

pubs.acs.org/OrgLett

Letter

Palladium-Catalyzed Sequential C–H Activation/Amination with Diaziridinone: An Approach to Indoles

Jing Li, Jinhua Chen, Luying Wang, and Yian Shi*

indoles from 2-iodostyrenes and di-*t*-butyldiaziridinone with a simultaneous installation of two C–N bonds. The reaction process likely proceeds through the oxidative insertion of Pd to aryl iodide and subsequent vinyl C–H activation to from a pallada(II)cycle intermediate, which is bisaminated by di-*t*-butyldiaziridinone to give the indole product.

 $x \xrightarrow{[\Gamma]{R^{1}}}_{I} R^{1} + \xrightarrow{[Pd(PPh_{3})_{4}]}_{N-N} (5 \text{ mol } \%)}_{PivOH, Cs_{2}CO_{3}, PhMe} x \xrightarrow{[\Gamma]{R^{1}}}_{I} R^{2}$ $x \xrightarrow{[I]{R^{1}}}_{I} + \xrightarrow{[I]{R^{1}}}_{I} R^{2}$ $y \xrightarrow{[I]{R^{1}}}_{I} + \xrightarrow{[I]{R^{1}}}_{$

I ndoles are important moieties contained in various biologically active molecules, pharmaceuticals, materials, and fine chemicals.¹ While numerous methods have been developed,² the search for new reaction processes to this class of molecules is of constant interest. Metal-catalyzed direct C-H amination provides an attractive approach to indole synthesis and has received much attention.³⁻⁵ In most cases, the reaction process usually involves the formation of one C-N bond with preexisting nitrogen in substrates.

Previously we have found that α -methylstyrene can be converted to spiroindoline 4 with palladium catalyst and di-*t*-butyldiaziridinone (1) (Scheme 1, eq a).⁶ The reaction likely

involved a series of processes including allylic and aromatic C– H activation to form pallada(II)cycle 2, which was intercepted by di-t-butyldiaziridinone (1) to generate spiroindoline 4 via pallada(IV)cycle 3. Subsequently, we demonstrated that palladacycle 6 resulting from a Heck/aryl C–H activation process can be efficiently captured by di-t-butyldiaziridinone (1) to from indoline 8 (Scheme 1, eq b).^{7–9} The bisamination process from a palladacycle allows the simultaneous formation of two C–N bonds and presents great potential for the synthesis of structurally diverse azacycles. To further exploit this process, we have been investigating a possible indole synthesis from 2-iodostyrenes such as 9a (Scheme 2). We envisioned that palladium species 10

Scheme 2. Formation of Indoles Via Palladacycles

(generated from the oxidative addition of 9a) could undergo an allyl C–H activation (path a)¹⁰ to in situ form palladacycle 11, which could react with di-*t*-butyldiaziridinone (1) to generate indoline 12. In the end, indole 14a could be formed from 12 upon aromatization. Alternatively, 10 could undergo a vinyl C–H activation (path b)¹¹ to give palladacycle 13, which could be converted to indole 14a via the bisamination with di*t*-butyldiaziridinone (1). In principle, 2-iodostyrene 9a could also undergo a series of transformations as described in Scheme 1 (eq a) to give a spiroindoline like 4 by an initiation of the reaction at the allylic position with a four-membered Pd(II) species resulting from the oxidative addition of Pd⁰ to di-*t*-butyldiaziridinone (1).⁶ The success for the desired indole

Received: March 26, 2021 Published: April 16, 2021

formation requires that aryl iodide can compete with di-*t*-butyldiaziridinone (1) for the oxidative addition by Pd^0 catalyst to start the envisioned reaction sequence as described in Scheme 2. Herein, we report our preliminary studies on this subject.

