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ABSTRACT ARTICLE HISTORY

This study reports the synthesis of a methoxy-substituted 2,6-di(1,8- Received 21 November 2018
naphthyridin-2-yl)pyridine using Friedlander methodology. The func-
tionalization at the 4-carbon of the methoxy-substituted derivative
was confirmed by X-ray structural analysis. Finally, the methyl ether
protecting group was cleaved to obtain 2,6-di(1,8-naphthyridin-2- Friedlinder condensation:
yl)pyridine-4-ol. Using the compounds, coordination behavior to naphthyridine; polypyridiﬁe;
ruthenium(ll) center was also examined. ruthenium complex
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4-substituted-2,6-di(1,8-naphthyridin-2-yl)pyridines "Ru-complex"

Introduction

In recent years, environmental pollution and exhaustion of fossil fuels have become a
serious problem, which have rendered the practical utilization of various renewable
energy resources as a grand challenge in modern chemistry. Among these renewable
energy resources, sunlight is considered the most useful resource. For example, dye-sen-
sitized solar cells (DSSC), which are based on semiconductors such as TiO,, have been
studied as the next generation of solar cells.] The performance of DSSC is greatly
affected by the molecular structure of the dye used.'” This is exemplified by a variety of
well-known ruthenium(II) complexes containing both thiocyanate ions (SCN™) and
2,2":6',2" -terpyridine derivatives (1 in Fig. 1), which are typical polypyridine com-
pounds.”’ Among these complexes, the SCN™ ion, which functions as an electron
acceptor site, is an ambidentate ligand, and therefore, it can bind to the Ru center with
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1 2a (R=H), 2b (R = Bu),
2c (R = OMe), 2d (R = OH)

Figure 1. The structures of polypyridyl compounds containing the terpyridine skeleton.
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Scheme 1. General synthetic procedure for synthesizing 1,8-naphthyridine derivatives (2) by the
Friedlander reaction.

either a sulfur (xS) or a nitrogen atom (xN). Resultantly, the precise control of the
coordination mode in such complexes is one of the key factors affecting their final per-
formance because the resulting two linkage isomers often show different properties.*!

We have reported that the coordination mode of the SCN ligand can be completely
controlled using 2,6-di(1,8-naphthyridin-2-yl)pyridine (dnp; 2a in Fig. 1), which is
obtained by the condensation of two more pyridines to the terpyridine skeleton.””! In
addition, dnp and its derivatives have been shown to play an important role in electron
transfer reactions because they are redox-active compounds.'®’ The introduction of dnp
in a dye molecule could be expected to improve the photoelectric conversion efficiency
(n) of DSSCs; however, the lack of a suitable anchor group in dnp for the adsorption
on TiO, hinders its application as a dye. Generally, such anchor groups are phospho-
nates,””! carboxylates,!® or catechols,'’ whose oxygen atoms strongly adsorb on the sur-
face of transition metal oxides. Although dnp derivatives containing a f-butyl
substituent at the 4-position (2b in Fig. 1) have been reported,’® no dnp skeleton mol-
ecules having the abovementioned anchor groups have been synthesized yet.

From the viewpoint of the importance of multifunctional dnp compounds, especially
for their utilization as dye molecules, we herein describe our efforts toward the synthesis
and characterization of dnp compounds containing oxygenated groups at the 4-position,
as shown in Fig. 1 (2¢ and 2d). For the synthesis of 1,8-naphthyridine derivatives (2)
such as dnp (Scheme 1), Friedlander condensation is the most commonly used
method,""! which involves the reaction between 2-aminonicotinaldehyde (3) and acyl
derivatives (4). We applied this methodology to the proposed study using 4-methoxy-
2,6-diacetylpyridine as the corresponding acyl derivative, which would provide a dnp
derivative with a protected hydroxy group at the 4-position. As a preliminary study, we
also examined the coordination chemistry between 2¢ and a ruthenium(II) center.
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Results and discussion

First, we synthesized 2-aminonicotinaldehyde 3 through the known reaction of nicotina-
mide with ammonium amidosulfate."'®'?) Aldehyde 3 must be freshly prepared and
used immediately after isolation to avoid self-condensation side reactions. Meanwhile,
the desired acyl precursor (4) must contain OR substituents, where R =alkyl or aryl, as
protecting groups at the para position of the starting pyridine derivative. Since chelida-
mic acid has frequently been used as a starting material for the preparation of polypyri-
dines,!"* and considering that it bears a functionality in the appropriate position, we
selected chelidamic acid as the precursor for the synthesis of the desired 2,6-diacetylpyr-
idine 4.

