Date: 17-09-13 19:40:20

An Approach to 2,4-Substituted Pyrazolo[1,5-*a*]pyridines and Pyrazolo[1,5-*a*]azepines by Ring-Closing Metathesis

Pages: 12

Santos Fustero,*^[a,b] Raquel Román,^[a] Amparo Asensio,^[a] Miguel A. Maestro,^[c] José L. Aceña,^[d] and Antonio Simón-Fuentes*^[a]

Keywords: Synthetic methods / Asymmetric synthesis / Metathesis / Peptidomimetics / Nitrogen heterocycles

The ring-closing metathesis (RCM) reactions of dienylpyrazoles have been employed in the synthesis of pyrazolo[1,5*a*]pyridine and pyrazolo[1,5-*a*]azepine derivatives. Based on this approach, the diastereoselective synthesis of potential

Introduction

The chemistry of pyrazoles is attracting increasing interest due to the broad range of applications shown by a large number of pyrazole derivatives. The pyrazole ring is present in a number of small molecules that possess a wide range of biological activities that can be exploited in the fields of agriculture and pharmaceuticals. Moreover, some pyrazoles constitute scaffolds in supramolecular and polymer chemistry as well as in the food industry.^[1]

Among pyrazole-fused bicyclic substructures, the pyrazolo[1,5-*a*]pyridine framework is especially relevant because it is present in many pharmacologically active compounds, for example, in inhibitors of p38 kinase,^[2] dopaminergics,^[3] inhibitors of herpes simplex viruses,^[4] nonxanthine adenosine A₁ receptor antagonists,^[5] and melatonine receptor ligands^[6] (Figure 1). This substructure has also been proposed as a stable bioisoster of the indole nucleus to circumvent problems arising from the metabolic instability of indoles.^[7]

The most generally useful approach to achieving this system involves the [3+2] cycloaddition reactions of *N*-aminopyridinium salts with substituted alkynes.^[2–7,8] Other methods have also been reported.^[2a,9] Charrette and co-workers

- [b] Laboratorio de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- [c] Departamento de Química Fundamental, Universidade da Coruña,
- 15071 A Coruña, Spain[d] Department of Organic Chemistry I, University of the Basque Country,

20018 San Sebastian, Spain

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201300901.

peptidomimetics containing four amino acid residues with

the second (i+1) and third (i+2) fragments having been sub-

stituted by bicyclic frameworks is described.

adenosine A1 receptor antagonist melatonine receptor ligand

Figure 1. Pharmacologically active pyrazolo[1,5-*a*]pyridine derivatives.

recently reported a new methodology for the synthesis of 2substituted pyrazolo[1,5-*a*]pyridines through direct cascade alkenylation/cyclization reactions.^[10] In contrast, methods for the preparation of pyrazolo[1,5-*a*]azepine derivatives are very scarce. In fact, to the best of our knowledge, only two procedures dealing with the synthesis of this class of bicyclic heterocycles have been reported to date.^[11] The first one allowed the formation of two substituted pyrazolo[1,5-*a*]azepines through the cycloaddition reaction of a diazoketone and an activated acetylene,^[11a] and the second one involved an intramolecular acylation of the C-5 pyrazole carbon by a Parham-type cyclization of a pyrazole-1carboxylic acid.^[11b]

As a continuation of our investigation of new strategies for the preparation of biologically active simple pyrazoles,^[12] we focused our attention on the synthesis of pyr-

 [[]a] Departamento de Química Orgánica, Universitat de València, 46100 Burjassot, Valencia, Spain E-mail: santos.fustero@uv.es antonio.simon@uv.es
 www.santosfustero.com

FULL PAPER

azolo[1,5-*a*]pyridine (1) and pyrazolo[1,5-*a*]azepine (2) derivatives (Scheme 1). Based on the ring-closing metathesis (RCM) reaction, we have investigated new synthetic pathways to accessing these fused heterobicyclic compounds. Despite the utility of RCM for the preparation of mediumand large-sized carbo- and heterocyclic compounds,^[13] only a few reports on the application of this methodology to the synthesis of fused bicyclic heteroaromatic compounds have been published,^[14] and none on the synthesis of pyrazolo[1,5-*a*]pyridine or pyrazolo[1,5-*a*]azepine derivatives.

Scheme 1. Synthetic strategy to pyrazolo[1,5-*a*]pyridine and pyrazolo[1,5-*a*]azepine derivatives.

Results and Discussion

Synthesis of Pyrazolo[1,5-*a*]pyridines 1 and Pyrazolo[1,5-*a*]azepines 2

Synthetic strategies for accessing the target fused bicyclic compounds 1 and 2 are depicted in Schemes 2 and 3. Thus, 3,5-disubstituted pyrazoles 4a and 4b were obtained in good yields by condensation of the previously prepared 1,3dicarbonyl compounds 3a and 3b,^[15] respectively, with anhydrazine following standard procedures hydrous (Scheme 2, Pathway A).^[16] The best result for the N-allylation of 4b was obtained by using NaH as a base followed by the addition of allyl bromide. The diolefinic pyrazole **5b** was obtained as the only product in 66% yield.^[17] However, under these reaction conditions, 4a led to a mixture of regioisomers 5aa and 5ab in 80% yield, the major component (93%) being the undesired **5ab**. To improve the yield of **5aa**, the N-allylation of 4a was carried out under the reaction conditions described by Moreno-Mañas et al.^[18] for the allylation of uracils. The catalytic complex [Pd₂(dba)₃]/dppb was added to a solution of 4a in THF, followed by the addition of allyl acetate. After warming at 60 °C for 18 h, a mixture of 5aa and 5ab (ratio 4:1) was formed in almost quantitative yield. Both regioisomers were easily separated and purified by flash chromatography, and characterized by spectral analysis. NOESY experiments allowed the unambiguous assignment of their structures.

The ethoxycarbonyl group of **5aa** was then converted into aldehyde **6a** in a two-step sequence involving reduction to a primary alcohol (90% yield) followed by oxidation of the hydroxylic function with activated MnO_2 in acetonitrile (75% yield; Scheme 2, *Pathway B*). Dienylpyrazoles **7a** and **8a**, precursors of the 5,6- and 5,7-pyrazoles, were obtained in high yields by the addition of vinyl- and allylmagnesium bromide, respectively, to a solution of **6a** in THF at 0 °C. Subsequent RCM of **7a** and **8a** by using 5 mol-% of the Hoveyda–Grubbs' catalyst [Ru-III] in dichloromethane (DCM; for **7a**) or in dichloroethane (DCE; for **8a**) at reflux afforded the bicyclic alcohols **1a** and **2a** in excellent yields,^[19] which on dehydration with a solution of 1 M HCl in THF at reflux gave 2-(2-furyl)pyrazolo[1,5-*a*]pyridine (**1c**) and 2-(2-furyl)pyrazolo[1,5-*a*]azepine (**2c**) in excellent yields. Cyclization of the dienylpyrazole **5b** was also found to be feasible when the reaction mixture was heated at reflux in DCM for 4 h in the presence of the [Ru-III] catalyst leading to ethyl 5,8-dihydro-4*H*-pyrazolo[1,5-*a*]azepine-2carboxylate (**2b**) in good yield. The yield increased substantially (up to 80%) when the process was carried out under microwave irradiation at 80 °C with a significant drop in reaction time (1 h).

Synthesis of Potential Peptidomimetics 9 and 10

In the last two decades, research in the field of peptidomimetics has gained considerable momentum due to their potential use as precursors of small molecules that display more favorable therapeutic properties than natural peptides. The design and synthesis of conformationally restricted peptidomimetics is an important approach towards improving the potency, selectivity, and metabolic stability of peptide-based drugs.^[20] In this sense, some bicyclic ring systems, such as azabicycloalkane amino acids, have proven to be versatile and effective scaffolds that mimic secondary peptide structures.^[21] Incidentally, bicyclic templates restrict conformations by a combination of structural constraints and steric interactions, which are influenced by the stereochemistry of the scaffold, the presence of substituents, and the frame size in particular.

On the basis of the success of our strategy for the synthesis of 5,6- and 5,7-fused pyrazole derivatives by RCM, we extended this protocol to the diastereoselective synthesis of bicyclic ring amino acids 9,10aa and 9,10ab (Scheme 3). These structures mimic peptides containing four amino acid residues, the second (i+1) and third (i+2) fragments having been substituted by bicyclic frameworks.

The retrosynthetic analysis of **9** and **10** from the formylpyrazole **6a** is depicted in Scheme 3. The key step is the stereoselective creation of a stereocenter at C-4. In principle, one of the most versatile methods for the asymmetric synthesis of amines is the 1,2-addition of nucleophiles such as organometallic reagents to chiral imines.^[22] However, when imines react with basic nucleophiles, electron-withdrawing substituents on nitrogen are necessary to activate the C=N double bond. The *tert*-butanesulfinyl group has proved to be an ideal N-substituent for the nucleophilic addition to imines, providing a highly efficient approach to the asymmetric synthesis of many different types of amines. This group can be easily introduced by condensation of a carbonyl compound with enantiomerically pure *tert*-butanesulfinamide in the presence of a Lewis acid.^[23]

The condensation of **6a** with (R)-*tert*-butanesulfinamide in the presence of 4 equiv. of Ti(OEt)₄ led to imine **11a** in Pyrazolopyridines and -azepines by Ring-Closing Metathesis

Scheme 2. Synthesis of pyrazolo[1,5-a]pyridine and pyrazolo[1,5-a]azepine derivatives.

almost quantitative yield (Scheme 4). Following Ellman and co-workers' procedure,^[24] when allylmagnesium bromide was added to a CH₂Cl₂ (DCM) solution of **11a** at -60 °C, a mixture of two diastereoisomeric dienylpyrazoles (R_{S} ,S)-

13aa and (R_S, R) -**13ab** was obtained in 84% yield (**13aa**/ **13ab** = 4:1; Method A), which were separated by flash chromatography.^[25] On the other hand, the diastereoselective allylation of **11a** with allyl bromide and indium in a

FULL PAPER

Scheme 3. Strategy for the synthesis of peptidomimetics 9 and 10.

CH₂=CHMgBr, CH₂Cl₂, -60 °C, overnight: rd **12aa:12ab** 1.5:1 (98 %).