2-Iodostyrene **9a** was used as the substrate for our initial studies. To our delight, indole **14a** was isolated in 55% yield when **9a** was treated with 5 mol % $Pd(PPh_3)_4$, di-*t*-butyldiaziridinone (1) (1.5 equiv), and Cs_2CO_3 (2.0 equiv) in PhCH₃ at 100 °C for 48 h (Table 1, entry 1). Studies

Table 1. Studies on Reaction Conditions^a

^{*a*}All reactions were performed with substrate **9a** (0.30 mmol), di-*t*butyldiaziridinone **1** (0.45 mmol), Pd (0.015 mmol; Pd/P = 1/4), additive (0.015 mmol), Cs₂CO₃ (0.60 mmol), and solvent (0.30 mL) under Ar at 100 °C for 48 h unless otherwise noted. ^{*b*}Isolated yield.

showed that the reaction outcome could be further influenced by additives (Table 1, entries 2 and 3). The reaction yield was dramatically increased to 91% with the addition of 5 mol % PivOH (Table 1, entry 3). The PivO⁻ is likely bound to the Pd and facilitates the deprotonation of the C–H activation step.¹² Among the solvents examined (Table 1, entries 3–8), PhCH₃ gave the best result (Table 1, entry 3). The reaction process was further investigated with different Pd catalysts and ligands. Among Pd catalysts studied (Table 1, entries 9–13), Pd(TFA)₂ (TFA = trifluoroacetic acid) was found to be the most effective with PPh₃ as ligand (Table 1, entry 13). With Pd(TFA)₂ as the catalyst, various ligands were subsequently investigated for the reaction (Table 1, entries 14–27). The product yield varied with the ligand used. Good yields were obtained with some of the ligands. For example, indole 14a was isolated in 83% yield with dppf [1,1'-bis-(diphenylphosphino)ferrocene] (Table 1, entry 27). Overall, Pd(PPh₃)₄ was found to be the choice of the catalyst.

To gain some insights about the reaction mechanism, deuterium-labeling experiments with 9a' and 9a'' were prepared and examined for the reaction process (Scheme 3).

Subjecting 9a' to the reaction conditions gave 14a' in 52% yield with 97% D at the 2-position of the indole. With 9a'' as the substrate, indole 14a'' was obtained in 63% yield with 93% D at the methyl group. These results suggest that the reaction selectively proceeded through the oxidative addition of the Pd to aryl iodide and subsequent vinyl C-H activation (Scheme 2, path b).

The efficient formation of indole 14a from 9a prompted us to further explore the reaction substrate scope. As shown in Table 2, the bisamination process can be extended to various 2-iodostyrenes (Table 2, entries 1-17). For disubstituted terminal olefins, indoles 14a-14d were obtained in 61-90% vields with Me, Et, Bu, and Ph substituents on the olefins (Table 2, entries 1-4). Various substituents on the phenyl groups, including Me, F, Cl, CF₃, can be tolerated, giving the corresponding substituted indoles (14e-14j) in 60-80% yields. When a substituent such as an Me group was introduced to the *o*-position of iodide, a low yield (25%) was obtained for the indole product, possibly due to the steric congestion (Table 2, entry 11). The reaction process can also apply to trisubstituted olefins. Both an electron-donating group like OMe and electron-withdrawing groups like CO2Et and CN were compatible with the reaction, giving the corresponding 2,3-disubstituted indoles (14l-14n) in 76-96% yields (Table 2, entries 12-14). Cyclic olefin 90 was also effective for the reaction, giving six-membered ring-fused indole 14o in 90% yield (Table 2, entry 15). Under the reaction conditions, carbazole 14p was obtained with 90% yield when the olefin was replaced with a phenyl group (Table 2, entry 16).^{8a} Thiophene fused indole 14q was obtained in 58% yield from 3-(2-iodophenyl)thiophene 9q (Table 2, entry 17). However, no reaction was observed when the thiophene was replaced with a furan group.

The reaction can also be performed on a relatively large scale. For example, 1.61 g of indole 14a was obtained in 86% yield (Scheme 4). As illustrated in the case of 14a, the *t*-butyl group can be removed with CF_3SO_3H /cyclohexane, giving deprotected indole in 70% yield (Scheme 5).

