

ABIETANES AND KAURANES FROM LEAVES OF CRYPTOMERIA JAPONICA

WEN-CHIUNG SU, JIM-MIN FANG and YU-SHIA CHENG*

Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617, Republic of China

(Received 10 August 1993)

Key Word Index—Cryptomeria japonica; Taxodiaceae; leaves; diterpenes; abietane-type; kaurane-type.

Abstract — Totarol, 14 abietanes, two secoabietanes and four *ent*-kaurane derivatives were isolated from the leaves of *Cryptomeria japonica*. The new compounds included 6,12-dihydroxyabieta-5,8,11,13-tetraen-7-one, 6β -hydroxyferrug-inol, 7α , 8α -epoxy- 6α -hydroxyabieta-9(11),13-dien-12-one, (5R,10S)-12-methoxyabieta-6,8,11,13-tetraene, *ent*-kaur-15-en-17-al and (+)-16-acetylkaurane-16,17-diol. Their structures were determined by chemical and spectral methods.

INTRODUCTION

The Japanese cedar, Cryptomeria japonica D. Don., is a widely distributed conifer called 'sugi' in Japanese [1]. Its constituents have been extensively studied [2–12]. The leaves are reported to contain diterpenes ferruginol (1), sugiol (5), xanthoperol, kaurane, kaurene and phyllocladene. We report herein novel diterpenes of abietane- and kaurene-types (11–14, 20 and 21) isolated from the ethyl acetate-soluble part of the leaves of C. japonica.

RESULTS AND DISCUSSION

Ten known abietane-type diterpenes, ferruginol (1) [13, 14], 6,7-dehydroferruginol (2) [13], 6,7-dehydroferruginol methyl ether (3) [13], 7-dehydroabietanone (4) [15], sugiol (5) [14, 16], 6α-hydroxysugiol (6) [14], hinokiol (7) [17], 11-hydroxysugiol (8) [18], cryptojaponol (9) [19] and 5-epixanthoperol (10) [20], a secoabietane dialdehyde (15), 12-hydroxy-6,7-secoabieta-8,11,13-triene-6,7dial [21] and its methyl ether (16) [21], as well as totarol (17) [22], were identified by comparison of their physical and spectral data (mp, $[\alpha]$, mass, IR, ¹H and ¹³C NMR) with the literature. The methyl ethers 3 and 16 are reported for the first time from a natural source, although they have been prepared by methylation of 2 and 15, respectively [21]. The C-5 chirality of 16 was confirmed by NOE of the aldehyde signal at δ 9.86 upon irradiation of Me-10 at δ 1.49.

The molecular formula $C_{20}H_{26}O_3$ of 11 was deduced from its exact mass $[M]^+$ at m/z 314.188. The IR absorption at 1675 cm⁻¹ was attributable to a conjugated carbonyl group. The ¹H NMR spectrum (Table 1) showed no olefinic proton, whereas the ¹³C NMR spectrum (Table 2) exhibited two olefinic carbons at δ 141.1 and 143.7. An α -hydroxy- α , β -unsaturated ketone was inferred from these spectral data. An aromatic proton H-14 occurring at a low field δ 7.99 (s) indicated 11 is an abietane-type diterpene having the carbonyl group at C-7. The positions of C-5 at δ 141.1 and C-7 at δ 179.7 were deduced from a HMBC spectrum by correlation with C-18 and C-14, respectively. Compound 11 was assigned as 6,12-dihydroxyabieta-5,8,11,13-tetraen-7-one, an enol tautomer of 5-epixanthoperol (10). It was found that 10 yielded *ca* 50% of 11 on standing in CDCl₃ for two months.

Compound 12 ($C_{20}H_{30}O_2$) showed the exact mass at m/z 302.224. The structure was determined to be 6β -hydroxyferruginol by analysis of its NMR spectra (Tables 1 and 2). The compound has an equatorial H- 6α , which exhibited small coupling constants with C-5 and C-7 protons ($J_{5,6} = 2$ Hz, $J_{6,7\beta} = 6$ Hz and $J_{6,7\alpha} = 3$ Hz).

