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In situ hydrothermal synthesis of two novel Cd(II) coordination compounds
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Hydrothermal in-situ reactions of 4,4′-bis(3,3′-dicyano)pyridine (pydcy) with Cd(NO3)2·6H2O under the
similar reaction condition but different solvent media result in two new compounds [C48H32Cd2N8O18](1)
and [C17H13CdN3O5](2). Compound 1 features a new dimeric carboxylate bridged structure, while compound
2 gives a 3D framework with large hexagon channels embodied with water molecules. Topology analysis of 2
defines a type of {83} etb topology. TGA and XRPD analysis indicated that the guest water molecules in 2 can
be removed to result in a nanoporous network. Both compounds exhibit intense fluorescence at room tem-
perature, which may originate from the ligand-to-metal charge transfer (LMCT) state.
: +86 371 67763390.
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Design and synthesis of functional metal-organic frameworks
(MOFs) with desired properties is a hard and challenging problem,
while introduction of the mechanism of hydro(solvo)thermal in-situ
metal/ligand reactions shades light on this scientific problem [1],
and this method has been proved to be a promising technique in
the preparation of highly stable materials that are inaccessible or
not easily obtainable by conventional methods. For example, Lin
and co-workers have synthesized a series of acentric MOFs of metal
carboxylates with second-order nonlinear optic properties based on
in-situ metal/ligand reactions, which may not be accessible from
their corresponding carboxylic acids [2]. Arshad Aijaz et al. reported
a number of interesting MOFs by using tripodal ligand 3,5-di(1H-
imidazol-1-yl)benzoxylate in situ generated from a CN-containing
precursor [3]. Also, in situ generated donor groups via slow hydrolysis
of precursor ligands under hydro(solvo)thermal conditions can provide
more intriguing network topologies than the direct reaction of metal
ions with the corresponding carboxylic acids [4].

The carboxylate functional group has been extensively used for
constructing polynuclear complexes due to its versatile coordination
modes and ability to generate metal-oxygen chains [5]. Other bridging
ligands, such as 4,4′-bipyridine, also have strong ability to form polynu-
clear compounds [6]. Therefore, the combination of carboxylate and
pyridine donor moieties in a ligand may lead to more interesting
network topologies [7]. Considering these in mind, we choose, 4,4′-bis
(3,3′-dicyano)pyridine (pydcy) [8] as a precursor ligand. Hydro(solvo)
thermal reaction of pydcy with cadmium(II) salt resulted in the forma-
tion of compounds [C48H32Cd2N8O18](1) and [C17H13CdN3O5](2) with
different topologies and properties depending on whether the solvent
is H2O or H2O/pyridine/ethanol. The solvent media used in the assem-
bling processes was found to significantly influence the structures and
properties of the resultant coordination compounds.

The ligand 4,4′-bis(3,3′-dicyano)pyridine (pydcy) was prepared
according to the procedure shown in Scheme 1.

4,4-bipyridine-N,N-dioxidewas obtained according to the reference
[9]. The 4,4′-bis(3,3′-dicyano)pyridine (pydcy) ligand was easily
synthesized from the reaction of 4,4-bipyridine-N,N-dioxide, Me3SiCN
and PhCOCl in CH2C12 solvent under a dry nitrogen atmosphere [10].
Yellow solid was obtained with a yield of 96%. Anal. Calc. For C12H6N4:
C, 69.90; H, 2.93; N, 27.17%. Found: C, 69.89; H, 2.94; N, 27.16%. 1H
NMR (400 MHz, CDCl3): δ=8.919(d, J=4.8 Hz, 2H), 7.932 (s, 2H),
7.749(d, J=2 Hz, 2H).

Synthesis of compound [C48H32Cd2N8O18] (1). A mixture of pydcy
ligand (20.6 mg, 0.10 mmol), Cd(NO3)2·4H2O (30.9 mg, 0.10 mmol)
and distilled water(5 ml) was sealed in a Teflon-lined reactor and
heated at 130 °C for 3 days. After slow cooling to room temperature,
block colorless crystals were collected and dried in air (yield: 42%
1. Schematic drawing for the synthetic route of pydcy.
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Fig. 1. The coordination environment of the Cd(II) atom in compound 1. Hydrogen
atoms are omitted for clarity.