Table 2. Substrate Scope^a

^{*a*}All reactions were performed with 2-iodostyrene **9** (0.60 mmol), dit-butyldiaziridinone **1** (0.90 mmol), Pd(PPh₃)₄ (0.030 mmol), PivOH (0.030 mmol), and Cs₂CO₃ (1.20 mmol) in PhCH₃ (0.60 mL) under Ar at 100 °C for 48 h. ^{*b*}Isolated yield.

A precise reaction mechanism awaits further investigation. On the basis of previous studies,^{6,7} a plausible catalytic cycle exemplified with substrate **9a** is outlined in Scheme 6. The

Scheme 4. Gram-Scale Reaction

Scheme 5. Removal of the t-Butyl Group of Indole 14a

Scheme 6. Proposed Mechanism

reaction started with the oxidative addition of Pd to the aryl iodide to give aryl Pd(II) species **16**, which underwent an intramolecular vinyl C–H activation^{11,13} to generate pallada-(II)cycle **17**.¹⁴ The oxidative addition of **17** to the N–N bond of di-*t*-butyldiaziridinone (**1**) formed pallada(IV)cycle **18**, which was converted to Pd(IV)-nitrene **19** upon the release of *t*-butyl isocyanate. Two consecutive reductive eliminations of **19** led to the formation of indole **14a** with the regeneration of Pd catalyst (path a). Alternatively, eight-membered pallada-(II)cycle **20** could be formed from pallada(IV)cycle **18** via a reductive elimination. Indole **14a** was formed upon the release of *t*-butyl isocyanate from **20** and a subsequent reductive elimination (Path b).

The comparative studies were performed with (E)trisubstituted olefin **9m** and (Z)-trisubstituted **9r** (Scheme 7). The corresponding indole **14m** was obtained from **9m** in 76% yield (Table 2, entry 13). In contrast, no product was formed from **9r**. These results support that the indole formation involves an intramolecular vinyl C-H activation. Further studies show the olefin substituents are also important for the reaction process. For example, the yield dropped dramatically from 90% to less than 5% when the methyl group of α -methylstyrene was removed (**9a** vs **9s**) (Scheme 8). However, significant amounts of the indole were formed when

Scheme 7. Effect of Olefin Geometry on Indole Formation

Scheme 8. Substitution Effect on Indole Formation

the methyl group was introduced ortho to the vinyl group (9u vs 9s). The same trend was also observed with 9m, 9t, and 9v. These results suggest that the steric repulsion between the vinyl group and phenyl group could facilitate the C–H activation. A better understanding of this issue requires further studies.

In summary, we have developed an efficient palladiumcatalyzed sequential C–H activation/amination process with 2-iodostyrenes and di-t-butyldiaziridinone (1), providing a variety of substituted indoles in good yields. The reaction likely proceeded through the oxidative addition of Pd to the aryl iodide and subsequent vinyl C–H activation to give a pallada(II)cycle, which was converted to the indole via a bisamination with di-t-butyldiaziridinone (1). This work further illustrates the versatile reactivity and synthetic utility of di-t-butyldiaziridinone (1). The development of more reaction processes with this class of reagent is currently underway.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.1c01043.

Experimental procedures, characterization data, and NMR spectra (PDF)

Accession Codes

CCDC 2052689 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: + 44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Yian Shi – Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China; Department of Chemistry, Colorado State University, Fort Collins 80523, Colorado, United States; orcid.org/ 0000-0001-9016-2078; Email: shiyian@cczu.edu.cn, yian.shi@colostate.edu

Authors

- Jing Li Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China; orcid.org/0000-0002-5061-1411
- Jinhua Chen Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
- Luying Wang Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.1c01043

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge the National Natural Science Foundation of China (21632005) and Changzhou University for the financial support.

REFERENCES

(1) For leading reviews, see: (a) Kawasaki, T.; Higuchi, K. Simple Indole Alkaloids and Those with a Nonrearranged Monoterpenoid Unit. *Nat. Prod. Rep.* **2005**, *22*, 761–793. (b) Kochanowska-Karamyan, A. J.; Hamann, M. T. Marine Indole Alkaloids: Potential New Drug Leads for the Control of Depression and Anxiety. *Chem. Rev.* **2010**, *110*, 4489–4497. (c) Ishikura, M.; Abe, T.; Choshi, T.; Hibino, S. Simple Indole Alkaloids and Those with a Non-Rearranged Monoterpenoid Unit. *Nat. Prod. Rep.* **2013**, *30*, 694–752.