Compound 13 ($C_{20}H_{28}O_3$) showed the exact mass $[M]^+$ at m/z 316.203. The ¹³C NMR spectrum (Table 2) showed a signal at δ 187.1 attributable to a carbonyl group and resonances at δ 126.2, 138.6, 149.5 and 162.5 attributable to two C=C double bonds. Taking these data and two alkenyl proton resonances at $\delta 6.03$ (s) and 6.30 (s), we considered 13 contained a cyclohexa-2,5-dienone moiety. Further evidence from the ¹H-¹HCOSY, ¹³C-¹HCOSY, HMBC and NOE experiments support the structural assignment of 13 as 7α,8α-epoxy-6α-hydroxyabieta-9(11),13-dien-12-one. The axial H-6 β (at δ 4.40) appeared to couple with the axial H- 5α (J = 9 Hz), but not with the equatorial H-7 β (at δ 3.72). Irradiation of H-7 β or Me-10 caused 7.9 or 5.6% NOE of H-6 β , respectively, supporting the assigned stereochemistry. The HMBC spectrum revealed that H-11 at $\delta 6.30$ was correlated with C-8, C-10 and C-13, whereas H-14 at $\delta 6.03$ was correlated with C-9 and C-12. Compound 13

^{*}Author to whom correspondence should be addressed.

R 2 H 3 Me

 \mathbb{R}^2 R1 \mathbb{R}^3 R⁴ 4 H Н Н Н 5 H Н Н OH 6 H он н OH 8 H Н OH OH 9 H H OH OMe

11

10

14

Ē

17

R 15 H

was subjected to acid-catalysed isomerization (0.1 M HCl, MeOH, CH₂Cl₂, 25°C, 16 hr) to give a main product 6, presumably via opening of the epoxy ring to form an enol intermediate as shown in Scheme 1.

By analysis of the ¹H NMR spectrum, 14 ($C_{21}H_{30}O$) was assigned as (5R, 10S)-12-methoxyabieta-6,8,11,13tetraene, the C-5 epimer of 3. The coupling constant of 6 Hz between the equatorial H-5 β and the vinyl H-6 in 14 is larger than the value of 2.5 Hz between the axial H-5 α and H-6 in 3. On the other hand, 3 showed a W-shape coupling between H-5 α and H-7 (J=3 Hz), whereas 14 lacked this phenomenon. The 5,10-cis configuration was concluded by observing a 13.5% NOE of H-5 upon irradiation of the Me-10 group at δ 1.07. The H-18

(î
Η
s ir
lue
va
L, J
bpm
Е.
nes
val
8
ion
lut
So
ວົ
A
s (C
pui
bor
E E
ŭ >
nev
с јо
ıta
da
tral
Sec
د s]
M
Z
Н
ble
Та

11	12	13	14*	20	21†
	1.65 (d, J = 2)	1.21 $(d, J = 9)$	1.77 (d, J = 6)	$0.80 \ (dd, J = 12, 2)$	$0.73 \ (dd, J = 12, 2)$
	$4.29 \ (ddd, J = 2, 3, 6)$	4.40 (d, J = 9)	5.82 (dd, J = 10, 6)		
	$2.68 \ (dd, J = 16, 3),$	3.72 (s)	6.44 (d, J = 10)		
	$3.26 \ (dd, J = 16, 6)$				
				$1.06 \ (bd, J = 12)$	$1.08 \ (bd, J = 12)$
6.82 (s)	6.59 (s)	6.30 (s)	6.73 (s)		
				$3.01 \ (bd, J=5)$	3.15 (bs)
(s) 66.2	6.89 (s)	6.03 (s)	6.81 (s)	1.36 (dd, J = 10.5, 5),	$0.43 \ (dd, J = 12, 5),$
	2	,		2.17 (dd, J = 10.5, 1)	$1.80 \ (dd, J = 12, 2)$
3.16 (sept, J = 7)	3.11 (sept, J = 7)	2.96 (sept, J = 7)	3.22 (sept, J = 7)	6.55 (s)	$2.46 \ (dd, J = 9, 2)$
1.25 (d, J = 7)	1.21 (d, J = 7)	1.06 (d, J = 7)	1.17 (d, J = 7)	x	
1.28 (d, J = 7)	1.23 $(d, J = 7)$	1.08 (d, J = 7)	1.17 (d, J = 7)	9.70 (s)	4.14 (dd, J = 19, 9),
	~			;	$4.92 \ (dd, J = 19, 2)$
1.41 (s)	1.07 (s)	1.07 (s)	0.34 (s)	0.85 (s)	0.82 (s)
1.41 (s)	1.08 (s)	1.07 (s)	0.87 (s)	0.79 (s)	0.75 (s)
1.46 (s)	1.14 (s)	1.19 (s)	1.07 (s)	1.04 (s)	0.94 (s)

13

Scheme 1.