2) Method B: CH₂=CHCH₂Br, In, satd. NaBr aq, r.t., 4 d: rd **13aa:13ab** >99:1 (50 % at 75 % conversion).

3) Method C: CH₂=CHCH₂Br, Zn, HMPA, H₂O, r.t., 15 h: rd **13aa:13ab** 1:>99 (58 %).

4) Method D: CH₂=CHMgBr, Me₂Zn, THF, -78 °C, overnight: rd **12aa:12ab** 4:96 (98 %)

Scheme 4. Synthesis of dienylpyrazoles 12 and 13.

NaBr saturated aqueous solution at room temperature led to the diastereoisomer (R_S ,S)-13aa as the sole product (50% yield at 75% conversion; Method B).^[26] Furthermore, addition of allylzinc bromide to 11a using hexamethylphosphoramide (HMPA) as solvent at room temperature gave the diastereoisomer (R_S ,R)-13ab as the only product in 58% yield (Method C).^[27]

For the addition of the vinylic chain, the best diastereomeric results were obtained (**12aa/12ab** = 4:96) when a previously prepared solution of dimethylzinc and vinylmagnesium bromide in THF was added to a THF solution of **11a** at -78 °C (Method D).^[28] When applying Ellman and co-workers' reaction conditions, the chemical yield was good (98%), but the selectivity was very low, **12aa/12ab** = 1.5:1 (Method A; Scheme 4).

With the dienylpyrazoles **12** and **13** in hand, the RCM reaction was conducted. Despite many attempts under different reaction conditions, the outcome was not satisfactory, probably due to the presence of the *tert*-butanesulfinyl

group. As the L-alanine residue is present in the side-chain at C-4 in the final products 9 and 10, another strategy involving the substitution of the *tert*-butanesulfinyl group in 12 and 13 with N-Boc-L-alanine was adopted. The tert-butanesulfinyl group was removed by adding a solution of HCl in dioxane to a solution of the respective dienylpyrazole 12 or 13 in MeOH at room temperature, followed by stirring for 30 min. A solution of N-Boc-L-alanine in DMF was then added followed by the coupling agent 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) and diisopropylethylamine (DIEA) as base. As expected, the respective dienylpyrazoles 14 and 15 were obtained in high yields (Scheme 5). The relative configuration of the newly created stereocenter (C-a of the side-chain attached to the C-5 of the pyrazole ring) in 15aa was assigned S by means of X-ray crystallography.^[29]

Compounds 14 and 15 underwent the RCM reaction in the presence of 5 mol-% Hoveyda–Grubbs' catalyst [Ru-III] leading to the bicyclic fused pyrazole derivatives 16 and 17 Pyrazolopyridines and -azepines by Ring-Closing Metathesis

HBTU: 2-(1*H*-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate; DCE: dichloroethane; DIEA: diisopropylethylamine; DMF: dimethylformamide; DCM: dichloromethane.

Scheme 5. Synthesis of peptidomimetics 9 and 10.

(Scheme 5). The cyclization reactions of dienyl pyrazoles 14 in DCM at reflux were found to be very efficient resulting in 16 in excellent yields. However, the dienylpyrazoles 15 did not produce satisfactory results under similar conditions. The best results were obtained when 15 was heated at reflux in DCE for 18 h, although the starting materials were not totally transformed. The C=C double bond in the unsaturated bicyclic compounds 16 and 17 was then hydrogenated by treatment with hydrogen in the presence of Pd/C to afford 18 and 19 in good yields. To introduce the second amino acid unit at C-2 of the pyrazole ring, the furyl group must be oxidized. Thus, ozone was bubbled into colorless solutions of 18 and 19 in MeOH at -78 °C until the blue color became permanent. Bicyclic carboxylic acids 20 and 21 were formed in high yields. Finally, these compounds were subjected to condensation with the ethyl glycinate salt under the same reaction conditions as employed for the introduction of L-alanine to give the final products 9 and 10 in good yields. The S configuration at C-4 in the tetrahydropyridine ring in **9aa** was determined by X-ray crystallographic analysis (Figure 2).^[30]

Figure 2. ORTEP diagram of (S,S)-9aa.

The propensity of **9aa**, **9ab**, **10aa**, and **10ab** to mimic peptide structures is currently under investigation. Preliminary results seem to indicate the presence of an intramolecular hydrogen bond between the amide proton on the substituent on the pyrazole ring and the carbonyl oxygen of the amido group in the substituent of the tetrahydropyridine ring in **9aa**, which could mimic a β -turn secondary structure. Further applications of the new substrates are currently being investigated in our laboratory.

Conclusions

We have developed a new approach to the synthesis of 2,4-substituted pyrazolo[1,5-*a*]pyridines and pyrazolo-[1,5-a]azepines from readily available 3,5-disubstituted 1*H*-pyrazoles. These pyrazoles were *N*-allylated to afford 1,5-diolefinic intermediates, which underwent ring-closing metathesis (RCM) in the presence of 5 mol-% of the Hoveyda–Grubbs' catalyst to afford the target products in excellent yields. This approach has been applied to the diastereoselective synthesis of four potential peptidomimetics containing four amino acid residues with the second (*i*+1) and third (*i*+2) fragments having been substituted by bicyclic frameworks.

Experimental Section

General Methods: All reactions were carried out under nitrogen. The solvents were purified prior to use: THF was distilled from sodium/benzophenone and dichloromethane was distilled from calcium hydride. The reactions were monitored with the aid of TLC on 0.25-mm precoated silica gel plates. Visualization was carried out with UV light. Flash column chromatography was performed on silica gel 60 (particle size 0.040–0.063 mm) with the solvents indicated in each case. Melting points were measured with a Büchi B-540 apparatus. ¹H and ¹³C NMR spectra were recorded with 300 MHz Bruker AC300 and 400 MHz Bruker Avance spectrometers. Chemical shifts are given in ppm (δ) and are referenced to the residual proton resonances of the solvents. Coupling constants (*J*) are given in Hertz (Hz). The letters m, s, d, t, and q represent

FULL PAPER

multiplet, singlet, doublet, triplet, and quartet, respectively. The letters br. indicate that the signal is broad.

Microwave reactions were carried out in a 0.5-2 mL vial with a Biotage InitiatorTM 2.0 microwave synthesizer. The solutions were stirred before the irradiation was started and the absorbance of the solvent was set as "normal". The reaction time was initiated as soon the system reached the input temperature, although it took approximately 2 min to reach it.

High-resolution mass spectra were recorded with a VGmAutospec (VG Analytical, Micromass Instruments) by the Universitat de València Mass Spectrometry Service.

Ethyl 5-(3-Butenyl)-1*H*-**pyrazole-3-carboxylate (4b)**:^[15] Yellow oil (65%). ¹H NMR (300 MHz, CDCl₃): δ = 1.30 (t, *J* = 7.0 Hz, 3 H, CH₃), 2.35 (dt, ¹*J* = 8.1, ²*J* = 6.6 Hz, 2 H, CH₂), 2.75 (t, *J* = 7.2 Hz, 2 H, CH₂), 4.31 (q, *J* = 7.0 Hz, 2 H, CH₂), 4.93–5.03 (m, 2 H, CH₂), 5.71–5.84 (m, 1 H, CH), 5.65 (s, 1 H, CH), 8.71 (br., 1 H, NH) ppm. ¹³C NMR (75.5 MHz, CDCl₃): δ = 14.6, 25.9, 33.4, 61.3, 106.8, 116.2, 137.4, 162.3 ppm. HRMS (EI): calcd. for C₁₀H₁₄N₂O₂ [M]⁺ 194.1059; found 194.1055.

Ethyl 1-Allyl-3-(2-furyl)-1H-pyrazole-5-carboxylate (5a): A mixture of allyl acetate (1.75 mL, 16.2 mmol) in THF (10 mL), bis(dibenzylideneacetone)palladium (201.4 mg, 0.22 mmol), and 1,4bis(diphenylphosphanyl)butane (184.3 mg, 0.432 mmol) was added to a solution of 4a (1'103 g, 5.4 mmol) in THF (15 mL). After heating at 60 °C for 18 h, the mixture was extracted with EtOAc and washed with H₂O. The organic layer was dried and concentrated. The residue was purified by flash chromatography (n-hexane/ EtOAc, 4:1) to afford 5aa as a pale-yellow oil (1.03 g, 78%) and 5ab as a yellow oil (259.0 mg, 20%). For 5aa: ¹H NMR (300 MHz, CDCl₃): δ = 1.32 (t, J = 7.2 Hz, 3 H, CH₃), 4.28 (q, J = 7.2 Hz, 2 H, CH_2), 5.02 (d, J = 17.3 Hz, 1 H, CHH), 5.08–5.15 (m, 3 H, CHH, CH₂), 5.91–6.04 (m, 1 H, CH), 6.39 (dd, ${}^{1}J = 3.4$, ${}^{2}J =$ 1.7 Hz, 1 H, CH), 6.62 (d, J = 3.4 Hz, 1 H, CH), 6.99 (s, 1 H, CH), 7.38 (d, *J* = 1.7 Hz, 1 H, C*H*) ppm. ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 14.6,\, 54.6,\, 61.6,\, 106.6,\, 108.3,\, 111.7,\, 117.9,\, 133.5,\, 142.5,\, 143.2,\,$ 148.3, 159.7 ppm. HRMS (EI): calcd. for $C_{13}H_{14}N_2O_3$ [M]⁺ 246.0960; found 246.0964. For 5ab: ¹H NMR (300 MHz, CDCl₃): $\delta = 1.34$ (t, J = 7.2 Hz, 3 H, CH_3), 4.35 (q, J = 7.2 Hz, 2 H, CH_2), 4.95–4.99 (m, 3 H, CHH, CH₂), 5.13 (d, J = 10.6 Hz, 1 H, CHH), 5.87–5.99 (m, 1 H, CH), 6.44 (dd, ${}^{1}J$ = 3.4, ${}^{2}J$ = 1.9 Hz, 1 H, CH), 6.53 (d, J = 3.4 Hz, 1 H, CH), 6.95 (s, 1 H, CH), 7.45 (dd, ${}^{1}J =$ 1.9, ${}^{2}J$ = 1.1 Hz, 1 H, CH) ppm. ${}^{13}C$ NMR (75.5 MHz, CDCl₃): δ = 14.8, 54.6, 61.5, 108.4, 110.0, 111.9, 118.3, 132.6, 135.6, 143.5, 162.5 ppm. HRMS (EI): calcd. for $C_{13}H_{14}N_2O_3$ [M]⁺ 246.0960; found 246.0962.