(2) For leading reviews on the synthesis of indoles, see: (a) Humphrey, G. R.; Kuethe, J. T. Practical Methodologies for the Synthesis of Indoles. Chem. Rev. 2006, 106, 2875-2911. (b) Zeni, G.; Larock, R. C. Synthesis of Heterocycles via Palladium-Catalyzed Oxidative Addition. Chem. Rev. 2006, 106, 4644-4680. (c) Cacchi, S.; Fabrizi, G. Update 1 of: Synthesis and Functionalization of Indoles Through Palladium-Catalyzed Reactions. Chem. Rev. 2011, 111, PR215-PR283. (d) Cacchi, S.; Fabrizi, G.; Goggiamani, A. Indoles via Palladium-Catalyzed Cyclization. In Organic Reactions; John Wiley & Sons, Inc., 2012; Vol. 76, pp 281-534. (e) Guo, T.; Huang, F.; Yu, L.; Yu, Z. Indole Synthesis through Transition Metal-Catalyzed C-H Activation. Tetrahedron Lett. 2015, 56, 296-302. (f) Bugaenko, D. I.; Karchava, A. V.; Yurovskaya, M. A. Synthesis of Indoles: Recent Advances. Russ. Chem. Rev. 2019, 88, 99-159. (g) Neto, J. S. S.; Zeni, G. Recent Advances in the Synthesis of Indoles from Alkynes and Nitrogen Sources. Org. Chem. Front. 2020, 7, 155-210.

(3) For leading references on indole synthesis via Pd-catalyzed aryl C-H amination, see: (a) Tan, Y.; Hartwig, J. F. Palladium-Catalyzed Amination of Aromatic C-H Bonds with Oxime Esters. J. Am. Chem. Soc. 2010, 132, 3676-3677. (b) Chiba, S.; Zhang, L.; Sanjaya, S.; Ang, G. Y. Pd(II)-Catalyzed Synthesis of Indoles from α -Aryloxime O-Pentafluorobenzoates via Intramolecular Aromatic C-H Amination. Tetrahedron 2010, 66, 5692-5700. (c) Yugandar, S.; Konda, S.; Ila, H. Amine Directed Pd(II)-Catalyzed C-H Activation-Intramolecular Amination of N-Het(aryl)/Acyl Enaminonitriles and Enaminones: An Approach towards Multisubstituted Indoles and Heterofused Pyrroles. J. Org. Chem. 2016, 81, 2035-2052. (d) Clagg, K.; Hou, H.; Weinstein, A. B.; Russell, D.; Stahl, S. S.; Koenig, S. G. Synthesis of Indole-2-Carboxylate Derivatives via Palladium Catalyzed Aerobic Amination of Aryl C-H Bonds. Org. Lett. 2016, 18, 3586-3589. (e) Wei, F.; Shen, X.-Q.; Chu, J.-J.; Hu, B.-L.; Zhang, X.-G. Palladium-Catalyzed Intramolecular Aerobic C-H Amination of Enamines for the Synthesis of 2-Trifluoromethylindoles. Tetrahedron 2018, 74, 720-725.

(4) For leading references on indole synthesis via Rh-, Fe-, and Cucatalyzed aryl C-H amination, see: (a) Stokes, B. J.; Dong, H.; Leslie,

Letter

B. E.; Pumphrey, A. L.; Driver, T. G. Intramolecular C-H Amination Reactions: Exploitation of the Rh₂(II)-Catalyzed Decomposition of Azidoacrylates. J. Am. Chem. Soc. 2007, 129, 7500-7501. (b) Bonnamour, J.; Bolm, C. Iron(II) Triflate as a Catalyst for the Synthesis of Indoles by Intramolecular C-H Amination. Org. Lett. 2011, 13, 2012-2014. (c) Yamamoto, C.; Takamatsu, K.; Hirano, K.; Miura, M. A Divergent Approach to Indoles and Oxazoles from Enamides by Directing-Group-Controlled Cu-Catalyzed Intramolecular C-H Amination and Alkoxylation. J. Org. Chem. 2017, 82, 9112-9118.