Scheme 2.

resonance occurred at a remarkably high field, $\delta 0.34$, due to the shielding effect of the B-ring.

The known compounds ent-17-norkauran-16-one (18) [23] and ent-kaur-15-en-17-ol (19) [24] are laevorotatory. Compound 18 showed a carbon resonance at δ 222.8 (C-16) attributable to a strained ketone. The new diterpene aldehyde 20 (C₂₀H₃₀O), ent-kaur-15-en-17-al, was correlated by oxidation of the alcohol 19 with manganese dioxide (CH₂Cl₂, 20°, 16 hr). When 20 was subjected to oxidation with meta-chloroperbenzoic acid (CH₂Cl₂, 0°, 1 hr) followed by treatment with aqueous sodium bicarbonate, the ketone 18 and an epoxyformate A were obtained (Scheme 2). The uncommon structure of 21 ($C_{22}H_{36}O_3$), $[\alpha]_D^{25} + 62.5^\circ$, was assigned as (+)-16acetylkaurane-16,17-diol. The acetyl group showed an IR absorption at 1700 cm⁻¹ and a singlet at $\delta 2.52$ (s) in the ¹H NMR spectrum. Assignments of proton and carbon resonances in 21 were assisted by ¹³C-¹H COSY and HMBC spectra. The H-15 and two geminal protons at C-17 appeared as an ABX pattern, at $\delta 2.46$ (dd, J = 9, 2 Hz), 4.14 (dd, J = 19, 9 Hz) and 4.92 (dd, J = 19, 2 Hz). The stereochemistry was determined by NOE experiments, i.e. irradiation of the acetyl group at $\delta 2.52$ caused a 7.2% enhancement of H-13 resonance at $\delta 3.15$ and irradiation of H-9 at $\delta 1.08$ caused a 23.8% enhancement of H-15 resonance. Since 18-21 were found in the same plant, the

	•• *							
С	11	12	13	14*	20	21†		
1	33.6	39.0	38.1	35.5	40.4	40.4		
2	17.6	19.0	18.1	19.3	18.5	18.5		
3	37.9	42.7	43.2	42.1	42.0	41.8		
4	35.9	34.1	34.7	35.1	33.3	33.1		
5	141.1	58.9	58.2	52.5	55.9	55.6		
6	143.7	68.6	66.4	125.9	18.7	19.8		
7	179.7	38.9	70.9	128.1	38.2	37.9		
8	120.9	123.5	56.2	127.4	51.0	46.0		
9	154.9	148.4	162.5	141.6	46.8	56.7		
10	40.3	38.1	38.0	37.0	39.8	39.5		
11	111.4	109.8	126.2	105.7	18.4	17.1		
12	157.7	151.3	187.1	156.4	25.3	26.4		
13	133.8	131.3	149.5	133.6	38.0	42.1		
14	125.6	126.6	138.6	124.7	43.0	36.1		
15	26.9	26.8	26.3	26.5	162.3	45.0		
16	22.3	22.2	21.3	22.7	148.5	117.7		
17	22.5	22.4	21.3	22.8	189.5	79 .7		
18	28.2	34.6	35.3	20.6	33.5	33.5		
19	27.5	22.7	22.4	31.3	21.5	21.5		
20	35.1	22.7	21.6	33.4	17.7	17.4		

Table 2. ¹³C NMR spectral data of new compounds (CDCl₃ solution, δ values in ppm)*

*The methoxy group in 14 appeared at δ 55.7.

†The acetyl group in 21 appeared at δ 28.3 and 201.8

dextrorotatory compound 21 was still considered an *ent*kaurane derivative. However, it is unclear whether 21 is a natural product or an artefact.

In summary, we isolated totarol, 14 abietanes, two secoabietanes and four *ent*-kaurane derivatives from the leaves of C. *japonica*. Among the new compounds, the enol 11, epoxydienone 13, 5,10-cis abietane 14 and kauranediol had an additional acetyl group at C-16 worth special note.

EXPERIMENTAL

General. Merck silica gel 60F sheets were used for analytical TLC. HPLC was carried out on a Hibar Lichrosorb Si 60 (7 or $10 \,\mu$ m) column ($25 \times 1 \,$ cm).