Ethyl 1-Allyl-5-(3-butenyl)-1H-pyrazole-3-carboxylate (5b): NaH (18.4 mg, 0.77 mmol) was added portionwise to a solution of 4b (124'1 mg, 0.64 mmol) in DMF (5 mL) at 0 °C, and the mixture was stirred for 20 min. Then allyl bromide (68 µL, 0.77 mmol) was added and the mixture was stirred for 3 h. The solvent was concentrated under vacuum and the crude mixture extracted with EtOAc. After washing with H₂O, the organic layer was dried and concentrated. Flash chromatography (n-hexane/EtOAc, 4:1) afforded 5b as a pale-yellow oil (98.8 mg, 66%). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.32$ (t, J = 7.1 Hz, 3 H, CH₃), 2.36 (dt, ${}^{1}J = 7.5$, ${}^{2}J = 6.6$ Hz, 2 H, CH₂), 2.62 (t, J = 7.5 Hz, 2 H, CH₂), 4.33 (q, J = 7.1 Hz, 2 H, CH₂), 4.73 (dt, ${}^{1}J$ = 5.3, ${}^{2}J$ = 1.7 Hz, 2 H, CH₂), 4.94 (dd, ${}^{1}J$ = 16.1, ${}^{2}J = 0.8$ Hz, 1 H, CHH), 4.98 (d, J = 9.7 Hz, 1 H, CHH), 5.02 (dd, ${}^{1}J$ = 16.1, ${}^{2}J$ = 1.5 Hz, 1 H, CHH), 5.15 (dd, ${}^{1}J$ = 9.7, ${}^{2}J$ = 0.9 Hz, 1 H, CHH), 5.70–5.82 (m, 1 H, CH), 5.84–5.95 (m, 1 H, CH), 6.57 (s, 1 H, CH) ppm. ¹³C NMR (75.5 MHz, CDCl₃): δ = 14.8, 25.2, 32.4, 53.0, 61.2, 107.9, 116.1, 118.1, 132.7, 136.9, 143.0,

144.4, 162.9 ppm. HRMS (EI): calcd. for $C_{13}H_{18}N_2O_2$ [M]⁺ 234.1368; found 234.1361.

1-Allyl-3-(2-furyl)-1*H***-pyrazole-5-carbaldehyde (6a):^[12b]** Yellow oil (880 mg, 67.5% from **5aa**, two steps). ¹H NMR (300 MHz, CDCl₃): δ = 5.01–5.13 (m, 4 H, *CH*₂, *CH*₂), 5.85–5.98 (m, 1 H, *CH*), 6.38 (dd, ¹*J* = 3.4, ²*J* = 1.9 Hz, 1 H, *CH*), 6.63 (dd, ¹*J* = 3.4, ²*J* = 0.8 Hz, 1 H, *CH*), 6.99 (s, 1 H, *CH*), 7.37 (dd, ¹*J* = 1.9, ²*J* = 0.8 Hz, 1 H, *CH*), 9.76 (s, 1 H, *CH*) ppm. ¹³C NMR (75.5 MHz, CDCl₃): δ = 54.6, 106.9, 111.5, 111.8, 118.5, 132.9, 139.9, 142.7, 144.0, 147.8, 179.8 ppm. HRMS (EI): calcd. for C₁₁H₁₀N₂O₂ [M]⁺ 202.0742; found 202.0750.

Addition of Grignard Reagents: The Grignard reagent (1 mu in THF, 1.5 mmol) was slowly added to a solution of **6a** (203.5 mg, 1.0 mmol) in dry THF (6 mL) cooled to 0 °C. After stirring for 3 h (TLC), a saturated NH₄Cl solution was added and the crude mixture was extracted with EtOAc. The combined organic extracts were washed with brine, dried with anhydrous Na₂SO₄, concentrated under vacuum, and purified by flash chromatography.

1-AllyI-3-(2-furyI)-5-(1-hydroxy-2-propenyI)-1*H*-**pyrazole** (7a): Flash chromatography (*n*-hexane/EtOAc, 2:1). Pale-yellow oil (172.5 mg, 75%). ¹H NMR (300 MHz, CDCl₃): $\delta = 4.70$ (ddt, ¹*J* = 16.2, ²*J* = 5.3, ³*J* = 1.5 Hz, 1 H, CHH), 4.78 (ddt, ¹*J* = 16.2, ²*J* = 5.6, ³*J* = 1.5 Hz, 1 H, CHH), 4.97 (dd, ¹*J* = 17.1, ²*J* = 1.1 Hz, 1 H, CHH), 5.10 (dd, ¹*J* = 10.6, ²*J* = 1.5 Hz, 1 H, CHH), 5.16 (br., 1 H, CH), 5.22 (dd, ¹*J* = 10.2, ²*J* = 1.1 Hz, 1 H, CHH), 5.31 (dd, ¹*J* = 17.1, ²*J* = 1.1 Hz, 1 H, CHH), 5.84–5.96 (m, 1 H, CH), 5.98–6.07 (m, 1 H, CH), 6.53 (dd, ¹*J* = 3.4, ²*J* = 1.9 Hz, 1 H, CH), 6.53 (dd, ¹*J* = 3.4, ²*J* = 0.8 Hz, 1 H, CH), 7.33 (dd, ¹*J* = 1.9, ²*J* = 0.8 Hz, 1 H, CH) ppm. ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 52.4$, 66.4, 101.9, 105.6, 111.2, 116.6, 117.8, 133.3, 136.9, 141.6, 142.8, 144.2, 148.5 ppm. HRMS (EI): calcd. for C₁₃H₁₄N₂O₂ [M]⁺ 230.1015; found 230.1011.

1-AllyI-3-(2-furyI)-5-(1-hydroxy-3-butenyI)-1*H*-**pyrazole (8a):** Flash chromatography (*n*-hexane/EtOAc, 1:1). Pale-yellow oil (231 mg, 95%). ¹H NMR (300 MHz, CDCl₃): $\delta = 2.17$ (s, 1 H, OH), 2.57–2.62 (m, 2 H, CH₂), 4.72 (dd, ¹*J* = 7.4, ²*J* = 7.3 Hz, 1 H, CH), 4.80–4.84 (m, 2 H, CH₂), 5.01 (dd, ¹*J* = 17.2, ²*J* = 1.1 Hz, 1 H, CHH), 5.13–5.18 (m, 2 H, CH₂), 5.19 (dd, ¹*J* = 17.2, ²*J* = 1.3 Hz, 1 H, CHH), 5.73–5.87 (m, 1 H, CH), 5.91–6.04 (m, 1 H, CH), 6.39 (dd, ¹*J* = 3.4, ²*J* = 1.9 Hz, 1 H, CH), 6.58 (dd, ¹*J* = 3.4, ²*J* = 0.7 Hz, 1 H, CH) ppm. ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 41.2$, 52.8, 65.1, 101.6, 106.0, 111.6, 117.7, 119.5, 133.8, 133.9, 142.1, 143.3, 145.8, 149.1 ppm. HRMS (EI): calcd. for C₁₄H₁₆N₂O₂ [M]⁺ 244.1212; found 244.1193.

Ring-Closing Metathesis of 7a, 8a and 5b: The second-generation Hoveyda–Grubbs' catalyst (5 mol-%) was added to a solution of **7a** (202 mg, 0.88 mmol) [or **8a** (0.60 mg, 0.61 mmol) or **5b** (100 mg, 0.43 mmol)] in DCE (0.05 M) (or DCM), and the mixture was heated at reflux for 2 h for **7a** and **8a** (**5b** was heated under microwaves at 80 °C for 1 h). The solvent was evaporated and the crude mixture was purified by flash chromatography (*n*-hexane/EtOAc, 1:1, for **1a** and **2a**; *n*-hexane/EtOAc, 2:1, for **2b**).

2-(2-Furyl)-4,7-dihydropyrazolo[1,5-*a*]**pyridin-4-ol** (1a): White solid (176 mg, 99%); m.p. 160–162 °C. ¹H NMR (300 MHz, CDCl₃): δ = 4.63–4.81 (m, 2 H, CH₂), 5.28 (d, *J* = 3.6 Hz, 1 H, CH), 6.07–6.19 (m, 2 H, CH, CH), 6.53 (dd, ¹*J* = 3.4, ²*J* = 1.8 Hz, 1 H, CH), 6.62 (s, 1 H, CH), 6.72 (dd, ¹*J* = 3.4, ²*J* = 0.8 Hz, 1 H, CH), 7.56 (dd, ¹*J* = 1.8, ²*J* = 0.8 Hz, 1 H, CH) ppm. ¹³C NMR (75.5 MHz, CDCl₃): δ = 48.3, 61.8, 101.7, 107.3, 112.7, 124.1, 127.7, 143.7 145.4, 150.3 ppm. HRMS (EI): calcd. for C₁₁H₁₀N₂O₂ [M]⁺ 202.0742; found 202.0739.

Pyrazolopyridines and -azepines by Ring-Closing Metathesis

2-(2-Furyl)-5,8-dihydro-4*H***-pyrazolo**[**1,5***-a*]**azepin-4-ol** (**2a**): Yellow oil (118.6 mg, 84%). ¹H NMR (300 MHz, CDCl₃): $\delta = 2.57-2.60$ (m, 3 H, CH₂, OH), 4.77 (ddd, ¹*J* = 17.3, ²*J* = 4.7, ³*J* = 1.2 Hz, 1 H, CHH), 4.93 (ddd, ¹*J* = 17.3, ²*J* = 4.1, ³*J* = 1.7 Hz, 1 H, CHH), 5.07 (dd, ¹*J* = 5.5, ²*J* = 5.1 Hz, 1 H, CH), 5.65-5.82 (m, 2 H, CH, CH), 6.35 (s, 1 H, CH), 6.39 (dd, ¹*J* = 3.3, ²*J* = 1.7 Hz, 1 H, CH), 6.55 (dd, ¹*J* = 3.3, ²*J* = 0.6 Hz, 1 H, CH), 7.37 (dd, ¹*J* = 1.7, ²*J* = 0.6 Hz, 1 H, CH) ppm. ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 36.0$, 50.7, 64.8, 101.6, 105.8, 111.6, 123.3, 127.5, 142.3, 142.4, 146.3, 149.1 ppm. HRMS (EI): calcd. for C₁₂H₁₂N₂O₂ [M]⁺ 216.0899; found 216.0907.

