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Functionalized-c-lactones are present in the structures of a
great number of natural and unnatural products that often exhibit
interesting biological activity such as fungicidal, antitumor, and
antimicrobial properties.1 They also serve as useful intermediates
for organic synthesis.2 Consequently, a variety of methods for their
synthesis have been developed.3

We have previously reported the preparation of functionalized
cyclohexanones, mediated by lithium iodide, from oxaspirohep-
tanes of general structure 1.4 During this study, we unexpectedly
found that reaction of the stereodefined epoxy-diester 1a with
excess Me3SiI (generated in situ from Me3SiCl and NaI) led
exclusively to the formation of the [3.3.0]-bicyclic c-lactone 2a
having three consecutive stereochemically defined stereocenters
(Scheme 1). This reaction may be explained by a stereoselective
intramolecular trans addition of an ester carbonyl to the Lewis
acid-complexed epoxide followed by dealkylation of the oxonium
intermediate5 instead of the ring enlargement reaction observed
with LiI.

Several procedures have been reported for the Lewis acid- med-
iated cyclization of epoxyesters to c-hydroxy lactones, especially
zinc chloride to epoxy t-butylesters6 and more recently tin(IV) tri-
flimidate.7 Protic acid mediated conditions (aqueous H2SO4, CSA or
PTSA) were also used for this transformation.8 On the other hand,
only few methods are described in the literature for the synthesis
of fused bicyclic c-lactones 3 and they generally involve the radi-
cal- or halo-cyclization of linear 4-pentenylmalonates (Scheme
ll rights reserved.
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2).9 However, to our knowledge, no preparation of such com-
pounds having a hydroxy group at the bridgehead position (2)
has been reported.

Herein, we wish to report the results obtained in the develo
pment of this dealkylative cyclization reaction allowing the stereo-
controlled preparation of densely functionalized fused d-hydroxy-
c-lactones 2.

The aryl-substituted epoxides 1a–j used in this study as well as
the methyl analog 1l were prepared by epoxidation of the corre-
sponding stereodefined arylidene- and alkylidene-cyclopentanes
reaction
3

Scheme 2. Strategy previously used to prepare fused bicyclic c-lactones.

http://dx.doi.org/10.1016/j.tetlet.2011.06.106
mailto:balme@univ-lyon1.fr
http://dx.doi.org/10.1016/j.tetlet.2011.06.106
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet


Table 1
Two-step synthesis of fused d-hydroxy-c-lactonesa
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Entry Starting alkene Epoxidationb Lactonizatione
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Yield (%)
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Table 1 (continued)

Entry Starting alkene Epoxidationb Lactonizatione

Conditions A or B
Yield (%)

Epoxides (1)c (ratio) TMSI; PTSA
Yield (%)

Lactones (2) and other products (ratio)c
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a Reactions performed on 1 mmol. Yield of the isolated product after flash chromatography.
b Reagents and conditions: Condition A: 4, MCPBA (3 equiv), in CH2Cl2 (0.1 M), rt. Condition B: 4, MCPBA (3 equiv) in a buffered two phase system 0.2 M Na2CO3–CH2Cl2

(2:1 v/v).
c Diastereomeric ratio determined by 1H NMR.
d Reaction performed at reflux temperature.
e Lactonization with Me3SiI: 1, Me3SiCl (1.5 equiv), NaI (1.5 equiv) in CH2Cl2, 15 h, rt; lactonization with PTSA: 1, PTSA (0.2 equiv) in CH2Cl2, 15 h, rt.
f For 1i–k, Me3SiCl (3 equiv), NaI (3 equiv).
g One equivalent of p-TSOH was used.