Plant material. The plant used in this study is introduced from Japan and cultivated in suburban Taipei. A voucher specimen has been deposited in our laboratory. The leaves (1.4 kg) of *C. japonica* D. Don. were exhaustively extracted with Me₂CO. The Me₂CO extract was passed through a pad of charcoal, concd and re-extracted with EtOAc. The EtOAc-soluble portion (45 g) was chromatographed on a silica gel column by elution with gradients of hexane and EtOAc. The appropriate frs were combined and purified by HPLC to give 14 (10 mg), 3 (10 mg), 4(5 mg), 17 (7 mg), 1 (35 mg), 20 (16 mg), 2 (5 mg), 16 (16 mg), 21 (11 mg), 12 (5 mg), 15 (18 mg), 13 (20 mg), 10 (5 mg), 11 (15 mg), 6 (12 mg), 9 (16 mg), 18 (6 mg), 19 (27 mg), 5 (27 mg), 8 (10 mg) and 7 (22 mg) in the order of increasing polarity.

Compounds 1-10, 15-19. Ferruginol (1): oily solid. $[\alpha]_D^{20} + 39.5^\circ$ (CHCl₃; c1.3). 6,7-Dehydroferruginol (2): oil. $[\alpha]_D^{25} - 62^\circ$ (CHCl₃; c0.5). 6,7-Dehydroferruginol

