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Abstract: Amine-linked pseudodisaccharides based on vali-
enamine were synthesised by C–N bond-forming reactions between
valienol-derived C-1 electrophiles and carbohydrate nitrogen nu-
cleophiles. Palladium-catalysed coupling with trichloroacetimidate
leaving groups, Mitsunobu reactions with a nosylamide nucleo-
phile, and alkylation of amines by C-1 bromides were investigated.
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Valienamine is a polyhydroxylated unsaturated carbocy-
clic amine that bears a resemblance to a-D-glucose, shar-
ing its stereochemistry at C-1–C-4 (Figure 1).1,2 It occurs
in nature (in Actinobacteria) as a substructure of oligosac-
charide-like structures in which it is linked by N-substitu-
tion to other carbohydrates (e.g. in acarbose, amylostatin,
adiposins and salbostatin) or carbasugars (validomycins,
validoxylamines).3 These pseudooligosaccharides are in-
hibitors of various a-glucosidases, and can be more potent
and more specific inhibitors than valienamine itself.1,3 A
current theory on the biosynthesis of valienamine-based
pseudooligosaccharides is that the key coupling step oc-
curs between a carbohydrate amine and a C-5=C-5a unsat-
urated carbocyclic electrophile bearing a leaving group at
the allylic C-1,4 taking advantage of the allylic reactivity
enhancement.5

The synthesis of modified valienamine-based pseudodi-
saccharide or pseudooligosaccharide structures with dif-
ferent stereochemistry in the carbocycle and/or the
carbohydrate moieties, and/or with different linkage posi-
tions on the carbohydrate ring, so altering the binding
specificities of the pseudodisaccharides, has been de-
scribed in the literature.6 One of the most successful meth-
ods for coupling carbasugar and carbohydrate amine
components by C–N bond formation is the epoxide-open-
ing approach studied by Ogawa. 1,2-Epoxide-opening re-
actions have been used for the efficient synthesis of a-lyxo
(2-epi-valienamine) pseudodisaccharides;7 the corre-
sponding reaction for the synthesis of b-xylo (1-epi-valie-
namine) pseudodisaccharides shows potential, but has
hardly been investigated.8 For a-xylo (valienamine) link-
ages, an indirect route based on 1,5a-epoxide opening fol-

lowed by dehydration has been used.9 More recently,
Shing has developed a very efficient method based on pal-
ladium-catalysed coupling of C-1 chlorides, giving a more
direct route to a-xylo pseudodisaccharides.10

Figure 1 Valienamine and examples of natural valienamine pseu-
dodisaccharides

As part of our ongoing project towards the synthesis of bi-
ologically relevant hydrolytically stable oligosaccharide
analogues,11 we describe in this letter our results on the
coupling reactions of valienol-derived C-1 electrophiles
with carbohydrate amine derived nucleophiles for valie-
namine pseudodisaccharide synthesis. We evaluated the
potential of three types of C-1 electrophile in coupling re-
actions designed to give the C-1-substituted allylic
amines, i.e. the (epi)valienamine pseudodisaccharides, us-
ing nucleophiles based on 6-amino-6-deoxyglucose.

Mitsunobu coupling12 has been used for (protected) sec-
ondary amine synthesis using sulfonamides as an activat-
ing group. The 2-nitrosulfonyl (nosyl) group has the
advantage of being easily deprotected by thiol nucleo-
philes to reveal the parent secondary amine.13 We have
previously used this reaction for amine-linked pseudodi-
saccharide synthesis.14 The a 1 and b 2 carbasugar (va-
lienol) C-1 alcohols were available by a published route,15

and the nosylamide 4 was prepared by nosylation of
amine 3 as described previously.14 The a alcohol 1 cou-
pled cleanly with the nosylamide 4 under Mitsunobu con-
ditions to give the b-linked pseudodisaccharide 9
(Table 1, entry 1).16,17 However, under the same condi-
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tions, the b alcohol 2 failed to give a useful quantity of the
a-linked pseudodisaccharide, but rather the reaction re-
sulted in the formation of multiple by-products (Table 1,
entry 2).