(5) For leading references on indole synthesis via Rh-, Cu-, and Cocatalyzed vinyl C-H amination, see: (a) Shen, M.; Leslie, B. E.; Driver, T. G. Dirhodium(II)-Catalyzed Intramolecular C-H Amination of Aryl Azides. Angew. Chem., Int. Ed. 2008, 47, 5056–5059. (b) Jana, N.; Nguyen, Q.; Driver, T. G. Development of a Suzuki Cross-Coupling Reaction between 2-Azidoarylboronic Pinacolate Esters and Vinyl Triflates to Enable the Synthesis of [2,3]-Fused Indole Heterocycles. J. Org. Chem. 2014, 79, 2781–2791. (c) Kulkarni, A. M.; Srinivas, K.; Deshpande, M. V.; Ramana, C. V. Cu-Catalyzed Sequential C-N Bond Formations: Expeditious Synthesis of Tetracyclic Indoloindol-3-ones. Org. Chem. Front. 2016, 3, 43–46. (d) Ghorai, J.; Reddy, A. C. S.; Anbarasan, P. Cobalt(III)-Catalyzed Intramolecular Cross-Dehydrogenative C-H/X-H Coupling: Efficient Synthesis of Indoles and Benzofurans. Chem. - Eur. J. 2016, 22, 16042–16046.

(6) Ramirez, T. A.; Wang, Q.; Zhu, Y.; Zheng, H.; Peng, X.; Cornwall, R. G.; Shi, Y. Pd(0)-Catalyzed Sequential C-N Bond Formation via Allylic and Aromatic C-H Amination of α -Methylstyrenes with Diaziridinone. *Org. Lett.* **2013**, *15*, 4210–4213. (7) Zheng, H.; Zhu, Y.; Shi, Y. Palladium(0)-Catalyzed Heck Reaction/C-H Activation/Amination Sequence with Diaziridinone: A Facile Approach to Indolines. *Angew. Chem., Int. Ed.* **2014**, *53*, 11280–11284.

(8) For recent related work, see: (a) Shao, C.; Zhou, B.; Wu, Z.; Ji, X.; Zhang, Y. Synthesis of Carbazoles from 2-Iodobiphenyls by Palladium-Catalyzed C-H Activation and Amination with Diaziridinone. Adv. Synth. Catal. 2018, 360, 887-892. (b) Zhou, B.; Wu, Z.; Ma, D.; Ji, X.; Zhang, Y. Synthesis of Indoles through Palladium-Catalyzed Three-Component Reaction of Aryl Iodides, Alkynes, and Diaziridinone. Org. Lett. 2018, 20, 6440-6443. (c) Sun, X.; Wu, Z.; Qi, W.; Ji, X.; Cheng, C.; Zhang, Y. Synthesis of Indolines by Palladium-Catalyzed Intermolecular Amination of Unactivated C-(sp³)-H Bonds. Org. Lett. 2019, 21, 6508-6512. (d) Ma, D.; Ji, X.; Wu, Z.; Cheng, C.; Zhou, B.; Zhang, Y. Synthesis of Benzimidazoles through Palladium-Catalyzed Amination of 2-Iodobenzimines with Diaziridinone. Adv. Synth. Catal. 2019, 361, 739-746. (e) Cheng, C.; Zuo, X.; Tu, D.; Wan, B.; Zhang, Y. Synthesis of 3,4-Fused Tricyclic Indoles through Cascade Carbopalladation and C-H Amination: Development and Total Synthesis of Rucaparib. Org. Lett. 2020, 22, 4985-4989. (f) Zhang, L.; Chen, J.; Zhong, T.; Zheng, X.; Zhou, J.; Jiang, X.; Yu, C. Palladium-Catalyzed [2 + 2 + 1] Annulation of Alkyne-Tethered Aryl Iodides with Diaziridinone: Synthesis of 3,4-Fused Tricyclic Indoles. J. Org. Chem. 2020, 85, 10823-10834.