methyl ether (3): oil. $[\alpha]_{D}^{25} - 87^{\circ}$ (CHCl₃; c1). ¹³C NMR (CDCl₃): δ19.1 (C-2), 20.1 (C-18), 22.5 (C-16, 17), 22.9 (C-19), 26.4 (C-15), 32.6 (C-20), 32.9 (C-4), 36.1 (C-1), 38.0 (C-10), 41.1 (C-3), 51.1 (C-5), 55.6 (MeO), 104.8 (C-11), 124.4 (C-14), 125.8 (C-8), 127.3 (C-6), 127.4 (C-7), 133.8 (C-13), 147.0 (C-9), 156.4 (C-12), 7-Dehydroabietanone (4): solid. Mp 85-87°. $[\alpha]_{D}^{30} + 13.5^{\circ}$ (CHCl_t; c0.5). ¹³C NMR (CDCl₃): δ18.8 (C-2), 21.2 (C-19), 23.3 (C-16), 23.7 (C-17), 23.8 (C-20), 32.5 (C-18), 33.2 (C-4), 33.5 (C-15), 36.2 (C-6), 37.8 (C-10), 37.9 (C-1), 41.3 (C-3), 49.3 (C-5), 123.6 (C-12), 124.8 (C-11), 130.7 (C-8), 132.4 (C-14), 146.5 (C-13), 153.8 (C-9), 199.9 (C-7). Sugiol (5): solid. Mp 292-293°. [α]³⁰ +26.0° (EtOH; c 1.5). 6 α -Hydroxysugiol (6): solid. Mp 207-208°. $[\alpha]_{D}^{25} + 35.3^{\circ}$ (CHCl₃; c 0.5). ¹³C NMR (CDCl₃): δ18.8 (C-2), 21.8 (C-19), 22.2 (C-16), 22.4 (C-17), 24.7 (C-20), 26.8 (C-15), 34.1 (C-4), 35.8 (C-18), 38.8 (C-1), 39.2 (C-10), 42.9 (C-3), 55.9 (C-5), 73.9 (C-6), 110.2 (C-11), 121.8 (C-8), 127.2 (C-14), 133.4 (C-13), 156.5 (C-9), 158.9 (C-12), 199.7 (C-7). Hinokiol (7): solid. Mp 233-235°. $[\alpha]_{\rm p}^{30} + 74^{\circ}$ (EtOH; c 1.1). ¹³C NMR (acetone- d_6): δ 15.9 (C-19), 19.7 (C-6), 22.7 (C-16), 22.9 (C-17), 25.1 (C-20), 27.2 (C-15), 28.5 (C-18), 28.8 (C-2), 30.7 (C-7), 37.8 (C-1), 37.9 (C-10), 39.5 (C-4), 50.8 (C-5), 78.3 (C-3), 111.3 (C-11), 126.1 (C-8), 126.9 (C-14), 132.6 (C-13), 148.3 (C-9), 153.0 (C-12), 11-Hydroxysugiol (8): solid. Mp 192–193°. $[\alpha]_{D}^{26} + 21^{\circ}$ (CHCl₃; c1). ¹³CNMR (CDCl₃): δ18.6 (C-20), 19.0 (C-2), 21.5 (C-19), 22.3 (C-16), 22.5 (C-17), 27.2 (C-15), 33.1 (C-18), 33.4 (C-4), 35.5 (C-1), 36.7 (C-6), 40.1 (C-10), 41.0 (C-3), 50.2 (C-5), 118.0 (C-14), 125.2 (C-8), 131.9 (C-13), 138.7 (C-9), 141.2 (C-11), 146.5 (C-12), 199.5 (C-7). Cryptojaponol (9): solid. Mp 203-204°. $[\alpha]_{D}^{25} + 25^{\circ}$ (CHCl₃; c 1.6). ¹³C NMR (CDCl₃): δ18.0 (C-2), 18.9 (C-20), 21.5 (C-19), 23.4 (C-16), 23.5 (C-17), 26.7 (C-15), 33.1 (C-18), 33.5 (C-4), 35.6 (C-6), 36.3 (C-1), 40.2 (C-10), 41.3 (C-3), 50.3 (C-5), 61.8 (MeO), 117.3 (C-14), 128.8 (C-8), 138.1 (C-11), 139.1 (C-13), 146.5 (C-9), 149.1 (C-12), 199.1 (C-7). 5-Epixanthoperol (10): solid. Mp 205–207°. $[\alpha]_{D}^{25} + 25^{\circ}$ (CHCl₃; c 0.5). 12-Hydroxy-6,7-secoabieta-8,11,13-triene-6,7-dial (15): solid. Mp 191–192°. $[\alpha]_D^{30} + 20^\circ$ (MeOH₃; c1.2). 12-Methoxy-6,7-secoabieta-8,11,13-triene-6,7-dial (16); oil. $[\alpha]_{D}^{25} + 51^{\circ}$ (CHCl₃; c 1). ¹³C NMR (CDCl₃): δ 19.5 (C-2), 22.3 (C-16, 17, 19), 23.4 (C-20), 26.5 (C-15), 30.6 (C-18), 32.2 (C-1), 33.6 (C-4), 37.6 (C-3), 40.9 (C-10), 55.4 (MeO), 64.9 (C-5), 109.2 (C-11), 127.6 (C-8), 133.2 (C-14), 135.0 (C-13), 151.0 (C-9), 160.7 (C-12), 191.4 (C-7), 205.6 (C-6). Torarol (17): solid. Mp 125–126°. $[\alpha]_{D}^{30} + 40.2^{\circ}$ (EtOH₃; c0.5). ent-17-Norkauran-16-one (18): solid. Mp 109-110°, $[\alpha]_{\rm P}^{20} - 20^{\circ}$ (CHCl₃; c 0.5). ¹³C NMR (CDCl₃): δ 18.0 (C-20), 18.5 (C-11), 18.6 (C-2), 19.3 (C-6), 21.6 (C-19), 29.7 (C-12), 33.3 (C-4), 33.6 (C-18), 37.5 (C-7), 39.5 (C-10), 40.4 (C-1), 41.0 (C-14), 41.9 (C-3), 42.5 (C-8), 48.0 (C-9), 55.0 (C-13), 55.2 (C-15), 56.1 (C-5), 222.8 (C-16). ent-Kaur-15-en-17-ol (19): solid. Mp 85–86°. $[\alpha]_{\rm D}^{25}$ –33° (CHCl₃; c1). ¹³C NMR (CDCl₃): δ17.6 (C-20), 18.6 (C-2, 11), 19.2 (C-6), 21.6 (C-19), 25.7 (C-12), 33.3 (C-4), 33.5 (C-18), 39.3 (C-7), 39.5 (C-10), 40.5 (C-1), 41.2 (C-13), 42.1 (C-3), 43.9 (C-14), 48.4 (C-9), 49.0 (C-8), 56.0 (C-5), 61.3 (C-17), 136.1 (C-15), 146.0 (C-16).

6,12-Dihydroxyabieta-5,8,11,13-tetraen-7-one (11). Needles from CHCl₃. Mp 189–190°. $[\alpha]_D^{26}$ – 8.5° (CHCl₃; c 0.9). TLC (20% EtOAc in hexane) R_f 0.55. IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3326, 1675, 1601, 1502, 1380. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (ε): 335 (7900), 309 (6140), 281 (7480), 261 (3510), 250 (6270), 236 (4540). EIMS (70 eV) m/z rel. int.: 314 [M]⁺ (100), 299 (16), 271 (42), 245 (75), 229 (30), 215 (26), 203 (20). HRMS for $C_{20}H_{26}O_3$ requires: 314.1883. Found: 314.1881.

