe 78
17 Pd(TFA)2 P(p-FPh)3 PivOH PhMe 48
18 Pd(TFA)2 P(p-ClPh)3 PivOH PhMe 26
19 Pd(TFA)2 P(p-CF3Ph)3 PivOH PhMe 51
20 Pd(TFA)2 P(2-furyl)3 PivOH PhMe 5
21 Pd(TFA)2 CyPPh2 PivOH PhMe 65
22 Pd(TFA)2 Cy2PPh PivOH PhMe 75
23 Pd(TFA)2 Cy3P PivOH PhMe 79
24 Pd(TFA)2 dppe PivOH PhMe 45
25 Pd(TFA)2 dppp PivOH PhMe 41
26 Pd(TFA)2 dppb PivOH PhMe 56
27 Pd(TFA)2 dppf PivOH PhMe 83

aAll reactions were performed with substrate 9a (0.30 mmol), di-t-
butyldiaziridinone 1 (0.45 mmol), Pd (0.015 mmol; Pd/P = 1/4),
additive (0.015 mmol), Cs2CO3 (0.60 mmol), and solvent (0.30 mL)
under Ar at 100 °C for 48 h unless otherwise noted. bIsolated yield.

Scheme 3. Deuterium-Labeling Experiments
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A precise reaction mechanism awaits further investigation.
On the basis of previous studies,6,7 a plausible catalytic cycle
exemplified with substrate 9a is outlined in Scheme 6. The

reaction started with the oxidative addition of Pd to the aryl
iodide to give aryl Pd(II) species 16, which underwent an
intramolecular vinyl C−H activation11,13 to generate pallada-
(II)cycle 17.14 The oxidative addition of 17 to the N−N bond
of di-t-butyldiaziridinone (1) formed pallada(IV)cycle 18,
which was converted to Pd(IV)-nitrene 19 upon the release of
t-butyl isocyanate. Two consecutive reductive eliminations of
19 led to the formation of indole 14a with the regeneration of
Pd catalyst (path a). Alternatively, eight-membered pallada-
(II)cycle 20 could be formed from pallada(IV)cycle 18 via a
reductive elimination. Indole 14a was formed upon the release
of t-butyl isocyanate from 20 and a subsequent reductive
elimination (Path b).
The comparative studies were performed with (E)-

trisubstituted olefin 9m and (Z)-trisubstituted 9r (Scheme
7). The corresponding indole 14m was obtained from 9m in
76% yield (Table 2, entry 13). In contrast, no product was
formed from 9r. These results support that the indole
formation involves an intramolecular vinyl C−H activation.
Further studies show the olefin substituents are also important
for the reaction process. For example, the yield dropped
dramatically from 90% to less than 5% when the methyl group
of α-methylstyrene was removed (9a vs 9s) (Scheme 8).
However, significant amounts of the indole were formed when

Table 2. Substrate Scopea

aAll reactions were performed with 2-iodostyrene 9 (0.60 mmol), di-
t-butyldiaziridinone 1 (0.90 mmol), Pd(PPh3)4 (0.030 mmol), PivOH
(0.030 mmol), and Cs2CO3 (1.20 mmol) in PhCH3 (0.60 mL) under
Ar at 100 °C for 48 h. bIsolated yield.

Scheme 4. Gram-Scale Reaction

Scheme 5. Removal of the t-Butyl Group of Indole 14a

Scheme 6. Proposed Mechanism
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the methyl group was introduced ortho to the vinyl group (9u
vs 9s). The same trend was also observed with 9m, 9t, and 9v.
These results suggest that the steric repulsion between the
vinyl group and phenyl group could facilitate the C−H
activation. A better understanding of this issue requires further
studies.
In summary, we have developed an efficient palladium-

catalyzed sequential C−H activation/amination process with
2-iodostyrenes and di-t-butyldiaziridinone (1), providing a
variety of substituted indoles in good yields. The reaction likely
proceeded through the oxidative addition of Pd to the aryl
iodide and subsequent vinyl C−H activation to give a
pallada(II)cycle, which was converted to the indole via a
bisamination with di-t-butyldiaziridinone (1). This work
further illustrates the versatile reactivity and synthetic utility
of di-t-butyldiaziridinone (1). The development of more
reaction processes with this class of reagent is currently
underway.
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