Ethyl 5,8-Dihydro-4*H***-pyrazolo**[**1,5-***a*]**azepin-2-carboxylate** (2b): Pale-yellow oil (70.8 mg, 80%). ¹H NMR (300 MHz, CDCl₃): $\delta =$ 1.34 (t, J = 7.0 Hz, 3 H, CH₃), 2.34 (dt, ¹J = 3.4, ²J = 2.1 Hz, 2 H, CH₂), 2.92 (t, J = 5.8 Hz, 2 H, CH₂), 4.33 (q, J = 7.0 Hz, 2 H, CH₂), 4.87 (d, J = 2.5 Hz, 2 H, CH₂), 5.66–5.77 (m, 2 H, CH, CH), 6.55 (s, 1 H, CH) ppm. ¹³C NMR (75.5 MHz, CDCl₃): $\delta =$ 14.8, 23.2, 28.1, 50.5, 61.2, 107.7, 121.7, 131.8, 141.9, 144.9, 162.9 ppm. HRMS (EI): calcd. for C₁₁H₁₄N₂O₂ [M]⁺ 206.1055; found 206.1059.

Dehydration of 1a and 2a: A solution of 1 mu HCl (0.50 mmol) was added to a solution of **1a** (50 mg, 0.247 mmol) [or **2a** (55 mg, 0.255 mmol)] in THF (3 mL) at room temperature and the mixture was heated at reflux for 1 h. The crude mixture was extracted with EtOAc. The combined organic extracts were washed with H₂O, then with brine, and dried with anhydrous Na₂SO₄. The solvent was removed under vacuum and the crude mixture was purified by flash chromatography (*n*-hexane/EtOAc, 3:1).

2-(2-Furyl)pyrazolo[1,5-*a***]pyridine (1c):** White solid (44.6 mg, 97%); m.p. 75–77 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 6.47$ (dd, ¹J = 3.4, ²J = 1.9 Hz, 1 H, CH), 6.68 (s, 1 H, CH), 6.70 (dd, ¹J = 6.8, ²J = 1.3 Hz, 1 H, CH), 6.81 (dd, ¹J = 3.4, ²J = 0.8 Hz, 1 H, CH), 7.06 (ddd, ¹J = 8.8, ²J = 6.8, ³J = 1.1 Hz, 1 H, CH), 7.45 (dd, ¹J = 8.8, ²J = 1.0 Hz, 1 H, CH), 7.48 (dd, ¹J = 1.8, ²J = 0.8 Hz, 1 H, CH), 8.41 (dd, ¹J = 6.8, ²J = 1.0 Hz, 1 H, CH), 7.48 (dd, ¹J = 1.8, ²J = 0.8 Hz, 1 H, CH), 8.41 (dd, ¹J = 6.8, ²J = 1.0 Hz, 1 H, CH) ppm. ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 92.3$, 106.3, 110.5, 110.9, 116.9, 122.7, 127.5, 140.2, 141.6, 144.7, 147.7 ppm. HRMS (EI): calcd. for C₁₁H₈N₂O [M]⁺ 184.0637; found 184.0633.

2-(2-Furyl)pyrazolo[1,5-*a***]azepine (2c):** Yellow oil (44.5 mg, 90%). ¹H NMR (300 MHz, CDCl₃): δ = 4.73 (d, J = 6.4 Hz, 2 H, CH₂), 5.90 (dt, ¹J = 10.2, ²J = 6.4 Hz, 1 H, CH), 6.24 (dd, ¹J = 20.0, ²J= 5.5 Hz, 1 H, CH), 6.28 (dd, ¹J = 20.0, ²J = 5.9 Hz, 1 H, CH) 6.40 (dd, ¹J = 3.4, ²J = 1.1 Hz, 1 H, CH), 6.44 (s, 1 H, CH), 6.56 (dd, ¹J = 3.4, ²J = 0.8 Hz, 1 H, CH), 6.67 (d, J = 11.1 Hz, 1 H, CH), 7.39 (dd, ¹J = 1.9, ²J = 0.8 Hz, 1 H, CH) ppm. ¹³C NMR (75.5 MHz, CDCl₃): δ = 49.4, 102.4, 105.5, 111.3, 121.5, 125.4, 127.9, 130.7, 141.2, 141.8, 143.4, 148.8 ppm. HRMS (EI): calcd. for C₁₂H₁₀N₂O [M]⁺ 198.0793; found 198.0783.

N-[(*R*_S)-tert-Butylsulfinyl][1-allyl-3-(2-furyl)-1*H*-5-pyrazolyl]methanimine (11a): (*R*)-(+)-2-Methyl-2-propanesulfinamide (307 mg, 2.5 mmol) and Ti(OEt)₄ (0.8 mL, 3.84 mmol) were added to a solution of **6a** (418 mg, 2.07 mmol) in dry CH₂Cl₂ (20 mL) in a round-bottomed flask, and the mixture was stirred at room temperature for 20 h. Then H₂O/ice (10 mL) was added until white titanium salts precipitated. The suspension was filtered through a short pad of Celite[®] and washed with CH₂Cl₂. The clear solution was concentrated under vacuum to afford **11a**. Yellow oil (620 mg, 98%). [*a*]_D²⁵ = -95.5 (*c* = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 1.17 (s, 9 H, 3 CH₃), 4.91 (d, *J* = 17.1 Hz, 1 H, CHH), 5.02– 5.23 (m, 3 H, CHH, CH₂), 5.86–5.99 (m, 1 H, CH), 6.38 (dd, ¹*J* = 3.4, ²*J* = 1.9 Hz, 1 H, CH), 6.63 (d, *J* = 3.4 Hz, 1 H, CH), 6.89 (s, 1 H, CH), 7.38 (dd, ¹*J* = 1.9, ²*J* = 0.8 Hz, 1 H, CH), 8.45 (s, 1 H, *CH*) ppm. ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 21.4$, 52.9, 56.9, 105.4, 107.7, 110.4, 116.4, 131.9, 136.6, 141.2, 142.8, 146.7, 149.4 ppm. HRMS (EI): calcd. for C₁₅H₁₉N₃O₂S [M]⁺ 305.1197; found 305.1192.

Addition of Organometallic Reagents: Method A: Grignard reagent;^[24] method B: allyl bromide/In;^[26] method C: allyl bromide/ Zn;^[26] method D: Grignard reagent/Me₂Zn.^[28]

(*R_S*)-*N*-{(1*S*)-1-[1-Allyl-3-(2-furyl)-1*H*-5-pyrazolyl]-2-propenyl}*tert*-butylsulfinamide (12aa): Pale-yellow oil (177 mg, 59%, method A; 11.7 mg, 3.9%, method D). $[a]_D^{25} = -55.1$ (*c* = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 1.23 (s, 9 H, 3 CH₃), 3.48 (d, *J* = 5.1 Hz, 1 H, N*H*), 4.84 (m, 2 H, CH₂), 5.02–5.09 (m, 2 H, CH₂), 5.21–5.25 (m, 1 H, C*H*), 5.29–5.35 (m, 2 H, CH₂), 5.93– 6.12 (m, 2 H, 2 C*H*), 6.43 (dd, ¹*J* = 3.4, ²*J* = 1.8 Hz, 1 H, C*H*), 6.44 (s, 1 H, C*H*), 6.63 (dd, ¹*J* = 3.4, ²*J* = 0.7 Hz, 1 H, C*H*), 7.42 (dd, ¹*J* = 1.8, ²*J* = 0.7 Hz, 1 H, C*H*) ppm. ¹³C NMR (75.5 MHz, CDCl₃): δ = 22.5, 52.4, 53.5, 56.2, 102.7, 105.6, 111.2, 117.6, 118.4, 132.9, 136.3, 141.7, 142.5, 143.3, 148.6 ppm. HRMS (FAB): calcd. for C₁₇H₂₄N₃O₂S [M + H]⁺ 334.1584; found 334.1596.

(*R_s*)-*N*-{(*1R*)-1-[1-Allyl-3-(2-furyl)-1*H*-5-pyrazolyl]-2-propenyl}*tert*-butylsulfinamide (12ab): Pale-yellow oil (117 mg, 39%, method A; 282 mg, 94%, method D). [*a*]_D²⁵ = −51.9 (*c* = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 1.20 (s, 9 H, 3 CH₃), 3.56 (d, *J* = 2.7 Hz, 1 H, N*H*), 4.76–4.93 (m, 2 H, C*H*₂), 5.18–5.39 (m, 3 H, C*H*, C*H*₂), 5.87–6.03 (m, 2 H, C*H*₂), 6.40 (dd, ¹*J* = 3.3, ²*J* = 1.8 Hz, 1 H, C*H*), 6.43 (s, 1 H, C*H*), 6.60 (dd, ¹*J* = 3.3, ²*J* = 0.6 Hz, 1 H, C*H*), 7.39 (dd, ¹*J* = 1.8, ²*J* = 0.6 Hz, 1 H, C*H*) ppm. ¹³C NMR (75.5 MHz, CDCl₃): δ = 22.4, 51.9, 52.3, 55.7, 102.3, 105.5, 111.0, 117.4, 118.5, 133.0, 135.4, 141.5, 142.5, 143.0, 148.3 ppm. HRMS (FAB): calcd. for C₁₇H₂₄N₃O₂S [M + H]⁺ 334.1584; found 334.1597.