Figure 1. X-ray representation of 2a.
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4a–j and 4l.10 To study the generality of this dealkylative cycliza-
tion reaction, methylenecyclopentane 4m and the more substi-
tuted unsaturated substrate 4k were also epoxidized.11 Thus
compounds 4a–d, k–m were treated with m-chloroperoxybenzoic
acid (MCPBA) in CH2Cl2 to afford the corresponding oxiranes in
good yields. For the preparation of the acid-sensitive aryl epoxides
4h–j possessing electron-donating groups, the reaction was per-
formed with the same oxidant, but in a buffered two phase system
0.2 M Na2CO3–CH2Cl2 (2:1 v/v).12 Finally, treatment of substituted
methylenecyclopentanes 4e–g with MCPBA gave a mixture of the
epimeric epoxides at the ethyl ester position in varying diastereo-
meric ratio (Table 1).

We first studied the reaction of aryl-epoxides with neutral and
electron-withdrawing groups on the aryl moiety with Me3SiI
formed in situ from 1.5 equiv of Me3SiCl and 1.5 equiv of NaI in
CH2Cl2. As shown in Table 1, reaction of aryl-epoxides 1a–d was
found to be very clean and complete conversion was observed after
15 h at room temperature to give the corresponding fused d-hydro-
xy-c-lactones 2a–d isolated in a single isomeric form, the trans
relationship between the aryl group and the created hydroxy being
totally controlled (entries 1–4). The structure of these fused lac-
tones was unequivocally assigned by the X-ray crystallographic
analysis of 2a (Fig. 1).13 In the case of the aryl-epoxide substrates
1e–g, the reaction conducted on the mixture of epimers needs
the use of 3 equiv of Me3SiI to go to completion and led to the cor-
responding lactones 2e–g with no appreciable change in the dia-
stereomeric ratio (entries 5–7). Reaction on the difunctionalized
epoxy-ester 1k led to the expected d-hydroxy-c-lactone 2k in very
good yields (entry 11).

When the reaction was conducted on epoxide 1h bearing a 3,
4-(methylenedioxy)phenyl group, the dealkylative lactonization
reaction was unsuccessful. Indeed, only a degradation of the start-
ing material was observed, even when the reaction was conducted



L. Pehlivan et al. / Tetrahedron Letters 52 (2011) 4716–4719 4719
at low temperature, which seems to be due to the instability of this
most electron-rich aryl-epoxide under the reaction conditions.14

We also decided to test protic acids as catalysts instead of Me3-

SiI and we found that simple treatment of the aryl epoxides 1a–d
with 0.2 equiv of p-toluenesulfonic acid (PTSA) in CH2Cl2 at room
temperature has similar effect on this dealkylative lactonization
(Table 1, entries 1–4). Under these acidic conditions, the reaction
failed to occur with the methylenedioxy derivative 1h. However,
aryl-epoxides 1i–j with electron-donating group such as the 4-
methoxy or 4-methyl moieties proceeded efficiently to give the
corresponding lactones 2i–j in rather good yields.

The reaction of the unfunctionalized epoxy-ester derivative 1m
and the methyl analog 1l takes a different course when these com-
pounds were treated according to the standard procedures de-
scribed above. Thus reaction of 1l and 1m with Me3SiI did not
give any desired cyclization product but led to the ring opened
products 5 and 6, respectively, in good yields. Under TsOH cataly-
sis, only decomposition of the starting material was observed for
unfunctionalized epoxide 1m while reaction of the methyl substi-
tuted epoxide 1l needed the presence of equimolar amounts of acid
to go to completion. Under these conditions the linear a-tosyloxy
ketone 7 was obtained. These three linear substrates were believed
to result from attack by halide ions or p-TsOH on the primary or
secondary epoxy carbon followed by a cyclopentane ring opening
reaction.15 A reductive dehalogenation of the resulting a-iodoke-
tone in the presence of iodide ions could be envisaged for the
formation of linear adduct 5.16

The difference of reactivity (intra- vs inter-molecular nucleo-
philic attack of epoxide) between the aryl substituted epoxides
1a–k and epoxides 1l–m may be attributed to stabilizing effects of
the aryl substituent on the development of a partial positive charge
at the benzylic position.

In conclusion, we have shown that stereochemically defined
densely functionalized fused d-hydroxy-c-lactones could be pre-
pared via dealkylative cyclization reaction.17 The synthetic utility
of this reaction for the preparation of oxygenated furofuran lignans
will be explored in a subsequent work.18
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