The most convenient method for the preparation of 2,6-diacetylpyridine and its ana-
logs is by conducting Claisen condensation of dialkyl pyridine-2,6-dicarboxylates and
ethyl acetate in the presence of a strong base.!'*! Therefore, we have tried to synthesize
the desired 2,6-diacetylpyridine 4 according to the synthetic route."*>'*! For the incorp-
oration of the para-OMe substituent, chelidamic acid was first made to react with thi-
onyl chloride and then with methanol to give a para-hydroxy methyl ester intermediate.
After deprotonation and methylation with potassium carbonate and methyl iodide to
avoid tautomerism between pyridine and pyridone, para-OMe methyl ester was
obtained. The methyl ester was then converted to the para-OMe substituted diacetylpyr-
idine 4 using standard methods.!"!

Next, the novel compound, 4-methoxy-2,6-di(1,8-naphthyridin-2-yl)pyridine
(dnpOMe) 2¢, was obtained by Friedlinder condensation under a nitrogen atmosphere
using aldehyde 3 and diacetylpyridine 4 (the first step in Scheme 2). The isolation yield
(21%) of 2c after purification was lower than that obtained for its non-substituted coun-
terpart (62% yield).!"'? This is most likely due to the difficulty in recrystallization rather
than the difference in the reactivity of the respective acyl derivatives because of the low
solubility of 2¢ in most organic solvents. The structure of dnpOMe 2¢ in solution was
estimated from the corresponding 'H and '*C NMR spectroscopic data. Thus, the 'H
NMR spectrum of 2¢ showed a singlet corresponding to three protons at  =4.13 ppm
as well as signals specific to dnp in the aromatic region.!"'! The proton-decoupled *C
NMR spectrum of 2¢ showed 11 distinct resonances, which are consistent with the pro-
posed structure. Additionally, the methoxy carbon resonated at ¢=55.93 ppm.
Meanwhile, the percentage of C, H, and N in the bulk sample of 2c was determined by
microanalysis, and it was in agreement with the calculated values.

EtOH/KOH pyridine/HCI

-

(85%)

(21%)

2c (dnpOMe)

Scheme 2. Synthesis of 4-substituted-2,6-di(1,8-naphthyridin-2-yl)pyridines 2¢ and 2d.
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Figure 2. X-ray crystallographic structure of 2c (CCDC: 1869682) with atom labels and displacement
ellipsoids for non-hydrogen atoms drawn at the 50% probability level. The asymmetric unit of the
crystal contains two chemically identical molecules, of which only one is shown. Hydrogen atoms are
shown as small spheres of arbitrary radius.

Furthermore, the structure of 2¢c was confirmed by single-crystal X-ray crystallog-
raphy (Fig. 2 and Supplementary Material). Compound 2¢ contains two molecules in
the asymmetric unit, but both structures are chemically identical. All hydrogen atoms
attached to the carbon atoms are clearly visible in the difference map, and the assign-
ment of nitrogen atoms in aromatic rings is unambiguous. The central pyridine N atom
exists in a trans conformation with respect to the naphthyridine N atoms. It was found
that the OMe group in compound 2¢ was bonded to the 4-carbon atom, and the bond
lengths and angles were within normal ranges.'”) Moreover, 2c contains some
C-H...N hydrogen bonds and intermolecular 7...7 interactions (Supplementary
Material). Due to these effects, the two aromatic groups tend to be coplanar.!®!

Subsequently, conversion of 2¢ to 2,6-di(1,8-naphthyridin-2-yl)pyridine-4-ol (dnpOH)
2d was conducted by deprotection using pyridine and hydrochloric acid at a reflux tem-
perature of 220°C (the second step in Scheme 2).'*! This deprotection reaction pro-
ceeded smoothly with high yield (85%). For both 'H and '"C NMR spectra of
compound 2d, the signals derived from the OMe group (6=4.13 and 55.93 ppm,
respectively) completely disappeared, which indicated the progress of the deprotection
reaction. Additionally, the dnpOH 2d signal pattern indicates that 2d retains the dnp
framework. Unfortunately, in the case of compound 2d, insufficient material was avail-
able for microanalysis because its weight increased accompanied by deliquescence when
exposed to air. Nevertheless, the composition suggested by the corresponding HRMS
data in solution supported the proposed structure. It is worth mentioning that we also
attempted the deprotection of 2¢ using hydrobromic acid."®) Although spectroscopic
monitoring suggested a satisfactory outcome of this reaction, the isolation of 2d proved
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2c/py

[Ru(dmso)4Cl5]
(21%)

Scheme 3. Formation of a Ru-complex containing 2c.

to be extremely difficult. Therefore, we confirmed that the deprotection using pyridine
and hydrochloric acid was superior in this system.

