COMMUNICATION

JACS

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

pubs.acs.org/JACS

A Convergent Total Synthesis of (1)-y-Rubromycin
Kun-Liang Wu, Eduardo V. Mercado,” and Thomas R. R. Pettus*

Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States

o Supporting Information

ABSTRACT: An expeditious convergent total synthesis
affords (=£)-y-rubromycin (1) in 4.4% overall yield. The
longest linear sequence is 12 steps from commercial starting
materials. The effort highlights a remarkable late-stage
oxidative [3 + 2] cycloaddition for construction of the
spiroketal, a regioselective carbonyl methylenation, a boron
tribromide promoted deprotection, ortho- to para- naphtho-
quinone spiroketal rearrangement, and a tautomerization
sequence.

he rubromycins represent a small growing family of natural

products (1—4) comprised of a densely oxygenated naph-
thoqulnone moiety linked with an isocoumarin fragment
(Figure 1)." Other structurally related compounds include the
griseorhodins, DK-7814, purpuromycin, and heliquinomycin.*
These natural products have been shown to display a broad
spectrum of assorted bioactivities.” In the rubromycin series,
studies have revealed that y-rubromycin (1) and f-rubromycin
(3), which are conjoined through an optically active [S,6]-
aryloxy spiroketal, all manifest strong inhibition of human
telomerase (ICso = 3 uM). In contrast, O-rubromycin (4),
which is missing the [5,6]-aryloxy spiroketal, appears inactive
(ICso > 200 uM). This contrasting profile of biological activity
led Hayashi to propose the [5,6]-spiroketal moiety as the motif
responsible for telomerase inhibition.*

Accordingly, the rubromycins and the related structures have
attracted intensive synthetic interests over the past several
decades,® culminating first in the total synthesis of the aglycone
of (4)-heliquinomycin by Danishefsky in 2001° and, more
recently, in a total and a formal synthesis of (4)-y-rubromycin
(1) by Kita” and Brimble,® respectively. However, to the best of
our knowledge the [5,6]-spiroketal core has never been installed
at a late stage with the fully intact naphthoquinone and iso-
coumarin subunits. The problem surrounding thermodynamic
ketalization of the fully elaborated core structure was initially
recognized by Kozlowoski*® and later substantiated and named
by Reissig” as the “Negative Mesomeric ¢ Inductive effects” (MerI
effects). The cause principally stems from the electron-withdraw-
ing nature of the isocoumarin moiety, which dramatically
diminishes the nucleophilicity of the corresponding phenol
moiety.

Our laboratory recently disclosed a facile method for oxidative
[3 + 2] cycloadditions between [3-diketones and exocyclic enol
ethers as a means for fashioning [5,6]-spiroketal frameworks, and
we described for the first time a facile rearrangement between
ortho- and para-quinone spiroketals.'” However, its tolerance of
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Figure 1. Selected members of the rubromycin family.

Scheme 1. Synthetic Analysis of y-Rubromycin (1)
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highly functionalized coupling partners was largely untested.

Herein, we report its application for a concise synthesis of
y-rubromycin (1). The strategy provides convergent synthetic
access to all members of the rubromycin family. The general
synthetic analysis is depicted in Scheme 1. We aimed to assemble
the entire [5,6]-spiroketal core through a late-stage [3 + 2]
cycloaddition between the fully mature naphthoquinone § and
the methylenated chroman 6. The naphthoquinone § would
originate from O-tetralone 7, whereas the chroman 6 could be
prepared from Reissig benzaldehyde 8 by sequential Heck,
Horner—Wadsworth—Emmons, and Petasis reactions.

Our synthesis begins with the preparation of the naphthoqul-
none S, a compound first synthesized by Thomson."" In our
initial approach, the -tetralone 7'> was prepared in three steps
from commercially available 1,2,4-trimethoxybenzene. Further
application of oxidative procedures resulted in the corresponding
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Scheme 2. Synthesis of Naphthoquinone $ from -Tetralone 7
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(a) LIHMDS (2.4 equiv), THF, —78 °C, then NBS (2.06 equiv); DBU
(1.23 equiv), —78 °C to rt, 78% yield. (b) CAN (2.14 equiv), MeCN/
H,0, 0 °C, 60% yield. (c) NaNj; (1.46 equiv), THF/H,O0, rt. (d) CsCO5
(1.5 equiv) PhCH3/MeOH, rt, 65% yield for 2 steps. (e) KOH (21.4
equiv), MeOH/H,O0, 84% yield.

Scheme 3. Preparation of Methylenated Isocoumarin 6
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(a) Pd(OAc),, PPh;, methyl acrylate (1.9 equiv), LiCl, NEt; (1.81
equiv), DMF, 80 °C, 93% yield. (b) H, (1 atm), Pd/C, EtOAc, 94%
yield. (c) p-TsOH (cat.), PhMe, reflux, 82% yield. (d) 14 (1.03 equiv),
LiHMDS (1.0 equiv), THF, —78 °C, then 13 (1.0 equiv), 60% yield,
E/Z=6/1. (e) CpTiMe, (2.19 equiv), PhMe, 70 °C, 72% yield, E/Z =
8/1. (f) TBAF (1.03 equiv), THF, —78 °C, 94% yield.

naphthoquinone $, but in a manner not easily scaled.''*!