(*R*_S)-*N*-{(1*S*)-1-[1-Allyl-3-(2-furyl)-1*H*-5-pyrazolyl]-3-butenyl}*tert*-butylsulfinamide (13aa): Pale-yellow oil (200.9 mg, 67%, method A; 57 mg, 50% at 75% conversion, method B). $[a]_{D}^{25} =$ -93.6 (*c* = 1.1, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta =$ 1.14 (s, 9 H, 3 CH₃), 2.57–2.62 (m, 2 H, CH₂), 3.58 (d, *J* = 3.9 Hz, 1 H, N*H*), 4.47–4.53 (m, 1 H, C*H*), 4.80 (d, *J* = 5.3 Hz, 2 H, CH₂), 5.01 (d, *J* = 17.1 Hz, 1 H, C*H*), 5.13 (d, *J* = 10.4 Hz, 1 H, CH*H*), 5.17 (d, *J* = 10.6 Hz, 2 H, CH₂), 5.60–5.74 (m, 1 H, C*H*), 5.88–6.01 (m, 1 H, C*H*), 6.38 (s, 1 H, C*H*), 6.39 (dd, ¹*J* = 3.4, ²*J* = 1.8 Hz, 1 H, C*H*), 6.58 (d, *J* = 3.4 Hz, 1 H, C*H*), 7.37 (dd, ¹*J* = 1.8, ²*J* = 0.8 Hz, 1 H, C*H*) ppm. ¹³C NMR (75.5 MHz, CDCl₃): $\delta =$ 22.9, 41.6, 49.9, 52.8, 56.4, 102.4, 105.9, 111.6, 118.0, 120.4, 133.4, 133.5, 142.1, 143.7, 144.2, 149.1 ppm. HRMS (EI): calcd. for C₁₈H₂₅N₃O₂S [M]⁺ 347.1667; found 347.1670.

(*R_S*)-*N*-{(1*R*)-1-[1-Allyl-3-(2-furyl)-1*H*-5-pyrazolyl]-3-butenyl}tert-butylsulfinamide (13ab): Pale-yellow oil (50.9 mg, 17%, method A; 66 mg, 58%, method C). $[a]_D^{25} = -1.4$ (*c* = 1.4, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.12$ (s, 9 H, 3 C*H*₃), 2.58–2.67 (m, 2 H, C*H*₂), 3.52 (d, *J* = 3.6 Hz, 1 H, N*H*), 4.43 (td, ¹*J* = 7.1, ²*J* = 3.8 Hz, 1 H, C*H*), 4.74–4.89 (m, 2 H, C*H*₂), 4.96 (dd, ¹*J* = 17.2, ²*J* = 17.1 Hz, 1 H, CH*H*), 5.02–5.15 (m, 3 H, CH*H*, C*H*₂), 5.56–5.68 (m, 1 H, C*H*), 5.87–5.99 (m, 1 H, C*H*), 6.37 (dd, ¹*J* = 3.4, ²*J* = 1.5 Hz, 1 H, C*H*), 6.43 (s, 1 H, C*H*), 6.56 (d, *J* = 3.4 Hz, 1 H, C*H*), 7.35 (d, *J* = 1.5 Hz, 1 H, C*H*) ppm. ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 22.9$, 40.8, 50.3, 52.5, 56.5, 102.7, 106.1, 111.6, 117.8, 119.6, 133.4, 133.8, 142.1, 143.5, 143.6, 149.0 ppm. HRMS (EI): calcd. for C₁₈H₂₅N₃O₂S [M]⁺ 347.1667; found 347.1661.

Addition of L-Alanine: At room temperature, hydrogen chloride (5.0 equiv., 4 M in dioxane) was added to a solution of sulfinamine 12 (143.6 mg, 0.43 mmol) [or 13 (150 mg, 0.43 mmol)] in MeOH

FULL PAPER

(0.1 M), and the solution was stirred for 30 min (TLC). After removing the solvents, the crude mixture was dissolved in DMF (0.1 M) and *N*-Boc-L-alanine (90 mg, 0.47 mmol), HBTU (328 mg, 0.86 mmol), and DIEA (1.30 mmol, 0.23 mL) were sequentially added. The solution was stirred for 15 h at room temperature, and then concentrated under vacuum. The crude mixture was extracted with EtOAc. The organic extract was washed with citric acid (3 mL), satd. NaHCO₃ (3 mL), and brine, dried with anhydrous Na₂SO₄, concentrated under vacuum, and purified by flash chromatography (*n*-hexane/EtOAc, 1:1, for 14; *n*-hexane/EtOAc, 4:1, for 15).

(2*S*)-2-(*N*-Boc-amino)-*N*-{(1*S*)-1-[1-allyl-3-(2-furyl)-1*H*-5-pyrazolyl]-2-propenyl}propanamide (14aa): White solid (146.5 mg, 85%). $[a]_{25}^{25} = -132.4$ (c = 1.0, CHCl₃); m.p. 85–87 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.35$ (d, J = 6.9 Hz, 3 H, CH₃), 1.42 (s, 9 H, 3 CH₃), 4.13 (dq, ¹J = 6.9, ²J = 6.8 Hz, 1 H, CH), 4.80–4.88 (m, 3 H, CH₂, NH), 5.04–5.32 (m, 4 H, 2 CH₂), 5.74–5.78 (m, 1 H, CH), 5.93–6.06 (m, 2 H, 2 CH), 6.38 (s, 1 H, CH), 6.44 (dd, ¹J = 3.4, ²J = 1.8 Hz, 1 H, CH), 6.61 (dd, ¹J = 3.4, ²J = 0.9 Hz, 1 H, CH), 6.65 (br., 1 H, NH), 7.42 (dd, ¹J = 1.8, ²J = 0.9 Hz, 1 H, CH) ppm. ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 17.3$, 28.2, 46.1, 50.1, 52.2, 80.5, 102.4, 105.6, 111.2, 116.5, 117.5, 133.0, 134.4, 141.7, 142.5, 143.1, 148.6, 155.7, 171.7 ppm. HRMS (FAB): calcd. for C₂₁H₂₉N₄O₄ [M + H]⁺ 401.2183; found 401.2183.

(2*S*)-2-(*N*-Boc-amino)-*N*-{(1*R*)-1-[1-allyl-3-(2-furyl)-1*H*-5-pyrazolyl]-2-propenyl}propanamide (14ab): White solid (160 mg, 93%). $[a]_{25}^{25} = +142.6$ (c = 1.5, CHCl₃); m.p. 96–98 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.34$ (d, J = 6.9 Hz, 3 H, CH₃), 1.39 (s, 9 H, 3 CH₃), 4.18 (m, 1 H, CH), 4.70–4.85 (m, 2 H, CH₂), 4.95 (d, J = 7.2 Hz, 1 H, NH), 5.20–5.30 (m, 4 H, 2 CH₂), 5.72–5.76 (m, 1 H, CH), 5.90–6.04 (m, 2 H, 2 CH), 6.34 (s, 1 H, CH), 6.42 (dd, ¹J= 3.3, ²J = 1.8 Hz, 1 H, CH), 6.58 (dd, ¹J = 3.3, ²J = 0.6 Hz, 1 H, CH), 6.81 (br., 1 H, NH), 7.39 (dd, ¹J = 1.8, ²J = 0.6 Hz, 1 H, CH) ppm. ¹³C NMR (75.5 MHz, CDCl₃): δ = 17.6, 28.2, 46.0, 50.0, 52.2, 80.5, 102.3, 105.5, 111.2, 116.7, 117.5, 133.0, 134.4, 141.6, 142.5, 143.1, 148.6, 155.6, 171.7 ppm. HRMS (FAB): calcd. for C₂₁H₂₉N₄O₄ [M + H]⁺ 401.2183; found 401.2197.

(2*S*)-2-(*N*-Boc-amino)-*N*-{(1*S*)-1-[1-allyl-3-(2-furyl)-1*H*-5-pyrazolyl]-3-butenyl}propanamide (15aa): White solid (144.2 mg, 81%). $[a]_{25}^{25} = -121.22$ (c = 1.1, CHCl₃); m.p. 44–46 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.26$ (d, J = 6.9 Hz, 3 H, CH₃), 1.36 (s, 9 H, 3 CH₃), 2.46–2.63 (m, 2 H, CH₂), 3.99–4.08 (m, 1 H, CH), 4.76 (d, J = 4.7 Hz, 2 H, CH₂), 4.87 (d, J = 5.5 Hz, 1 H, NH), 4.99– 5.15 (m, 5 H, CH₂, CH₂, CH), 5.63–5.73 (m, 1 H, CH), 5.87–5.98 (m, 1 H, CH), 6.38 (s, 1 H, CH), 6.39 (dd, ¹J = 3.2, ²J = 1.7 Hz, 1 H, CH), 6.52 (br., 1 H, NH), 6.57 (d, J = 3.2 Hz, 1 H, CH), 7.37 (dd, ¹J = 1.7, ²J = 0.6 Hz, 1 H, CH) ppm. ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 16.4$, 27.2, 37.9, 42.7, 49.0, 51.2, 79.5, 100.1, 104.5, 110.2, 116.4, 117.8, 131.9, 132.2, 140.7, 142.1, 142.6, 147.7, 154.6, 170.8 ppm. HRMS (EI): calcd. for C₂₂H₃₀N₄O₄ [M]⁺ 414.2267; found 414.2269.

(2*S*)-2-(*N*-Boc-amino)-*N*-{(1*R*)-1-[1-allyl-3-(2-furyl)-1*H*-5-pyrazolyl]-3-butenyl}propanamide (15ab): Pale-yellow solid (165.5 mg, 93%). $[a]_{D}^{25} = +80.6 (c = 0.9, CHCl_3); m.p. 44-46 °C. ¹H NMR$ $(300 MHz, CDCl_3): <math>\delta = 1.26$ (d, J = 7.0 Hz, 3 H, *CH*₃), 1.35 (s, 9 H, 3 *CH*₃), 2.45–2.63 (m, 2 H, *CH*₂), 4.05 (q, J = 7.0 Hz, 1 H, *CH*), 4.70–4.82 (m, 2 H, *CH*₂), 4.85 (d, J = 7.0 Hz, 1 H, *NH*), 5.00 (dd, ¹ $J = 17.1, {}^{2}J = 1.1$ Hz, 1 H, *CH*), 5.05–5.15 (m, 4 H, *CH*₂, *CH*₂), 5.64–5.73 (m, 1 H, *CH*), 5.86–5.98 (m, 1 H, *CH*), 6.34 (s, 1 H, *CH*), 6.39 (dd, ¹ $J = 3.2, {}^{2}J = 1.7$ Hz, 1 H, *CH*), 6.56 (d, J = 3.2 Hz, 1 H, *CH*), 6.63 (br., 1 H, *NH*), 7.36 (dd, ¹ $J = 1.7, {}^{2}J = 0.6$ Hz, 1 H, *CH*) ppm. ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 18.1, 28.6, 39.4, 44.1$, 50.3, 52.5, 80.8, 101.5, 105.9, 111.6, 117.8, 119.4, 133.3, 133.7, 142.1, 143.5, 144.1, 149.1, 156.0, 172.2 ppm. HRMS (EI): calcd. for $C_{22}H_{30}N_4O_4$ [M]⁺ 414.2267; found 414.2252.