An attempt to prepare a family of ruthenium complexes containing 2 was successful.
[Ru(dmso),Cl,] (dmso = dimethyl sulfoxide)®” was adopted as the precursor for the
preparation of ruthenium(II) complexes having tridentate polypyridines such as dnp.!*"
Actually, the aqua complex ([Ru(2c)(py)2(OH2)]2+) was directly synthesized without the
formation of the corresponding chlorido complex (Scheme 3). Two naphthyridine units
promote hydration both by electronic repulsion of the chloride leaving group and stabil-
ization of the entering water through hydrogen bonds.*!! The complex was character-
ized by ESI-MS, 'H NMR, and microanalysis. In "H NMR spectrum, a signal observed
at 9.2 ppm disappeared upon the addition of D,0, identifying it as the protons on the
coordinated water (Supplementary Material). Furthermore, a preliminary X-ray ana-
lysis was performed to obtain structural information of the complex. Although the qual-
ity of the crystals of the complex was not good enough for a detailed analysis of the
bond parameters, the ligand environment around the ruthenium atom was identical to
the related complex with dnp (Supplementary Material).?!] Currently, the effort is being
made to synthesize/characterize a series of ruthenium complexes with 2¢ or 2d and to
explore their application to the photosensitizer. These results will be reported in subse-
quent papers.

Conclusions

We have synthesized two kinds of functionalized dnp compounds, 2¢ and 2d, through
Friedlander condensation reaction, providing access to the desired dnp skeleton contain-
ing a hydroxy group at the 4-position. Also, we have demonstrated the one-pot forma-
tion of the ruthenium complex containing 2c as a ligand. Considering the fact that the
dye performance improves with an increase in the symmetry of the constituent mol-
ecule,” it can be expected that compound 2d could be suitable as a dye molecule
from a structural viewpoint. Therefore, we hope that this compound will create new
research pathways for effective dye molecules in DSSC applications.

Experimental

All chemicals were used without further purification. All solvents used for synthesis
were anhydrous and used without further purification. Nicotinamide, ammonium ami-
dosulfate, and chelidamic acid were purchased from Nacalai Tesque and Tokyo
Chemical Industry, respectively. The compounds 2-aminonicotinaldehyde 3, 4-metohxy-
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2,6-diacetylpyridine 4, and [Ru(dmso),Cl,] were prepared according to previously
reported procedures.[lld’lza’IZb’14a’15’20]

Microanalysis data were obtained on a Perkin Elmer 2400II series CHN analyzer.
Melting points were determined on a Barnstead International 1201 D instrument. 'H
and >C {"H} NMR spectra were recorded on a JEOL JMN-AL300 spectrometer (25°C)
operating at "H and "°C frequencies of 300 and 75 MHz, respectively. Both spectra were
referenced to external tetramethylsilane via residual protons of the solvent (*H) or
the solvent itself (**C). Electrospray ionization mass spectrometry (ESI-MS) data were
obtained on a Bruker Daltonics microTOF. High-resolution mass spectrometry (HRMS)
data were obtained on a JEOL JMS-T100GC spectrometer.

Synthesis of 4-methoxy-2,6-di(1,8-naphthyridin-2-yl)pyridine (2c)