(9) For recent related amination of palladacycles with different nitrogen sources, see: (a) Fan, L.; Hao, J.; Yu, J.; Ma, X.; Liu, J.; Luan, X. Hydroxylamines As Bifunctional Single-Nitrogen Sources for the Rapid Assembly of Diverse Tricyclic Indole Scaffolds. *J. Am. Chem. Soc.* **2020**, *142*, 6698–6707. (b) Jafarpour, F.; Ghasemi, M.; Navid, H.; Safaie, N.; Rajai-Daryasarei, S.; Habibi, A.; Ferrier, R. C., Jr Assembly of Indole Cores through a Palladium-Catalyzed Metathesis of Ar-X σ -Bonds. *Org. Lett.* **2020**, *22*, 9556–9561.

(10) For a leading reference, see: Zhao, J.; Campo, M.; Larock, R. C. Consecutive Vinylic to Aryl to Allylic Palladium Migration and Multiple C-H Activation Processes. *Angew. Chem., Int. Ed.* **2005**, *44*, 1873–1875.

(11) For leading references, see: (a) Hu, T.-J.; Zhang, G.; Chen, Y.-H.; Feng, C.-G.; Lin, G.-Q. Borylation of Olefin C-H Bond via Aryl to Vinyl Palladium 1,4-Migration. J. Am. Chem. Soc. **2016**, 138, 2897–2900. (b) Xu, S.; Chen, R.; Fu, Z.; Zhou, Q.; Zhang, Y.; Wang, J.

Palladium-Catalyzed Formal [4 + 1] Annulation via Metal Carbene Migratory Insertion and C(sp²)-H Bond Functionalization. ACS Catal. 2017, 7, 1993-1997. (c) Hu, T.-J.; Li, M.-Y.; Zhao, Q.; Feng, C.-G.; Lin, G.-Q. Highly Stereoselective Synthesis of 1,3-Dienes through an Aryl to Vinyl 1,4-Palladium Migration/Heck Sequence. Angew. Chem., Int. Ed. 2018, 57, 5871-5875. (d) Wei, D.; Hu, T.-J.; Feng, C.-G.; Lin, G.-Q. Synthesis of Substituted Naphthalenes by 1,4-Palladium Migration Involved Annulation with Internal Alkynes. Chin. J. Chem. 2018, 36, 743-748. (e) Wei, D.; Li, M.-Y.; Zhu, B.-B.; Yang, X.-D.; Zhang, F.; Feng, C.-G.; Lin, G.-Q. Sequential Cross-Coupling/ Annulation of ortho-Vinyl Bromobenzenes with Aromatic Bromides for the Synthesis of Polycyclic Aromatic Compounds. Angew. Chem., Int. Ed. 2019, 58, 16543-16547. (f) Rocaboy, R.; Baudoin, O. 1,4-Palladium Shift/C(sp³)-H Activation Strategy for the Remote Construction of Five-Membered Rings. Org. Lett. 2019, 21, 1434-1437. (g) Zhang, H.; Yu, Y.; Huang, X. Facile Access to 2,2-diaryl 2H-Chromenes through a Palladium-Catalyzed Cascade Reaction of ortho-Vinyl Bromobenzenes with N-tosylhydrazones. Org. Biomol. Chem. 2020, 18, 5115-5119. (h) Xue, Z.-J.; Li, M.-Y.; Zhu, B.-B.; He, Z.-T.; Feng, C.-G.; Lin, G.-Q. Stereoselective Synthesis of Conjugated Trienes via 1,4-Palladium Migration/Heck Sequence. Chem. Commun. 2020, 56, 14420-14422.

(12) For leading references, see: (a) Lafrance, M.; Gorelsky, S. I.; Fagnou, K. High-Yielding Palladium-Catalyzed Intramolecular Alkane Arylation: Reaction Development and Mechanistic Studies. *J. Am. Chem. Soc.* **2007**, *129*, 14570–14571. (b) Rousseaux, S.; Gorelsky, S. I.; Chung, B. K. W.; Fagnou, K. Investigation of the Mechanism of $C(sp^3)$ -H Bond Cleavage in Pd(0)-Catalyzed Intramolecular Alkane Arylation Adjacent to Amides and Sulfonamides. *J. Am. Chem. Soc.* **2010**, *132*, 10692–10705.