Hence, we turned our attention toward exploration of an
alternative route (Scheme 2). Functionalization of the O.-tetra-
lone 7 using Nicolaou’s sequential bromination method provided
the desired bromophenol intermediate,"* which was then sub-
jected to cerium ammonium nitrate (CAN) oxidation to provide
the bromonaphthoquinone 9 in 47% overall yield from 7.'°
According to an unusual leaving group effect, previously de-
scribed by Anufriev'® and subsequently utilized by Brimble,® the
vinyl bromide 9 was reformulated into its azide 10 for subsequent
displacement. The azide 10 was then subjected to methanol in
cesium carbonate thereby resulting in the regioselective forma-
tion of the methyl ether 11 in a 65% yield. Subsequent saponi-
fication of the vinylogous ester with potassium hydroxide affords
the desired naphthoquinone S in 84% yield. The naphthoqui-
none § displays a 3-diketone of sorts ready for examination in the
key oxidative [3 + 2] cycloaddition.

The preparation of the other coupling partner, the fully elabo-
rated isocoumarin 6, was much more challenging (Scheme 3).”
After considering several new strategies, we decided to begin with
Reissig’s aldehyde 8, which was prepared in four steps and 42%
overall yield from vanillin according to literature protocol.'”
Heck reaction of its aryl iodide with methyl acrylate affords the

Scheme 4. Conclusion of the Total Synthesis of (4-)-y-Ru-
bromycin (1)
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corresponding E-unsaturated ester, which succumbs to catalytic
hydrogenation to afford the saturated ester 12 in 87% overall
yield. Subsequent acid-promoted lactonization provides the
dihydrocoumarin 13 in 82% yield. The aldehyde in this material
undergoes a Horner—Wadsworth—Emmons reaction with
Thompson’s phosphonate 14 to afford the unsaturated triester
15 as a 6:1 mixture of E/Z isomers."'® Interestingly, the dihy-
drocoumarin carbonyl in compound 15 undergoes selective
methylenation upon treatment with the Petasis reagent to cleanly
afford the exocyclic enol ether 16 as an 8:1 mixture of E/Z
isomers.'” Further treatment of the silyl enol ether of compound
16 with tert-butyl ammonium fluoride (TBAF) causes sequential
deprotection and cyclization to furnish the desired methylenated
isocoumarin 6 in 94% yield.

Having successfully prepared both the naphthoquinone § and
the isocoumarin 6, we were eager to implement the key bond-
forming reaction (Scheme 4). Coupling of § and 6 in the
presence of CAN in THF at room temperature affords a
nonequilibrating10b separable 1:2 mixture of regioisomers in
58% combined yield (o-naphthoquinone spiroketal 17 and
p-naphthoquinone spiroketal 18, respectively). From a synthetic
perspective, the [3 + 2] oxidative cycloaddition fashions the
most challenging aspect of the framework of y-rubromycin (1) in
a single step. Given the success of this unprecedented strategy,
we next investigated the individual deprotection of each of the
valence tautomers. Gratifyingly, exposure of the p-naphthoqui-
none spiroketal 18 to an excess of boron tribromide (BBr3) in
CH,Cl, (—78 to —20 °C) expectedly provides synthetic (£)-y-
rubromycin (1), in a respectable 61% yield. This material is
indistinguishable from an authentic natural sample (‘H NMR,
IR, TLC)."”

We next considered the application of protic conditions with
the o-naphthoquinone ketal 17, as previously used by Kita to
catalyze a similar rearrangement for a simplified albeit related
system.” To our surprise, all attempts to induce rearrangement
on 17 with acid were unsuccessful and they resulted in un-
changed starting material. Upon subjection of compound 17 to
an excess of BBr; in CH,Cl, (—78 to —20 °C), however, the
o-napthoquinone spiroketal 17 cleanly provides y-rubromycin
(1) in greater than S0% yield. Although the exact timing of
demethylation(s) within this sequence remains unclear, this
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overall transformation is quite unusual as it involves deprotection
of three methoxy substituents, an ortho- to para-naphthoquinone
rearrangement, and an inner to outer naphthoquinone tautomer-
ization (Scheme S, A—B—C) all in a single pot.

In conclusion, by exploiting a last stage oxidative [3 + 2]
cycloaddition, we have completed a significantly shorter total
synthesis of (£)-y-rubromycin (1) than previously realized. The
highly convergent strategy provides the target molecule in a 4.4%
overall yield. The naphthoquinone and isocoumarin components
(5 and 6) employed in the oxidative [3 + 2] cycloaddition are
respectively prepared from 1,2,4-trimethoxybenzene and vanil-
lin. Both are inexpensive and readily available. The strategy
highlights a regioselective Petasis carbonyl methylenation and a
rather unusual BBr; promoted ortho- to para-naphthoquinone
spiroketal rearrangement/deprotection/tautomerization in the
case of the o-naphthoquinone 17. Further efforts toward the
synthesis of optically enriched rubromycins and the biological
evaluation of rubromycins and their analogs will be reported in
due course.
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