A freshly prepared 2-aminonicotinaldehyde 3 (0.89g, 7.3 mmol) and 4-methoxy-2,6-
diacetylpyridine 4 (0.64g, 3.3 mmol) were added to ethanol (30mL). After addition
of a freshly prepared ethanolic KOH solution (0.1g/15mL), the mixture was refluxed
for 5h under nitrogen. The solution was cooled to room temperature and then was
allowed to stand at 4°C overnight. The resultant yellow precipitate was collected by
filtration, washed with diethyl ether, and then dried in vacuo. The crude product
was recrystallized from methanol. Yield: 249mg (21%); Colorless powder; mp
265-268°C. '"H NMR (300 MHz, DMSO-d,): 6 =4.13 (s, 3H, ~OCHs), 7.69 (dd, 2H,
6'-H, J= 8.1, 3.9Hz), 8.31 (s, 2H, 3 and 5-H), 8.57 (dd, 2H, 5-H, J=8.1, 1.8 Hz),
8.71 (d, 2H, 4'-H, J=8.4Hz), 9.00 (d, 2H, 3'-H, J=8.7Hz), 9.16 (dd, 2H, 7'-H,
J=3.9, 1.8Hz). °C {'H} NMR (75MHz, DMSO-dg): 6=55.93 (-OCH3), 108.27,
119.79, 122.78, 123.02, 137.52, 139.01, 154.22, 155.10, 156.46, 157.68, 167.60. Anal.
Caled. for CpHsNsO-HLO: C, 68.92; H, 4.47; N, 18.27. Found: C, 68.77; H, 4.68;
and N, 18.14.

Synthesis of 2,6-di(1,8-naphthyridin-2-yl)pyridin-4-ol (2d)

4-Methoxy-2,6-di(1,8-naphthyridin-2-yl)pyridine 2¢ (190 mg, 0.52mmol) was dissolved
in pyridine (14mL). A concentrated HCI solution (12 M, 15mL) was slowly added to
the solution at 0°C. The reaction temperature was slowly increased to 220°C, after
which time the mixture was refluxed for 3.5h. Addition of water (50 mL) to the solution
resulted in the formation of a white precipitate of 2d. The product was collected by fil-
tration, washed with cold water, and dried in vacuo. Yield: 155mg (85%); Colorless
solid; mp 336-340°C (dec.). '"H NMR (300 MHz, DMSO-de): 6 =7.68 (dd, 2H, 6'-H,
J=8.1, 3.9Hz), 8.20 (s, 2H, 3 and 5-H), 8.56 (dd, 2H, 5-H, J=7.8, 2.1 Hz), 8.69 (d,
2H, 4-H, J=9.0Hz), 8.98 (d, 2H, 3'-H, J=8.4Hz), 9.15 (dd, 2H, 7-H, J=4.2, 2.1 Hz).
13C {'H} NMR (75 MHz, DMSO-dg): 6 =110.33, 120.16, 122.78, 123.14, 138.76, 139.04,
153.48, 154.10, 156.00, 158.30, 166.38. HRMS (EI): m/z [M]* caled for C,HsNsO
351.1120; found: 351.1110.
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Synthesis of [Ru(dnpOMe-x3N)(py)2(0H2)](PF6)2

[Ru(dmso),Cl,] (117 mg, 0.24 mmol) and 2¢ (86 mg, 0.24 mmol) were dissolved in ethyl-
ene glycol (6 mL) under N,, and the mixture was refluxed for 10 min. On cooling, Et;N
(0.2mL), EtOH (10mL), H,O (6 mL), and pyridine (0.6 mL, 7.5 mmol) were added to
the solution. The solution was refluxed for a further 26 h. The mixture was allowed to
cool, and the aqueous solution was extracted with three 80 mL portions of dichlorome-
thane. Blue powders precipitated when a saturated aqueous solution of KPF4 was added
to the mixture and allowed to cool overnight. The precipitate was collected by filtration,
washed with cold water and diethyl ether, and then dried in vacuo. The crude product
was purified by column chromatography on AlL,O; (eluent: acetone). Yield: 40 mg
(21%); Blue powder. "H NMR (300 MHz, acetone-dy): 6 =4.33 (s, 3H, ~-OCH3), 7.00 (t,
4H, J=7.2Hz), 7.57 (t, 2H, J=7.8Hz), 8.07 (dd, 2H, J=8.4, 4.5Hz), 8.16 (dd, 4H,
J=6.6, 1.5Hz), 8.83-8.86 (m, 4H), 8.97 (d, 2H, J=8.4Hz), 9.07 (d, 2H, J=8.7Hz),
9.23 (br, 1H, OH,), 9.48 (dd, 2H, J=4.2, 2.4Hz). MS (ESI): m/z 321.5 ([M]*"), 312.5
([IM-OH,]*"). Anal. Calcd. for C3,H,,N,0,F,P,Ru: C, 41.21; H, 2.92; N, 10.51. Found:
C, 40.99; H, 2.67; and N, 10.27.

Supporting information '"H and '>C NMR spectra and X-ray crystallographic data.
This material can be found via the “Supplementary Content” section of this
article’s webpage.
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