6β-Hydroxyferruginol (12). Oily solid. $[\alpha]_D^{20} + 9.4^{\circ}$ (CHCl₃; c 0.5). TLC (CHCl₃-hexane-EtOAc, 10:9:1) R_f 0.33. IR v_{max}^{Neat} cm⁻¹: 3378, 1613, 1499, 1373. EIMS (70 eV) *m/z* rel. int.: 302 [M]⁺ (100), 287 (24), 269 (81), 227 (53), 199 (31), 157 (27), 149 (19). HRMS for C₂₀H₃₀O₂ requires: 302.2247. Found: 302.2242.

7α,8α-Epoxy-6α-hydroxyabieta-9(11),13-dien-12-one (13). Oil. $[α]_{2^{5}}^{2^{5}}-42.5^{\circ}$ (CHCl₃; c 2). TLC (13% EtOAc in hexane) R_{f} 0.32. IR ν_{\max}^{Neat} cm⁻¹: 3411, 1649, 1614, 1379, 1232, 921. UV $\lambda_{\max}^{\text{CHCl}_{3}}$ nm (ε): 261 (9300), 250 (7900). EIMS (70 eV) m/z rel. int.: 316 [M]⁺ (63), 301 (40), 287 (80), 273 (20), 231 (55), 203 (100), 163 (52). HRMS for C₂₀H₂₈O₃ requires: 316.2039. Found: 316.2031.

(5R,10S)-12-*Methoxyabieta*-6,8,11,13-*tetraene* (14). Oil. $[\alpha]_{2^8}^{2^8}-266^{\circ}$ (CHCl₃; c1). TLC (hexane) R_f 0.56. IR $\nu_{\text{max}}^{\text{Neat}}$ cm⁻¹: 3022, 1601, 1493, 1380, 1362, 1246. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (ε): 281 (8900), 245 (1900), 222 (25600). EIMS (70 eV) m/z rel. int.: 298 [M]⁺ (49), 283 (15), 241 (9), 227 (22), 216 (100), 199 (35), 173 (38). HRMS for C₂₁H₃₀O requires: 298.2298. Found: 298.2296.

ent-Kaur-15-en-17-al (20). Crystals from EtOAchexane (6:94). Mp 115–116°. $[\alpha]_D^{25}-99^\circ$ (CHCl₃; c1). TLC (6% EtOAc in hexane) R_f 0.45. IR v_{max}^{KBr} cm⁻¹: 2795, 1660, 1596. UV λ_{max}^{MeOH} nm (ϵ): 248 (7700), 217 (940). EIMS (70 eV) m/z rel. int.: 286 [M]⁺ (80), 271 (65), 253 (22), 175 (37), 123 (71), 109 (45), 91 (100). HRMS for C₂₀H₃₀O requires: 286.2298. Found: 286.2304. A soln of 20 (25 mg, obtained from oxidation of 19 with MnO₂) in CH₂Cl₂ (5 cm³) was stirred with m-CPBA (1.2 equiv) at 0° for 1 hr and treated subsequently with 0.5 M aq. NaHCO₃ (3 ml) for 1 hr. The organic phase was concd and sepd by HPLC with elution of EtOAc-hexane (4.5:95.5) to give the ketone 18 (2.5 mg) and the epoxyformate A (5 mg) accompanied by recovery of 20 (15 mg). A: solid. Mp 78–79°. $[\alpha]_D^{25} - 5^\circ$ (CHCl₃; c 0.5). TLC (4.5% EtOAc in hexane) R_f 0.42. IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1745, 1182, 971. EIMS (70 eV) m/z rel. int.: 318 [M]⁺ (5), 303 (9), 290 (70), 275 (40), 257 (25), 247 (30), 229 (25), 123 (100). ¹H NMR (CDCl₃): $\delta 0.76$ (*dd*, *J* = 12, 2 Hz, H-5), 0.78 (s, H-19), 0.85 (s, H-18), 0.99 (s, H-20), 1.08 (bd, J = 12 Hz, H-9), 2.75 (bd, J = 5 Hz, H-13), 3.20 (s, H-15), 8.10 (s, HCO₂). ¹³C NMR (CDCl₃): δ17.5 (C-20), 18.1 (C-11), 18.4 (C-2, 6), 21.5 (C-19), 25.6 (C-12), 32.8 (C-7), 33.3 (C-4), 33.5 (C-18), 34.9 (C-14), 37.1 (C-13), 39.1 (C-10), 40.4 (C-1), 41.9 (C-3), 42.5 (C-8), 50.4 (C-9), 55.9 (C-5), 65.3 (C-15), 86.6 (C-16), 159.5 (HCO₂). HRMS for C₂₀H₃₀O₃ requires: 318.2196. Found: 318.2190.