Fig. 3. The coordination environment of the Cd(II) atom as well as coordination mode
of pydca2- ligand in compound 2. Free water molecules and H atoms are omitted for
clarity.
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yield based on Cd). Anal. Calc. For C48H32Cd2N8O18: C, 46.68; H, 2.61;
Cd, 18.21; N, 9.06%. Found: C, 46.64; H, 2.64; Cd, 18.17; N, 9.02%.

Compound [C17H13CdN3O5] (2) was obtained under the same
reaction condition as that of compound 1 except that the solvent
used was H2O/pyridine/ EtOH (5 ml, 1:2:2, v/v). Colorless acicular
crystals were collected and dried in air (yield: 62% yield based on
Cd). Anal. Calc. For C17H13CdN3O5: C, 45.20; H, 2.91; Cd, 24.89; N,
9.32%. Found: C, 45.16; H, 2.95; Cd, 24.84; N, 9.25%.

The single crystal X-ray structural analysis reveals that the cyano-
gen moieties of the ligand was hydrolyzed to carboxylic acid through
in-situ ligand reaction (Hpydca− or pydca2−, pydca2−=4,4′-bis
(3,3′-dicarboxyl)pyridine). The solvent media is said to play a crucial
role in the assembling processes of the resulting complexes [11].

Compound 1 crystallizes in triclinic with space group P−1. As
shown in Fig. 1, each Cd(II) atom is six-coordinated by three carbox-
ylate oxygen atoms (Cd1-O1 2.269(2) Å, Cd1-O5 2.429(2) Å, Cd1-O6
2.3225(18) Å ), two pyridyl nitrogen atoms (Cd1-N1 2.276(3), Cd1-
N3 2.293(2) Å) of the ligands and one oxygen atom of water (Cd1-
O9 2.299(2) Å). The overall geometry around the Cd(II) center is a
distorted octahedron. A typical feature of 1 is the dimeric carboxylate
bridged unit, of which eight carboxylate groups adopt three different
chelating modes. O3–O4 carboxylate group is free, while O1–O2 car-
boxylate group is in a semi-chelating fashion and O5–O6 carboxylate
group adopts a syn-anti μ2-η1:η2 bridge to link two metal atoms to
form a dimetal linkage. As shown in Fig. 2, each dicaryon was inter-
linked via hydrogen bonds {O(9)-H(2 W)…O(1)[O/O 2.676(3)A˚,
H…O 1.99 Å, ∠OHO, 148(8)°], O(4)-H(4)…O(7) [O/O 2.890(4)Å,
H…O 2.11 Å, ∠OHO, 159(4)°]} to form a two dimensional supramo-
lecular structure. Furthermore, the two pyridyl rings of the ligand
are almost coplanar, the aromatic π–π stacking interaction between
adjacent ligands not only leads to increased thermodynamic stability
but also effectively fills the void space of this two dimensional
Fig. 2. Perspective view of the network of compound 1 along a axis.
structure. As a result, no free solvent molecules are enclathrated in
compound 1.

Compound 2 crystallizes in the Rhombohedral with space group
R−3. There are one unique Cd(II) atom, one pydca2− ligand, one pyr-
idine and two free water molecules in the asymmetric unit of com-
pound 2. As illustrated in Fig. 3, each Cd(II) atom is six-coordinated
by three carboxylate oxygen atoms (Cd1-O1 2.369(5) Å, Cd1-O2
2.278(5) Å, Cd1-O3 2.296(5) Å), two nitrogen atoms (Cd1-N1 2.370
(6) Å, Cd1-N2 2.297(6) Å) from the ligand and one nitrogen atom
(Cd1-N3 2.319(6) Å) from pyridine to furnish a distorted octahedral
coordination geometry.

The two carboxylate groups of pydca2− ligand adopt different
chelating modes. O3–O4 carboxylate group is in a semi-chelating
mode, while O1–O2 carboxylate group adopts a syn-anti μ2-η1:η2

bridge to link adjacent two Cd(II) atoms. The dihedral angle between
the two pyridyl rings of pydca2– ligand is 71.5o. First, one-dimensional
(1D) helical chain subunit is formed by the operation of a threefold
screw along c-axis. The distance between adjacent Cd(II) atoms
bridged by O1–O2 carboxylate group is 5.370 Å. (Fig. 4a). The 1D
helical chains are further joined together by O3 N2 chelating atoms
(Fig. 4b) to result in a 3D framework with large hexagon channels
(Fig. 4c), and water molecules are embodied in the hexagon channels
via hydrogen bonds.

