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Synthesis of peptidoglycan fragments from Enterococcus
faecalis with Fmoc-strategy for glycan elongation

Ning Wang,? Hiroki Hasegawa,”® Cheng-yuan Huang,® Koichi Fukase,*® and Yuka

Abstract: Peptidoglycan (PGN) is an essential structural component
of the bacterial cell wall conferring cell shape, which can be
recognized by host recognition proteins and receptors as well as
bacterial surface proteins. In this work, the PGN partial structures
from Enterococcus faecalis that contain tetrasaccharide and
octasaccharide with a unique heptapeptide were synthesized with
Fmoc-strategy for elongation of the glycan chains. Namely, 4-O-
Fmoc-protected disaccharide was utilized as the key intermediate in
this efficient synthetic pathway for preparing various PGN fragments.
Both tetrasaccharide and octasaccharide with heptapeptide were
successfully synthesized for the first time.

Bacterial cell wall peptidoglycan (PGN) is a huge polymer
composed of glycan chains and peptide chains that form three
dimensional mesh-like structures. Each glycan consists of
alternating N-acetylglucosamine (GIcNAc) and N-muramic acid
(MurNAc) linked with B(1—4) bond (Figure 1A). The glycans in
PGN are connected each other with peptide linkage at the
carboxylic acid of MurNAc. The glycan and the first three amino
acids connected to the glycan are quite common in bacteria.

LysM domain is a PGN recognition motif,!"! found in variqis
proteins from bacteriophages, bacteria, eukaryotes, plant#
S -

mammals.?® In Enterococcus faecalis, there are three
containing proteins, named AtlA, AtlB and AtIC."""" A
N-acetylglucosaminidase, whereas AtlB and AtIC
acetylmuramidase. Structure of a disaccharide fra
confirmed by AtIB digestion of E. faecalis PGN
followed by reduction with sodium borohydride.!"?
faecalis PGN has a unique heptapeptide structu
linkage; L-Ala-D-isoGIn-L-Lys(L-Ala-L-Ala)-D-Ala-D-
the branched L-Ala-L-Ala dipeptide attaches to the amin
of L-Lys in the typical L-Ala-D-isoGIn-L-Lys-D-Ala-D-
pentapeptide stem.!"

In the present study, the PGN fragm
synthesized in order to investigate
LysM domains of AtIB and AtIC witl
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Figure 1. A) Structure of peptidoglycan from Enterococcus faecalis, and the
structure of a disaccharide fragment obtained by AtIB digestion of E. faecalis
PGN followed by reduction with sodium borohydride. B) Synthetic targets 1
and 2 as the substrates of the AtIB.
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Scheme 1. Synthesis of octasaccharide with heptapeptide.
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also suitable for solid-phase
synthesis of PGN glycarss he other improvement of the
synthesis was the use of the N-phenyltrifluoroacetimidates as
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glycosyl dohors.""?" In our previous synthetic study for the
tetrasaccharide containing two MurNAc-GIcNAc repeating units,
we found that the typical trichloacetimidate donors were more
decomposed in glycosylation with low reactive hydroxy
s than the corresponding N-phenyltrifluoroacetimidates.®?"
improved stability of N-phenyltrifluoroacetimidates also
owed advantage to the glycosylation between large
etrasaccharide fragments in present study. In addition, the basic
condition for the preparation of the trichloacetimidate was not
tolerated by the glycosylation donor, leading to the removal of
Fmoc group. We thus used the N-phenyltrifluoroacetimidates as
the suitable glycosyl donors in this study.

The efficient construction of heptapeptide 4 was performed
using sequential coupling method as shown in Scheme 3. Since
the solubility of the protected linear pentapeptide in organic
solvents was very low, we designed the synthetic route where
the side-chain L-Ala-L-Ala was introduced to the tripeptide 16
which was prepared in lab (see Sl). Since the direct coupling of
Boc-L-Ala-L-Ala-OH and 16 did not proceed, the two branched
L-Ala moieties were attached to 16 step by step. Condensation
of Boc-L-Ala-OH with the tripeptide 16 was carried out by using
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride
(water-soluble carbodiimide; WSCD-HCI), 1-
hydroxybenzotriazole (HOBt) and TEA to give tetrapeptide 17.
The second L-Ala in the L-Lys branch was introduced by the
coupling with Z-L-Ala-OH to form pentapeptide 18. Fmoc group
of 18 was then removed by treatment with piperidine in THF and
the resulted pentapeptide amine was coupled with the dipeptide
(Boc-L-Ala-D-isoGIn-OH)  using  O-(7-azabenzotriazol-1-yl)-
N,N,N',N"-tetramethyluronium hexafluorophosphate (HATU) to
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give the protected heptapeptide 19 in 77% yield. Although the
solubility in organic solvents was low, purification of 19 with
silica-gel column chromatography was achieved by using CHCI;-
MeOH as an eluent. Cleavage of Boc group of 19 and treatment
with HCI in Et,O afforded hydrochloride salt of heptapeptide 4,
which was used for further condensation with glycan fragments
(Scheme 1). The fully deprotected heptapeptide 20 was also
obtained by catalytic hydrogenation of 4 with Pd(OH), and H; in
acetic acid.