Ring-Closing Metathesis of 14 and 15: The second-generation Hoveyda–Grubbs' catalyst (15.4 mg; 0.02 mmol) was added to a solution of **14** (196.5 mg, 0.49 mmol) [or **15** (202.8 mg, 0.49 mmol)] in DCM (0.05 M) (or DCE). The mixture was heated at reflux for 18 h for **14**, and for 6 h followed by stirring for 10 h at room temperature for **15**. The solvent was evaporated and the crude mixture was purified by flash chromatography (*n*-hexane/EtOAc, 1:2, for **16**; *n*-hexane/EtOAc, 2:1, for **17**).

(2*S*)-2-(*N*-Boc-amino)-*N*-[(4*S*)-2-(2-furyl)-4,7-dihydropyrazolo-[1,5-*a*]pyridin-4-yl]propanamide (16aa): White solid (164.5 mg, 90%). [*a*]_D²⁵ = +22.8 (*c* = 0.9, CHCl₃); m.p. 88–90 °C. ¹H NMR (300 MHz, CDCl₃): δ = 1.39 (s, 9 H, 3 CH₃), 1.36 (d, *J* = 8.1 Hz, 3 H, CH₃), 4.17–4.22 (m, 1 H, CH), 4.63–4.78 (m, 2 H, CH₂), 5.13 (br., 1 H, NH), 5.77–5.91 (m, 2 H, CHH, CH), 6.04–6.08 (m, 1 H, CH), 6.41 (s, 1 H, CH), 6.42 (dd, ¹*J* = 3.3, ²*J* = 1.8 Hz, 1 H, CH), 6.58 (dd, ¹*J* = 3.3, ²*J* = 0.6 Hz, 1 H, CH), 6.88 (br., 1 H, NH), 7.39 (dd, ¹*J* = 1.8, ²*J* = 0.6 Hz, 1 H, CH) ppm. ¹³C NMR (75.5 MHz, CDCl₃): δ = 18.4, 28.1, 42.1, 46.8, 50.1, 80.2, 100.1, 105.8, 111.2, 123.1, 123.7, 138.7, 141.8, 143.8, 148.6, 155.3, 172.3 ppm. HRMS (FAB): calcd. for C₁₉H₂₅N₄O₄ [M + H]⁺ 373.1870; found 373.1852.

(2*S*)-2-(*N*-Boc-amino)-*N*-[(4*R*)-2-(2-furyl)-4,7-dihydropyrazolo-[1,5-*a*]pyridin-4-yl]propanamide (16ab): White solid (168.1 mg, 92%). [*a*]_D²⁵ = -57.5 (*c* = 1.0, CHCl₃); m.p. 178–180 °C. ¹H NMR (300 MHz, CDCl₃): δ = 1.34 (s, 9 H, 3 CH₃), 1.35 (d, *J* = 6.9 Hz, 3 H, CH₃), 4.13–4.18 (m, 1 H, CH), 4.61–4.77 (m, 2 H, CH₂), 5.13 (d, *J* = 7.2 Hz, 1 H, NH), 5.75–5.79 (m, 1 H, CH), 5.85–5.90 (m, 1 H, CHH), 6.02–6.08 (m, 1 H, CHH), 6.38 (s, 1 H, CH), 6.41 (dd, ¹*J* = 3.3, ²*J* = 1.8 Hz, 1 H, CH), 6.57 (dd, ¹*J* = 3.3, ²*J* = 0.6 Hz, 1 H, CH), 6.96 (br., 1 H, NH), 7.39 (dd, ¹*J* = 1.8, ²*J* = 0.6 Hz, 1 H, CH) ppm. ¹³C NMR (75.5 MHz, CDCl₃): δ = 17.9, 28.1, 42.0, 46.8, 49.9, 80.3, 100.1, 105.7, 111.1, 123.1, 123.7, 138.6, 141.7, 143.8, 148.6, 155.5, 172.2 ppm. HRMS (FAB): calcd. for C₁₉H₂₅N₄O₄ [M + H]⁺ 373.1870; found 373.1873.

(2*S*)-2-(*N*-Boc-amino)-*N*-[(4*S*)-2-(2-furyl)-5,8-dihydro-4*H*-pyrazolo[1,5-*a*]azepin-4-yl]propanamide (17aa): White solid (87.9 mg, 53% at 96% conversion). $[a]_{25}^{25} = -68.7$ (c = 0.9, CHCl₃); m.p. 68– 70 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.33$ (d, J = 7.0 Hz, 3 H, CH₃), 1.39 (s, 9 H, 3 CH₃), 2.35–2.55 (m, 2 H, CH₂), 4.15 (dq, ¹J= 7.2, ²J = 7.0 Hz, 1 H, CH), 4.78–4.93 (m, 2 H, CH₂), 5.09 (d, J= 7.2 Hz, 1 H, NH), 5.35 (td, ¹J = 8.6, ²J = 5.3 Hz, 1 H, CH), 5.67–5.79 (m, 2 H, CH, CH), 6.32 (s, 1 H, CH), 6.36 (dd, ¹J = 3.3, ²J = 1.7 Hz, 1 H, CH), 6.51 (d, J = 3.3 Hz, 1 H, CH), 7.17 (br., 1 H, NH), 7.34 (d, J = 1.7 Hz, 1 H, CH) ppm. ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 14.6$, 18.1, 28.7, 34.3, 44.4, 50.6, 80.9, 101.5, 111.6, 123.8, 128.0, 142.0, 142.5, 145.0, 149.0, 156.2, 172.5 ppm. HRMS (EI): calcd. for C₂₀H₂₆N₄O₄ [M]⁺ 386.1954; found 386.1957.

(2*S*)-2-(*N*-Boc-amino)-*N*-[(4*R*)-2-(2-furyl)-5,8-dihydro-4*H*-pyrazolo[1,5-*a*]azepin-4-il]propanamide (17ab): White solid (69.7 mg, 42% at 75% conversion). [*a*]₂²⁵ = +7.2 (*c* = 0.9, CHCl₃); m.p. 110– 112 °C. ¹H NMR (300 MHz, CDCl₃): δ = 1.32 (d, *J* = 7.1 Hz, 3 H, CH₃), 1.41 (s, 9 H, 3 CH₃), 2.39–2.61 (m, 2 H, CH₂), 4.14 (dq, ¹*J* = 7.2, ²*J* = 7.1 Hz, 1 H, C*H*), 4.79–4.92 (m, 2 H, CH₂), 4.93 (d, *J* = 7.3 Hz, 1 H, N*H*), 5.37 (td, ¹*J* = 9.0, ²*J* = 3.6 Hz, 1 H, C*H*), 5.70–5.81 (m, 2 H, C*H*, C*H*), 6.33 (s, 1 H, C*H*), 6.37 (dd, ¹*J* = 3.1, ²*J* = 1.7 Hz, 1 H, C*H*), 6.52 (d, *J* = 3.1 Hz, 1 H, CH), 7.10 (br., 1 H, C*H*), 7.34 (dd, ¹*J* = 1.7, ²*J* = 0.6 Hz, 1 H, C*H*) ppm. ¹³C NMR (75.5 MHz, CDCl₃): δ = 14.6, 17.2, 28.7, 34.4, 44.4, 50.6, 81.1, 101.5, 105.8, 111.6, 123.6, 128.1, 141.9, 142.4, 144.9, 149.1, 156.5,

Pyrazolopyridines and -azepines by Ring-Closing Metathesis

172.2 ppm. HRMS (EI): calcd. for $C_{20}H_{26}N_4O_4\ [M]^+$ 386.1954; found 386.1959.

Hydrogenation Reaction: A solution of 16 (205 mg, 0.55 mmol) [or 17 (212 mg, 0.55 mmol)] in dry EtOAc (11 mL) and 10% palladium on carbon (58.4 mg, 0.055 mmol) was stirred under 1 atm of H_2 for 18 h at room temp. At this time, the catalyst was filtered off through a plug of Celite and the filtrate concentrated under reduced pressure. The crude mixture was purified by flash chromatography (*n*-hexane/EtOAc, 1:2, for 18; *n*-hexane/EtOAc, 2:1, for 19).

(2*S*)-2-(*N*-Boc-amino)-*N*-[(4*S*)-2-(2-furyl)-4,5,6,7-tetrahydropyrazolo[1,5-*a*]pyridin-4-yl]propanamide (18aa): White solid (165 mg, 80%). $[a]_{D}^{25} = -10.8 \ (c = 1.0, \text{ CHCl}_3); \text{ m.p. } 61-63 \text{ °C. }^{1}\text{H} \text{ NMR}$ (300 MHz, CDCl}3): $\delta = 1.36 \ (d, J = 5.4 \text{ Hz}, 3 \text{ H}, CH_3), 1.37 \ (s, 9 \text{ H}, 3 \text{ CH}_3), 1.94-2.23 \ (m, 4 \text{ H}, 2 \text{ CH}_2), 4.01-4.10 \ (m, 1 \text{ H}, CH),$ $4.14-4.21 \ (m, 2 \text{ H}, CH_2), 5.12-5.21 \ (m, 2 \text{ H}, CH, NH), 6.32 \ (s, 1 \text{ H}, CH), 6.40 \ (dd, {}^{1}J = 3.3, {}^{2}J = 1.8 \text{ Hz}, 1 \text{ H}, CH), 6.56 \ (dd, {}^{1}J = 3.3, {}^{2}J = 0.7 \text{ Hz}, 1 \text{ H}, CH), 6.87 \ (br., 1 \text{ H}, NH), 7.37 \ (dd, {}^{1}J = 1.8, {}^{2}J = 0.7 \text{ Hz}, 1 \text{ H}, CH) \text{ ppm. } {}^{13}\text{C} \text{ NMR} \ (75.5 \text{ MHz}, \text{ CDCl}_3): \delta = 18.2, 20.8, 27.8, 28.2, 43.5, 47.6, 50.2, 80.2, 100.2, 105.5, 111.3, 140.9 \text{ ppm. HRMS} \ (EI): calcd. for C_{19}H_{27}N_4O_4 \ [M + H]^+ 375.2027; found 375.2021.$