In order to get a better insight into the nature of this complicated 3D
framework, the topology approach can be used. From the topological
view, each Cd(II) atom coordinated with three pydca2− ligands togeth-
er with its adjacent pyridine can be considered as a 3-connecting node,
and each pydca2− ligand linked three Cd(II) atoms can bedefined as an-
other 3-connecting nodal point (Fig. 5). Thus compound 2 possesses a
3D 3-connected net with the ratio of these two 3-connecting nodes of
1:1. The topology analysis by the TOPOS4.0 program suggests that it is
a 3-connected net with a Schläfli symbol of {83}. It can be seen from
the Fig. 5b that the minimum loop through each node was a chair like
eight-membered ring configuration. The net of compound 2 defines
a type of etb topological framework which is earliest observed by
Nathaniel L. Rosi [12].

Considering the possibility of generating porous network by
removing the guest molecules, the thermal stability of compound 2
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Fig. 4. Perspective view of the 1D helical chain structure along c-axis (a) and the 3D framework of 2 extended along the ab plane by the connection of adjacent helical chains with
O3, N2 chelating atoms (b) 3D framework of 2 showing trapped water molecules inside the large hexagon channels (c).

Fig. 5. Viewof the 3D framework of2 along c-axis (a) and {83} net topology (b), the chair like
eight-membered ring definedby the green line shows theminimum loop through eachnode.
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has been investigated. The TGA curve of compound 2 showed that
guest molecules can be easily removed by heating under nitrogen
atmosphere (Fig. 1S). The first stage weight loss of 4.017% in the
temperature range 54–160 °C corresponded to the release of H2O
guest molecules (expected 3.988%). Interestingly, XRPD pattern for
the sample of compound 2 after removal of the included water mole-
cules remains essentially identical with that of pristine solids
(Fig. 2S). Moreover, guest water molecules can be readily reintro-
duced into the porous network of compound 2 by exposure to the
water vapor at room temperature, which can be confirmed by TGA
analysis. This result conclusively demonstrated that the guest mole-
cules in compound 2 can be successfully removed to result in a porous
network with hexagon channels. As shown in Fig. 1S, the framework
structure of compound 2 is stable up to 300 °C.

It has been established that coordination polymers with conjugated
organic ligands are promising candidates for photoactive materials due
to their luminescent properties. Consequently, solid state fluorescent
properties of these two compounds have been investigated at room
temperature. As shown in Fig. 6, Na2pydca shows a very broad weak
emission band centered at 445 nm upon excitation at 400 nm, which
can be attributed to the π*–π intraligand transition. However, com-
pounds 1 and2 display apparent red-shifted strong emissions compared
with that of Na2pydca. Compound 1 shows a maximum emission at
467 nm, while compound 2 exhibits a strong emission band at
513 nm. The emissions of those two compounds might be attributable
to the πtz-5s ligand-to-metal charge transfer transition [13]. Interesting-
ly, the emission band of compound 2 is red-shifted 46 nm, togetherwith
apparently enhanced emission intensity compared with that of com-
pound 1. The increased rigidity of compound 2 can effectively reduce
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Fig. 6. The emission spectra of compound 1, compound 2 and Na2pydca in solid state at
room temperature.
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the non-radiation decay and enhance the luminescence intensity. Fur-
thermore, the coordination of pydca2− with Cd(II) as a five-dentate
ligand may reduce the energy gap between the HOMO and LUMO levels
of compound 2, and as a result cause apparently red-shifted emission.
The above result demonstrated that luminescent property of compounds
can be strongly affected by metal-ligand chelating mode and the crystal
structure.

In conclusion, two novel Cd(II) coordination compounds have
been successfully synthesized by the in-situ reaction of (pydcy)
with Cd(NO3)2·6H2O under the similar reaction condition but differ-
ent solvent media. The single crystal X-ray structural analysis reveals
that the cyanogen moieties of the ligand were hydrolyzed to carbox-
ylic acids at this process and the resultant coordination frameworks
are profoundly influenced by the solvent media. Compound 1 forms
a new dimeric structure by using H2O as a solvent, while compound
2 is a 3D 3-connected novel network with Schläfli symbol of {83}
when the solvent used was H2O/pyridine/ EtOH (1:2:2, v/v). TGA
and XRPD indicated that the guest water molecules in 2 can be easily
removed to result in a porous network with hexagon channels.
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