Palladium-catalysed allylic amination has been used by
Shing for the synthesis of valienamine pseudodisaccha-
rides using valienol C-1 chlorides as electrophiles.10 He
found that C-1 leaving groups other than chloride (acetate,

1,2-epoxide and 1,2-cyclic-sulfite) failed to give coupling
products.18 We tested trichloroacetimidates, apparently a
novel leaving group for this reaction. The imidates 5 and
6 were prepared easily (Cl3CCN, DBU, CH2Cl2, r.t., 89–
94%),19 stereospecifically and in high yield from the cor-
responding alcohols. Under Shing’s conditions, the a-im-
idate 5 and the C-6 amine 3 did not give a clean reaction
(Table 1, entry 3). Two pseudodisaccharides were isolat-

Table 1 Coupling Reactionsa

Entry Electrophile Nucleophile Conditions Product Yieldb

1

1 4

A

9

9 (64%)

2

2

4 A –c –c

3

5
3

B
10 (21%)
+
11 (21%)

4

6

3 B

12

12 (85%)

5

7

3 C 10 + 12
10 (51%)
+
12 (14%)

6

8

3 C 10 10 (67%)

a Reaction condition: (A) PPh3, DIAD, THF, 0 °C → r.t. (B) Pd2(dba)3, TMPP, Et3N, MeCN, r.t. (C) i-Pr2EtN, MeCN, 50 °C.
b Isolated yields.
c No pseudodisaccharide was isolated.
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ed, the a-linked 10 and the SN2¢ product 11, whose newly
formed stereogenic centre at C-5 was not assigned. For-
mation of the b-linked pseudodisaccharide 12 was not de-
tected in this reaction. In contrast, the b-imidate 6 coupled
with the C-6 amine 3 under the same conditions to give the
b-linked pseudodisaccharide 12 in high yield as a single
diastereomer (Table 1, entry 4).17,20 Hence, these reac-
tions apparently go by the usual double displacement
mechanism5 to give overall retention of configuration.

Direct displacement of C-1 halides by amines in the pres-
ence of stoichiometric base was among the first methods
published (in the early 1980s) for valienamine-based
pseudodisaccharide synthesis,21 but this method has not
been used since. We synthesised the C-1 bromides 7 and
8 by an Appel reaction22 from the b-alcohol 2 (PPh3, CBr4,
CH2Cl2, 0 °C → r.t., 45% total; separable by chromatog-
raphy). Heating the b-bromide 8 with the amine 3 in the
presence of i-Pr2EtN gave the a coupling product 10 in
67% yield, with none of the b diastereomer detected
(Table 1, entry 6).17,23 However, the a-bromide 7 also cou-
pled with the amine 3 to give the same a-linked pseudo-
disaccharide 10 as the major product (51%), along with a
minor quantity (14%) of the product with inversion of
configuration 12 (Table 1, entry 5). Kuzuhara has
commented21c that the C-1 configurational instability of a
related valienol C-1 bromide could be the cause of a non-
stereospecific coupling reaction. We confirmed that while
the bromides 7 and 8 are stable enough to be separated by
column chromatography, they do interconvert in CH2Cl2

solution when treated with n-Bu4NBr as a bromide source.
Under these conditions each of the bromides 7 and 8
equilibrated to give the same thermodynamic mixture, 7/
8 ca 2:1. It seems that the b-bromide 8 is relatively reac-
tive towards displacement by the amine nucleophile 3
(with inversion), more so than the a-bromide 7,24 for
which C-1 epimerisation (by SN2 displacement by bro-
mide ion) to the b diastereomer 8 and subsequent coupling
with the amine 3 competes effectively.

The methods described here gave good results in some
cases for the coupling reactions.25 The palladium-cataly-
sed method and the Mitsunobu method give superior re-
sults for the synthesis of the b-(1,2-trans)linkage; in fact,
these methods probably represent the state of the art for
the formation of such linkages by carbasugar-electro-
phile–carbohydrate-nucleophile couplings. Direct nucleo-
philic substitution of the C-1 bromide gave superior
results for the synthesis of the a-(1,2-cis)linkage. Given
the recognised relevance of valienamine
pseudodisaccharides26 and current interest in the synthesis
of analogues with new application areas,27 we hope that
the findings described here can be useful. More generally,
the trichloroacetimidate appears to be a functional leaving
group in palladium-catalysed allylic amination reactions,
having the advantage of a high-yielding and stereospecific
formation.
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