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Selective functionalization of pyridine is currently of interest
for the synthesis of pharmacologically important nitrogen
heterocycles, such as dihydropyridines (DHPs).[1, 2] Whereas
nucleophilic ortho substitution of pyridine with retention of
aromaticity is facile, synthesis of DHPs by nucleophilic
addition is complicated owing to loss of aromaticity. Besides
Hantzsch-type multicomponent reactions,[3] approaches to
1,2- and 1,4-DHPs require the use of N-acylpyridinium
ions.[2a, 4] Grignard[5] or organotin[6] reagents mainly add to
give 2-substituted DHPs. 1,4-DHPs with substituents in the
4-position can be obtained with ill-defined organotitanium
reagents,[7] lithium dialkylcuprates,[8] and mixtures of
Grignard reagents or zinc organyls with cuprous salts.[8b,9]

Organometallic reagents of the early transition and f-block
metals, on the other hand, typically metalate the ortho C�H
bond of pyridine to give h2-(C,N)-pyridyl complexes.[10]

Herein we show that the recently introduced organocalcium
complex bis(allyl)calcium (1)[11] selectively transfers its allyl
groups to pyridine (py) to give 4-allyl-1,4-DHP, whereas the
C�H bond of ortho- and para-methyl groups in picolines and
lutidines are metalated only under thermodynamic control.

Stoichiometric amounts of 1 reacted with pyridine in THF
upon mixing to give [Ca(NC5H5-4-C3H5)2(L)n] (2 ; L = THF,
py) quantitatively. In the presence of excess pyridine, the new
calcium amide 2·(py)4 could be isolated as a red powder in
almost quantitative yield and be fully characterized
(Scheme 1). Variable-temperature NMR spectroscopy in
[D8]THF showed that for 2·(py)4, an equilibrium exists,
presumably between the cis and trans octahedral isomers.
The reaction of electrophiles E�Cl (E = CO2CH3, Si(CH3)3)

with 2·(py)4 gave the corresponding N-protected 1,4-DHP
with concomitant precipitation of CaCl2 (Scheme 1).

The solid-state structure of 2·(py)4 features a symmetric
octahedral coordination geometry with trans-arranged
anionic NC5H5-4-C3H5 ligands.[12] The presence of four
pyridine and two dearomatized NC5H5-4-C3H5 (1,4-DHP)
rings is apparent from their equal and alternating C�C bond
lengths, respectively. This structure could be reproduced by
computational methods. The only significant difference
between the observed and calculated structure is a twist of
the trans-arranged six-membered rings, which is attributed to
p-packing effects.

A solution of 1 in a 1:1 mixture of py and [D5]py led to a
product that has proton signals with half the intensity
expected for the ring CH groups in 2. This observation
indicates the absence of a significant kinetic deuterium effect
and an insertion reaction without a rate-determining C�H
bond-cleavage step. Compound 2 undergoes slow decompo-
sition with first-order kinetics (k = 0.12 d�1, 0.65m solution in
[D5]py) to give an intermediate that, upon heating for several
hours, was converted into propene and an unidentified
metalation product.[13]

The overall mechanism for the reaction of 1 with pyridine
was deduced by NMR spectroscopy (Scheme 2). The reaction
is initiated by coordination of pyridine at the calcium center
to give complex 3.[14] Attack at the ortho position by the
nucleophilic allyl group results in the rapid formation of the
ortho-allylated product 4 via a six-membered, metalacyclic
transition state TS1. Intermediate 4 has a half-life of t1/2 =

10 min at 25 8C. The final 1,4-insertion product 2 is formed by
a rate-determining Cope rearrangement (Scheme 2). In this
second, six-membered transition state TS2, a lack of con-
formational flexibility of both the allyl and the pyridine ring
fragment disfavors the 1,3-rearrangement. This sequence of
allylic rearrangements is analogous to Claisen and subsequent

Scheme 1. Formation of the insertion product 2·(py)4 and subsequent
reaction to form N-protected 1,4-DHP. py = pyridine.
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Cope rearrangement observed for ortho-disubstituted allyl-
oxybenzenes to give 4-allylcyclohexa-2,5-dienones.[15]