(2*S*)-2-(*N*-Boc-amino)-*N*-[(4*R*)-2-(2-furyl)-4,5,6,7-tetrahydropyrazolo[1,5-*a*]pyridin-4-yl]propanamide (18ab): White solid (123.7 mg, 60%). [*a*]_D²⁵ = -28.8 (*c* = 0.9, CHCl₃); m.p. 188–190 °C. ¹H NMR (300 MHz, CDCl₃): δ = 1.36 (d, *J* = 6.9 Hz, 3 H, *CH*₃), 1.39 (s, 9 H, 3 *CH*₃), 1.96–2.24 (m, 4 H, 2 *CH*₂), 4.03–4.21 (m, 3 H, *CH*₂, *CH*), 5.06 (d, *J* = 7.2 Hz, 1 H, N*H*), 5.12–5.22 (m, 1 H, *CH*), 6.32 (s, 1 H, *CH*), 6.41 (dd, ¹*J* = 3.3, ²*J* = 1.6 Hz, 1 H, *CH*), 6.56 (dd, ¹*J* = 3.3, ²*J* = 0.6 Hz, 1 H, *CH*), 6.87 (br., 1 H, N*H*), 7.38 (dd, ¹*J* = 1.6, ²*J* = 0.6 Hz, 1 H, *CH*) ppm. ¹³C NMR (75.5 MHz, CDCl₃): δ = 17.2, 20.4, 27.4, 27.8, 43.0, 47.2, 49.6, 79.9, 99.9, 105.8, 110.7, 140.5, 141.2, 143.0, 148.3, 155.3, 171.7 ppm. HRMS (FAB): calcd. for C₁₉H₂₇N₄O₄ [M + H]⁺ 375.2027; found 375.2032.

(25)-2-(*N*-Boc-amino)-*N*-[(4*S*)-2-(2-furyl)-5,6,7,8-tetrahydro-4*H*-pyrazolo[1,5-*a*]azepin-4-yl]propanamide (19aa): White solid (142'9 mg, 67%). [*a*]_D²⁵ = -67.0 (*c* = 0.8, CHCl₃); m.p. 75-77 °C. ¹H NMR (300 MHz, CDCl₃): δ = 1.35 (d, *J* = 6.9 Hz, 3 H, C*H*₃), 1.42 (s, 9 H, 3 C*H*₃), 1.67-1.91 (m, 6 H, 3 C*H*₂), 4.08-4.18 (m, 2 H, C*H*₂), 4.43 (dq, ¹*J* = 14.2, ²*J* = 6.5 Hz, 1 H, C*H*), 4.97 (d, *J* = 6.5 Hz, 1 H, N*H*), 5.10 (t, *J* = 8.8 Hz, 1 H, C*H*), 6.28 (s, 1 H, C*H*), 6.37 (dd, ¹*J* = 3.2, ²*J* = 1.8 Hz, 1 H, C*H*), 6.51 (d, *J* = 3.2 Hz, 1 H, C*H*), 6.99 (br., 1 H, C*H*), 7.35 (d, *J* = 1.8 Hz, 1 H, C*H*) ppm. ¹³C NMR (75.5 MHz, CDCl₃): δ = 17.3, 20.4, 29.9, 30.6, 31.3, 37.1, 49.8, 56.4, 83.6, 104.4, 108.3, 114.1, 144.5, 144.8, 148.3, 151.7, 158.9, 174.6 ppm. HRMS (EI): calcd. for C₂₀H₂₈N₄O₄ [M]⁺ 388.2110; found 388.2107.

(2*S*)-2-(*N*-Boc-amino)-*N*-[(4*R*)-2-(2-furyl)-5,6,7,8-tetrahydro-4*H*pyrazolo[1,5-*a*]azepin-4-yl]propanamide (19ab): White solid (138.7 mg, 65%). $[a]_{25}^{25} = +14.5$ (*c* = 1.0, CHCl₃); m.p. 195–197 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.32$ (d, J = 6.0 Hz, 3 H, *CH*₃), 1.41 (s, 9 H, 3 C*H*₃), 1.62–1.93 (m, 6 H, 3 C*H*₂), 4.07–4.17 (m, 2 H, C*H*₂), 4.41 (dq, ¹*J* = 14.5, ²*J* = 6.0 Hz, 1 H, C*H*), 4.98 (d, *J* = 7.4 Hz, 1 H, N*H*), 5.08 (t, *J* = 9.4 Hz, 1 H, C*H*), 6.28 (s, 1 H, C*H*), 6.36 (dd, ¹*J* = 3.2, ²*J* = 1.4 Hz, 1 H, C*H*), 6.50 (d, *J* = 3.2 Hz, 1 H, C*H*), 7.03 (br., 1 H, N*H*), 7.33 (dd, ¹*J* = 1.4, ²*J* = 0.6 Hz, 1 H, C*H*) ppm. ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 17.4$, 27.4, 27.9, 28.7, 31.3, 34.5, 47.3, 53.8, 81.1, 101.8, 105.6, 111.5, 141.9, 142.1, 145.7, 149.2, 156.5, 171.9 ppm. HRMS (EI): calcd. for C₂₀H₂₈N₄O₄ [M]⁺ 388.2110; found 388.2114.

Oxidation of the Furyl Ring: A solution of **18** (127.5 mg, 0.34 mmol) [or **19** (132 mg, 0.34 mmol)] in MeOH (33 mL) was co-

oled to -78 °C. Ozone was passed through the solution until the blue color persisted. Then the reaction was stopped and O₂ gas bubbled through the solution to remove excess ozone. Evaporation of the solvent gave the crude product, which was purified by flash chromatography (*n*-hexane/EtOAc, 1:2; 2% HOAc, for **20**; *n*-hexane/EtOAc, 1:1; 2% HOAc, for **21**).

(4*S*)-4-[(2*S*)-2-(*N*-Boc-amino)propanoylamino]-4,5,6,7-tetrahydropyrazolo[1,5-*a*]pyridine-2-carboxylic Acid (20aa): White solid (96.1 mg, 80%). $[a]_{2^5}^{2^5} = -9.6 \ (c = 0.9, MeOH); m.p. 148–150 °C.$ ¹H NMR (300 MHz, CD₃OD): $\delta = 1.33 \ (d, J = 7.2 \text{ Hz}, 3 \text{ H}, CH_3)$, 1.44 (s, 9 H, 3 CH₃), 1.76–2.27 (m, 4 H, 2 CH₂), 4.01–4.24 (m, 3 H, CH₂, CH), 5.12–5.17 (m, 1 H, CH), 6.59 (s, 1 H, CH) ppm. ¹³C NMR (75.5 MHz, CD₃OD): $\delta = 18.4, 21.9, 28.3, 28.8, 44.7, 49.2, 51.9, 80.7, 107.2, 143.5, 145.3, 157.6, 166.1, 175.7 ppm. HRMS: calcd. for C₁₆H₂₅N₄O₅ [M + H]⁺ 3531819; found 353.1824.$

(4*R*)-4-[(2*S*)-2-(*N*-Boc-amino)propanoylamino]-4,5,6,7-tetrahydropyrazolo[1,5-*a*]pyridine-2-carboxylic acid (20ab): White solid (84.0 mg, 70%). [*a*]₂⁵ = -30.0 (*c* = 0.9, MeOH); m.p. 136–138 °C. ¹H NMR (300 MHz, CD₃OD): δ = 1.32 (d, *J* = 6.9 Hz, 3 H, CH₃), 1.44 (s, 9 H, 3 CH₃), 1.77–2.23 (m, 4 H, 2 CH₂), 4.03–4.23 (m, 3 H, CH₂, CH), 5.12–5.16 (m, 1 H, CH), 6.66 (s, 1 H, CH) ppm. ¹³C NMR (75.5 MHz, CD₃OD): δ = 18.2, 21.9, 28.2, 28.7, 44.7, 49.2, 51.8, 80.7, 107.4, 143.3, 145.3, 157.7, 166.1, 175.6 ppm. HRMS (FAB): calcd. for C₁₆H₂₅N₄O₅ [M + H]⁺ 353.1819; found 353.1809.

(4*S*)-4-[(2*S*)-2-(*N*-Boc-amino)propanoylamino]-5,6,7,8-tetrahydro-4*H*-pyrazolo[1,5-*a*]azepine-2-carboxylic Acid (21aa): White solid (87.3 mg, 70%). [*a*]₂⁵⁵ = -85.7 (*c* = 0.8, MeOH); m.p. 128–130 °C. ¹H NMR (300 MHz, CD₃OD): δ = 1.37 (d, *J* = 7.1 Hz, 3 H, C*H*₃), 1.48 (s, 9 H, 3 C*H*₃), 1.58–2.09 (m, 6 H, 3 C*H*₂), 4.13 (q, *J* = 7.1 Hz, 1 H, C*H*), 4.22 (dd, ¹*J* = 14.2, ²*J* = 11.1 Hz, 1 H, C*H*H), 4.51 (dd, ¹*J* = 14.2, ²*J* = 5.5 Hz, 1 H, CH*H*), 5.06 (d, *J* = 10.2 Hz, 1 H, C*H*), 6.61 (s, 1 H, C*H*) ppm. ¹³C NMR (75.5 MHz, CD₃OD): δ = 18.4, 28.5, 28.6, 28.8, 34.9, 48.5, 51.8, 54.7, 80.7, 107.8, 142.8, 148.3, 157.7, 165.4, 175.3 ppm. HRMS (EI): calcd. for C₁₇H₂₆N₄O₅ [M]⁺ 366.1903; found 366.1898.