Boc-L-Ala-OH
—_—
WSCD-HCI, TEA

Fmoc-L-Lys(NH,*HCI)-D-Ala-D-Ala-OBn

16 HOBt, DCM, 90%
Fmoc-L-Lys-D-Ala-D-Ala-OBn TFA Z-L-Ala-OH
! HCI*Et,0  WSCD-HCI, TEA
Boc-L-Ala 17 quant HOBt, DCM, 89%
Fmoc-L-Lvs-D-Ala-D-Ala-OBn piperidine Boc-L-Ala-D-isoGIn-OH
() 0,
2-L-Ala-L-Ala 18 THF, 91% HATU, DMF, TEA, 77%
Boc-L-Ala-D-isoGIn-L-Lys-D-Ala-D-Ala-OB _TFA
oc-L-Ala-D-1soGin-L- )I/S- -Ala-D-Ala- n HC|'Et20
Z-L-Ala-L-Ala 19 quant
HClL-Ala-D-isoGIn-L-Lys-D-Ala-D-Ala-0Bn | H2: Pd(OH),
| L ool
Z-L-Ala-L-Ala 4 AcOH, 76%
L-Ala-D-isoGIn-L-Lys-D-Ala-D-Ala
L-Ala-L-Ala 20
Scheme 3. Synthesis of heptapeptide.
Synthesis of the tetrasaccharide and

fragments with the heptapeptide was then carg
strategy, 3a and 6 served as the precursors
donors (3b and 7) as well as acceptors. Specifically, ci
Fmoc group in disaccharide 3a and tetrasaccharide 6
achieved by using 20% piperidine in THF to afford the
corresponding acceptors 5 and 8 in 80% or 84%
respectively. Removal of allyl glycosj
phenyltrifluoroacetimidation gave 3

(70%).1'%
uring the storage and reproducibility of
nt results showed the versatility of N-
r fragment condensation of longer
glycans.

After cleavage of the Troc group with Zn—Cu in AcOH and
subsequent acetylation with Ac,O, the cleavage of ethyl ester
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with LIOH was carried out to give 11. Introduction of
heptapeptide 4 to the liberated four carboxyl groups was also
the key reaction for the synthesig, We avoided the usage of
carbodiimides as condensation r since they sometimes
afford N-acylurea by-products. Hence,
by using O-(7-azabe
tetramethyluronium  hexaflgorophos
triethylamine (TEA) in D
peptide conjugate 12. Depro
protecting groups by i

acetic acid (AcOH
successfully gav
heptapeptide 2.
prepared from 11

lly afforded the glycan
of all of benzyl-type
is (Hz, 2 MPa) in
oxide on carbon

octasaccharide with
ccharde 13 was also
genolysis in 90% yield.

AcHN
(CH3)COR

(o]
AcHN | AcHN OPropyl

CH(CH3)COR
-L-Lys(L-Ala-L-Ala)-D-Ala-D-Ala

saccharide fragments 1 and 21.

thesized the analysis of the binding with LysM domain of
AtiB ( details of the synthesis are in the Supporting
ation, Scheme SI-2). The synthesized PGN fragments
ed for the elucidation of the interaction between PGN and
ains from E. faecalis.?? The results of the binding with
module was as flollows; the tetrasaccharide
Ac), 21 (Kp values 650 uM) showed higher
affinitiy tharf the (GIcNAc-MurNAc-dipeptide(L-Ala-D-isoGlIn)), or
(GlcNAc-MurNAc-heptapeptide), 1 (Kp values 1.8£0.5 mM or >1
respectively), while the binding affinity increased with the
of the glycan chains (Kp = 80 uM for (GIcNAc-MurNAc),

The tetr?haride fragments 1 and 21 (Figure 2) were also

conclusion, we have developed an Fmoc-strategy for the
nthesis of bacterial PGN with utilizing 4-O-Fmoc protected N-
henyltrifluoroacetimidates as the glycosyl donors. The PGN
fragments containing heptapeptide stem was synthesized for the
first time. The octasaccharide with heptapeptide was the largest
PGN fragment so far synthesized. The synthetic PGN fragments
have been used for the elucidation of the interaction between
PGN and LysM domains from E. faecalis®? and further analysis
will be reported in elsewhere.

Experimental Section

The synthetic procedures and characterization of the compounds are
described in the Supporting Information.
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FmocBOno O BnO Ho o
BnO C> HO if S %
TrocHN TrocHN ox AcNH / AcNH AcNH / AcNH OR'
CH CH3)COOEt CH(CH3)COR 3 CH(CH3)COR
Peptidoglycan fragments L Ala-D-isoGIn-L-| Lys D-Ala-D-Ala
fromEnterococcus faecalis L-Ala-L-, Ala

The peptidoglycan fragments, octasaccahride heptapeptide, from Enterococcus
faecalis were synthesized with using the Fmoc-strategy for long glycan elongation.
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