The reaction energy profile for the proposed mechanism
was studied by means of computational methods (Figure 1).
With [Ca(h3-C3H5)2(py)3] as reference, the overall reaction
leading to 2·(py)4 is exothermic (DrH8=�27.4 kcalmol�1).
The initial 1,2-insertion of two pyridine molecules (TS1) to
give [Ca(NC5H5-2-C3H5)2(py)3] (4·(py)3) proceeds in two
steps with an activation enthalpy of DrH

� = 14.3 (TS1a) and
3.4 kcalmol�1 (TS1b) (DrH8=�7.2 and �8.6 kcalmol�1), for
each allyl ligand. Coordination of two additional pyridine
molecules leads to the six-coordinate complex 4·(py)4 (DrH8=

�18.9 kcalmol�1). In agreement with experimental results,

the subsequent 1,3-rearrangement is the rate-determining
step of the overall reaction. This rearrangement has activation
barriers of DrH

� = 8.5 kcalmol�1 (27.4 kcal mol�1 relative to
4·(py)4) for TS2 a and DrH

� = 5.1 kcalmol�1 for TS2 b. Direct
1,4-insertion and ortho metalation are found to be unfavor-
able.

The proposed mechanism is in agreement with results of
NMR-scale reactions of 1 with two equiv of the methylated
pyridine derivatives 2-, 3-, and 4-methylpyridine (5, 7, 8) and
also 2,6- and 3,5-dimethylpyridine (6, 9 ; Scheme 3). The
importance of vacant ortho and para positions for the
insertion to occur is reflected by the metalation of C�H
bond activation products along with propene evolution, as
observed with 2-picoline (5), 2,6-lutidine (6), and 4-picoline
(7). Reaction with 5 led to a 2:1 mixture of the C�H bond
activation product bis(2-pyridylmethyl)calcium (5act) and
the 1,4-insertion product calcium 4-allyl-2-methyl-4H-pyri-
din-1-ide (5 ins). Over a period of three weeks at room
temperature, 5 ins was quantitatively transformed into 5act.
Reaction with 6 gave 6act quantitatively within one day.

Consistent with the fact that the Cope rearrangement is
rate-determining, 3-picoline (7) showed only 66% conversion
within one hour to give 7 ins. After four weeks at room
temperature, 7 ins was completely converted into 7act and
propene. The transformation of insertion products 5 ins and
7 ins to the corresponding metalated products 5 act and 7act
was found to follow first-order kinetics with half-lifes of t1/2 =

11 d (5 ins) and t1/2 = 10 d (7 ins). In agreement with the
mechanism proposed, methyl groups at 3- and 5-positions
have no effect on the 1,4-insertion. The formation of the
products 8 ins and 9 ins was therefore observed quantitatively
within one day, and no change was noted over a period of

Scheme 2. Proposed mechanism for the reaction of 1 with pyridine
(n = 3, 4). TS = transition state.

Figure 1. Enthalpy profile for the reaction of bis(allyl)calcium with pyridine: 1,2-insertion, subsequent 1,3-rearrangement, and alternative
o-metalation. For details of the DFT calculations, see the Supporting Information.
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several days. 9 ins was crystallized as an octahedrally coordi-
nated 3,5-lutidine adduct 9 ins·(9)4.

[12]

When 4-tert-butylpyridine (10) was reacted with 1 in
[D8]THF, the ortho-metalation product bis(4-tert-butylpyri-
din-2-yl)calcium (10act) was formed quantitatively within
four days. This observation is ascribed to steric shielding of
the 4-position, thus blocking the 1,3-rearrangement. These
findings indicate an equilibrium between the reactants, the
allylated products, and also the metalated complex 10act.
Whereas the insertion products are formed under kinetic
control, the 4-tert-butyl substituent shifts the equilibrium
toward the thermodynamically favored ortho-metalation
product.

In conclusion, insertion of pyridine into the polar allyl
calcium bond gave 1,4-dihydropyridine derivatives regiose-
lectively. The presence of methyl groups on the pyridine ring
resulted in 1,4-addition under kinetic control, followed by
C�H bond activation of the methyl group. Organocalcium
reagents[16] evidently display an unprecedented reactivity
pattern with respect to the balance between nucleophilicity
and basicity.