(+)-16-Acetylkaurane-16,17-diol (21). Crystals from hexane. Mp 170–171°. $[\alpha]_D^{25}$ +62.5° (CHCl₃; c 0.9). TLC (10% EtOAc in hexane) R_f 0.40. IR v_{max}^{KBr} cm⁻¹: 3450, 3380, 1700. EIMS (70 eV) m/z rel. int.: 348 [M]⁺ (2), 330 (8), 314 (30), 299 (40), 271 (28), 217 (25), 177 (57), 163 (100). HRMS for $C_{22}H_{36}O_3$ requires: 348.2666. Found: 348.2658.

Acknowledgement—We are grateful to the National Science Council for financial support.

REFERENCES

- Gan, W. S. (1958) Manual of Medicinal Plants in Taiwan Vol. 1, pp. 54–55. Nat. Res. Inst. Chin. Med., Taipei.
- Miura, H., Kawano, N. and Waiss, Jr A. C. (1966) Chem. Pharm. Bull. 14, 1404.
- Appleton, R. A., McCrindle, R. and Overton, K. H. (1968) Phytochemistry 7, 135.
- Appleton, R. A., McCrindle, R. and Overton, K. H. (1970) Phytochemistry 9, 581.
- MacMillan, J. and Walker, E. R. H. (1972) J. Chem. Soc. Perkin Trans. I 981.
- Yasue, M., Ogiyama, K. and Saitoh, M. (1976) J. Jap. Forest Soc. 58, 285.
- Yasue, M., Ogiyama, K., Ebishigawa, S., Kondo, K. and Nishina, K. (1978) J. Jap. Forest Soc. 60, 345.
- Shieh, B., Iizuka, Y. and Matsubara, Y. (1981) Agric. Biol. Chem. 45, 1493.
- Yatagai, M. and Sato, T. (1986) Biochem. Syst. Ecol. 14, 469.
- 10. Matsui, T., Ohishi, H. and Nakayama, N. (1989) Kogakubu Kenkyu Hokoku 35, 157.
- 11. Vernin, G., Faure, R. and Pieribattesti, J. C. (1990) J. Essent. Oil Res. 2, 211.
- 12. Su, W.-C., Fang, J.-M. and Cheng, Y.-S. (1993) Phytochemistry 34, 779.
- 13. Bredenberg, J. B-Son (1957) Acta Chem. Scnad. 11, 932.
- Lin, Y.-T., Kuo, Y.-H. and Chang, B.-H. (1975)
 J. Chin. Chem. Soc. 22, 331.
- 15. Defaye-Duchateau, G. (1964) Bull. Soc. Chim. Fr. 1469.
- Kupchan, S. M., Karim, A. and Marcks, C. (1969) J. Org. Chem. 34, 3912.
- Fang, J.-M., Sheu, C.-M. and Cheng, Y.-S. (1986) J. Chin. Chem. Soc. 33, 245.
- Hueso-Rodriguez, J. A., Jimeno, M. L., Rodriguez, B., Savona, G. and Bruno, M. (1983) *Phytochemistry* 22, 2005.
- Matsumoto, T., Ohsuga, Y., Harada, S. and Fukui, K. (1977) Bull. Chem. Soc. Jpn. 50, 266.
- Bredenberg, J. B-Son (1960) Acta Chem. Scand. 14, 385.
- 21. Fang, J.-M., Jan, S.-T. and Cheng, Y.-S. (1986) J. Chem. Research (S) 350.
- Ying, B. P. and Kubo, I. (1991) Phytochemistry 30, 1951.
- Cross, B. E., Hanson, J. R., Cambie, R. C., Briggs, L. H. and Rutledge, P. S. (1963) Proc. Chem. Soc. 17.
- 24. Bohlmann, F., Kramp, W., Jakupovic, J., Robinson, H. and King, R. M. (1982) *Phytochemistry* 21, 399.