(13) However, it cannot be ruled out that an intramolecular allyic C-H activation may become competitive for substrates with different substituents on the olefin.

(14) For leading reviews on palladacycles derived from C-H activation, see: (a) Dyker, G. Transition Metal Catalyzed Coupling Reactions under C-H Activation. Angew. Chem., Int. Ed. 1999, 38, 1698-1712. (b) Kakiuchi, F.; Chatani, N. Catalytic Methods for C-H Bond Functionalization: Application in Organic Synthesis. Adv. Synth. Catal. 2003, 345, 1077-1011. (c) Catellani, M. Multistep Reactions via Palladacycles. Synlett 2003, 298-313. (d) Alberico, D.; Scott, M. E.; Lautens, M. Aryl-Aryl Bond Formation by Transition-Metal-Catalyzed Direct Arylation. Chem. Rev. 2007, 107, 174-238. (e) Catellani, M.; Motti, E.; Della Ca', N. Catalytic Sequential Reactions Involving Palladacycle-Directed Aryl Coupling Steps. Acc. Chem. Res. 2008, 41, 1512-1522. (f) Muñiz, K. High-Oxidation-State Palladium Catalysis: New Reactivity for Organic Synthesis. Angew. Chem., Int. Ed. 2009, 48, 9412-9423. (g) Ackermann, L.; Vicente, R.; Kapdi, A. R. Transition-Metal-Catalyzed Direct Arylation of (Hetero)Arenes by C-H Bond Cleavage. Angew. Chem., Int. Ed. 2009, 48, 9792-9826. (h) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Functionalization of Organic Molecules by Transition-Metal-Catalyzed C(sp³)-H Activation. Chem. - Eur. J. 2010, 16, 2654-2672. (i) Xu, L.-M.; Li, B.-J.; Yang, Z.; Shi, Z.-J. Organopalladium(IV) chemistry. Chem. Soc. Rev. 2010, 39, 712-733. (j) Sehnal, P.; Taylor, R. J. K.; Fairlamb, I. J. S. Emergence of Palladium(IV) Chemistry in Synthesis and Catalysis. Chem. Rev. 2010, 110, 824-889. (k) Shi, F.; Larock, R. C. Remote C-H Activation via Through-Space Palladium and Rhodium Migrations. Top. Curr. Chem. 2010, 292, 123-164. (1) McMurray, L.; O'Hara, F.; Gaunt, M. J. Recent Developments in Natural Product Synthesis using Metal-Catalysed C-H Bond Functionalisation. Chem. Soc. Rev. 2011, 40, 1885-1898. (m) Wencel-Delord, J.; Dröge, T.; Liu, F.; Glorius, F. Towards mild metal-catalyzed C-H bond activation. Chem. Soc. Rev. 2011, 40, 4740-4761. (n) Malinakova, H. C. Palladium(IV) Complexes as Intermediates in Catalytic and Stoichiometric Cascade Sequences Providing Complex Carbocycles and Heterocycles. Top. Organomet. Chem. 2011, 35, 85-110. (o) Dastbaravardeh, N.; Christakakou, M.; Haider, M.; Schnürch, M. Recent Advances in Palladium-Catalyzed C(sp³)-H Activation for the Formation of

Carbon-Carbon and Carbon-Heteroatom Bonds. Synthesis **2014**, 46, 1421–1439. (p) Jin, T.; Terada, M. Recent Topics on Synthesis of π -Extended Polycycles by Cascade Annulations. Tetrahedron Lett. **2020**, 61, 151514. (q) Zhang, F.; Xin, L.; Yu, Y.; Liao, S.; Huang, X. Recent Advances in Palladium-Catalyzed Bridging C-H Activation by Using Alkenes, Alkynes or Diazo Compounds as Bridging Reagents. Synthesis **2021**, 53, 238–254.