Experimental Section
2·(py)4: a) Bis(allyl)calcium (1, 63 mg, 0.52 mmol) was dissolved in
pyridine (1.0 mL). Upon cooling, red crystals suitable for X-ray
diffraction were formed (138 mg, 0.23 mmol, 45%).[12] b) 1 (40 mg,
0.33 mmol) was dissolved in THF (0.8 mL), and a solution of pyridine
(155 mg, 196 mmol) in THF (0.2 mL) was added and stirred for
30 min. Removal of all volatiles resulted in a dark-red powder 2·(py)4

(188 mg, 32 mmol, 95%). Further drying in vacuo resulted in the loss
of pyridine ligands, a viscous product 2·(py)n (n = 1–1.5), and an

increase of impurities. 1H NMR (400 MHz, [D5]py,
25 8C): d = 8.71 (m, 8H, o-CHpy), 7.55 (m, 4H, p-
CHpy), 7.19 (m, 8H, m-CHpy), 6.50 (d, 3J(H,H) =

6.5 Hz, 4H, o-CHDHP), 6.22 (m, 2H, CHallyl), 5.18 (d,
3J(H,H) = 17.5 Hz, 2H, =CH2

trans,allyl), 5.13 (d, 3J-
(H,H) = 10.3 Hz, 2H, =CH2

cis,allyl), 4.34 (dd, 3J-
(H,H) = 2.3, 6.5 Hz, 4H, m-CHDHP), 4.02 (br, 2H, p-
CH), 2.48 ppm (t, 3J(H,H) = 6.5 Hz, 4H, -CH2-

allyl).
13C{1H} NMR (100 MHz, [D5]py, 25 8C): d = 149.9 (o-
CHpy), 141.7 (o-CHDHP), 138.6 (CHallyl), 135.5 (p-
CHpy), 123.5 (m-CHpy), 112.3–110.8 (=CH2

allyl), 90.1–
95.1 (m-CHDHP), 55.8 (-CH2-

allyl), 42–36 ppm (p-
CHDHP). 1H NMR (400 MHz, [D8]THF, 25 8C): d =

8.56 (m, 8H, o-CHpy), 7.66 (tt, 3J(H,H) = 7.7 Hz,
4J(H,H) = 1.8 Hz, 4H, p-CHpy), 7.26 (m, 8H, m-
CHpy), 6.09–6.17 (br, 4H, o-CHDHP), 5.84 (br, 2H,
CHallyl), 4.89 (d, 3J(H,H) = 10.1 Hz, 2H, =CH2

trans,allyl),
4.87 (d, 3J(H,H) = 7.0 Hz, 2H, =CH2

cis,allyl), 3.82–3.97
(br, 4H, m-CHDHP), 3.39 (br, 2H, p-CHDHP), 2.04 ppm
(br, 4H, -CH2-

allyl). 13C{1H} NMR (100 MHz, [D8]THF,
25 8C): d = 150.8 (o-CHpy), 136.2 (p-CHpy), 124.3 (m-
CHpy), 140.2 (o-CHDHP), 138.7 (CHallyl), 114.4/113.5 (=
CH2

allyl), 98.4/94.8 (m-CHDHP), 50.7/49.7 (-CH2-
allyl),

36.9/36.1 ppm (p-CHDHP).
9 ins·(9)4: a) 1 (63 mg, 0.52 mmol) was dissolved in

3,5-dimethylpyridine (1.0 mL). Upon cooling, red
crystals suitable for X-ray diffraction were formed
(185 mg, 0.24 mmol, 47%).[12] 1H NMR (400 MHz,
[D8]THF, 25 8C): d = 8.18 (m, 8H, o-CH9), 7.30 (m, 4,
p-CH9), 6.10 (s, 4H, o-CHDHP), 5.99 (m, 2H, CHallyl),
4.73–4.97 (m, 4H, =CH2

allyl), 3.33 (t, 3J(H,H) = 3.8 Hz,
2H, p-CHDHP), 2.24 (br, 28H, CH3

9, -CH2-
allyl),

1.50 ppm (br, 12H, CH3
DHP). 13C{1H} NMR (100 MHz, [D8]THF,

25 8C): d = 148.32 (o-CH9), 140.44 (CHallyl), 137.36 (p-CH9), 136.06 (o-
CHDHP), 133.01 (m-C9), 113.64 (=CH2

allyl), 100.28 (m-CDHP), 46.32
(-CH2-

allyl), 37.90 (p-CHDHP), 20.64 (CH3
DHP), 18.19 ppm (CH3

9).
For further experimental details, NMR data of compounds 5 ins,

7 ins, 8 ins, 10 ins, 5act–7act, 10act, kinetic data, and computational
details, see the Supporting Information.
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