(4*R*)-4-[(2*S*)-2-(*N*-Boc-amino)propanoylamino]-5,6,7,8-tetrahydro-4*H*-pyrazolo[1,5-*a*]azepine-2-carboxylic Acid (21ab): White solid (112.3 mg, 90%). [*a*] $_{D}^{25}$ = +46.5 (*c* = 0.8, MeOH); m.p. 126–128 °C. ¹H NMR (300 MHz, CD₃OD): δ = 1.34 (d, *J* = 7.1 Hz, 3 H, C*H*₃), 1.46 (s, 9 H, 3 C*H*₃), 1.60.2.16 (m, 6 H, 3 C*H*₂), 4.13 (q, *J* = 7.1 Hz, 1 H, C*H*), 4.23 (dd, ¹*J* = 14.3, ²*J* = 11.2 Hz, 1 H, C*H*H), 4.51 (dd, ¹*J* = 14.3, ²*J* = 5.6 Hz, 1 H, CH*H*), 5.02 (d, *J* = 9.9 Hz, 1 H, C*H*), 6.74 (s, 1 H, C*H*) ppm. ¹³C NMR (75.5 MHz, CD₃OD): δ = 19.3, 29.7, 29.8, 29.9, 36.1, 49.4, 52.9, 55.9, 81.9, 109.6, 143.9, 149.4, 159.0, 166.6, 176.6 ppm. HRMS (FAB): calcd. for C₁₇H₂₇N₄O₅ [M + H]⁺ 367.1981; found 367.1966.

Addition of Glycine: The same procedure as used for the Addition of L-Alanine (see above) was used but by using glycine instead of L-alanine. Flash chromatography was performed by using *n*-hexane/ EtOAc (1:3) as eluent.

(4*S*)-4-[(2*S*)-2-(*N*-Boc-amino)propanoylamino]-2-(ethoxycarbonylmethylcarbamoyl)-4,5,6,7-tetrahydropyrazolo[1,5-*a*]pyridine (9aa): White solid (70 mg, 80%). $[a]_D^{25} = -19.9$ (c = 1.0, CH₃OH); m.p. 73–75 °C. ¹H NMR (300 MHz, CD₃CN): $\delta = 1.22$ (t, J = 7.2 Hz, 3 H, CH₃), 1.27 (d, J = 7.2 Hz, 3 H, CH₃), 1.38 (s, 9 H, 3 CH₃), 1.68–2.20 (m, 4 H, 2 CH₂), 3.97–4.12 (m, 3 H, CH₂, CH), 4.01 (dd, ¹J = 6.1, ²J = 1.2 Hz, 2 H, CH₂), 4.14 (q, J = 7.2 Hz, 2 H, CH₂), 5.04–5.12 (m, 1 H, CH), 5.66 (br., 1 H, NH), 6.46 (d, J = 0.9 Hz, 1 H, CH), 7.12 (d, J = 8.4 Hz, 1 H, NH), 7.48 (t, J = 6.1 Hz, 1 H, NH) ppm. ¹³C NMR (75.5 MHz, CD₃CN): $\delta = 14.4$, 18.4, 21.5, 27.8, 28.5, 41.5, 44.1, 48.8, 51.4, 61.9, 80.0, 104.3, 143.6, 145.8,

FULL PAPER

156.4, 163.2, 170.9, 173.8 ppm. HRMS (FAB): calcd. for $C_{20}H_{31}N_5O_6$ [M + H]⁺ 438.2347; found 438.2346.

(4*R*)-4-[(2*S*)-2-(*N*-Boc-amino)propanoylamino]-2-(ethoxycarbonylmethylcarbamoyl)-4,5,6,7-tetrahydropyrazolo[1,5-*a*]pyridine (9ab): White solid (60.4 mg, 69%). $[a]_{D}^{25} = +7.3$ (*c* = 1.0, CH₃OH); m.p. 79–81 °C. ¹H NMR (300 MHz, CD₃CN): δ = 1.23 (t, *J* = 7.0 Hz, 3 H, CH₃), 1.27 (d, *J* = 7.2 Hz, 3 H, CH₃), 1.39 (s, 9 H, 3 CH₃), 1.60–2.17 (m, 4 H, 2 CH₂), 3.96–4.12 (m, 3 H, CH₂, CH), 4.02 (dd, ¹*J* = 6.0, ²*J* = 2.7 Hz, 2 H, CH₂), 4.15 (q, *J* = 7.0 Hz, 2 H, CH₂), 5.05–5.12 (m, 1 H, CH), 5.65 (br., 1 H, NH), 6.49 (d, *J* = 0.9 Hz, 1 H, CH), 7.05 (d, *J* = 8.4 Hz, 1 H, NH), 7.42 (t, *J* = 6.0 Hz, 1 H, NH) ppm. ¹³C NMR (75.5 MHz, CD₃CN): δ = 14.4, 18.2, 21.4, 27.9, 28.5, 41.4, 44.1, 48.8, 51.3, 61.8, 79.8, 104.5, 143.5, 145.9, 156.4, 162.9, 171.0, 173.4 ppm. HRMS (FAB): calcd. for C₂₀H₃₁N₅O₆ [M + H]⁺ 438.2347; found 438.2347.

(4*S*)-4-[(2*S*)-2-(*N*-Boc-amino)propanoylamino]-2-(ethoxycarbonylmethylcarbamoyl)-5,6,7,8-tetrahydro-4*H*-pyrazolo[1,5-*a*]azepine (10aa): White solid (76.6 mg, 85%). [*a*]₂₅²⁵ = -53.8 (*c* = 1.1, CHCl₃); m.p. 104–106 °C. ¹H NMR (300 MHz, CDCl₃): δ = 1.28, (t, *J* = 7.1 Hz, 3 H, C*H*₃), 1.37 (d, *J* = 6.9 Hz, 3 H, C*H*₃), 1.45 (s, 9 H, 3 C*H*₃), 1.61–2.03 (m, 6 H, 3 C*H*₂), 4.15–4.20 (m, 4 H, C*H*₂, C*H*, C*H*H), 4.22 (q, *J* = 6.9 Hz, 2 H, C*H*₂), 4.44 (dd, ¹*J* = 14.3, ²*J* = 5.2 Hz, 1 H, CH*H*), 5.04 (d, *J* = 7.0 Hz, 1 H, N*H*), 5.12 (dd, ¹*J* = 9.5, ²*J* = 9.3 Hz, 1 H, C*H*), 6.62 (s, 1 H, C*H*), 7.15 (br., 1 H, N*H*), 7.26 (t, *J* = 5.6 Hz, 1 H, N*H*) ppm. ¹³C NMR (75.5 MHz, CDCl₃): δ = 14.1, 14.2, 17.8, 27.1, 27.4, 28.3, 34.1, 41.0, 46.9, 50.1, 53.8, 61.4, 80.3, 104.8, 143.6, 146.3, 162.1, 169.9, 171.3 ppm. HRMS (EI): calcd. for C₂₁H₃₃N₅O₆ [M]⁺ 451.2431; found 451.2434.

(4*R*)-4-[(2*S*)-2-(*N*-Boc-amino)propanoylamino]-2-(ethoxycarbonylmethylcarbamoyl)-5,6,7,8-tetrahydro-4*H*-pyrazolo[1,5-*a*]azepine (10ab): White solid (74.8 mg, 83%). $[a]_{D}^{25}$ = +36.5 (*c* = 1.0, MeOH); m.p. 105–107 °C. ¹H NMR (300 MHz, CD₂Cl₂): δ = 1.41 (t, *J* = 7.1 Hz, 3 H, *CH*₃), 1.54 (d, *J* = 7.2 Hz, 3 H, *CH*₃), 1.57 (s, 9 H, 3 *CH*₃), 1.76–2.27 (m, 6 H, 3 *CH*₂), 4.25 (d, *J* = 5.8 Hz, 2 H, *CH*₂), 4.31–4.38 (m, 2 H, *CH*H, *CH*), 4.34 (q, *J* = 7.1 Hz, 2 H, *CH*₂), 4.57 (dd, ¹*J* = 14.5, ²*J* = 5.8 Hz, 1 H, *CHH*), 5.16–5.25 (m, 2 H, *CH*, *NH*), 6.61 (s, 1 H, *CH*), 7.09 (br., 1 H, *NH*), 7.39 (t, *J* = 4.8 Hz, 1 H, *NH*) ppm. ¹³C NMR (75.5 MHz, *CD*₃OD): δ = 14.5, 18.4, 28.4, 28.7, 28.8, 34.9, 41.9, 51.8, 54.8, 62.3, 80.8, 106.0, 144.6, 148.0, 157.5, 164.9, 171.4, 175.2 ppm. HRMS (EI): calcd. for C₂₁H₃₃N₅O₆ [M]⁺ 451.2431; found 451.2430.

Supporting Information (see footnote on the first page of this article): ¹H and ¹³C NMR spectra for all new compounds, crystallographic data for compounds **9aa** and **15aa**.

Acknowledgments

The authors would like to thank the Spanish Ministerio de Ciencia e Innovación (MICINN) (CTQ2010-19774) and the Generalitat Valenciana (PROMETEO/2010/061) for their financial support.

[2] a) K. L. Stevens, D. K. Jung, M. J. Alberti, J. G. Badiang, G. E. Peckham, J. M. Veal, M. Cheung, P. A. Harris, S. D. Chamberlain, M. R. Peel, Org. Lett. 2005, 7, 4753–4756; b) M. Cheung,
P. A. Harris, J. G. Badiang, G. E. Peckham, S. D. Chamberlain,
M. J. Alberti, D. K. Jung, S. S. Harris, N. H. Bramson, A. H.
Epperly, S. A. Stimpson, M. R. Peel, *Bioorg. Med. Chem. Lett.* 2008, 18, 5428–5430.

- [3] a) N. Tschammer, J. Elsner, A. Gotees, K. Ehrlich, S. Schuster, M. Ruberg, J. Kühhorn, D. Thompson, J. Whistler, H. Hübner, P. Gmeiner, J. Med. Chem. 2011, 54, 2477–2491; b) I. Salama, K. Schlotter, V. Utz, H. Huebner, P. Gmeiner, F. Boeckler, Bioorg. Med. Chem. 2006, 14, 5898–5912; c) S. Löber, H. Hübner, P. Gmeiner, Bioorg. Med. Chem. Lett. 1999, 9, 97–102.
- [4] a) B. A. Johns, K. S. Gudmundsson, E. Turner, S. H. Allen, D. K. Jung, C. J. Sexton, F. L. Boyd Jr., M. R. Peel, *Tetrahedron* 2003, 59, 9001–9011; b) B. A. Johns, K. S. Gudmundsson, E. Turner, S. H. Allen, V. A. Samano, J. A. Ray, G. A. Freeman, F. L. Boyd Jr., C. J. Sexton, D. W. Selleseth, K. L. Creech, K. R. Moniri, *Bioorg. Med. Chem.* 2005, 13, 2397–2411; c) S. H. Allen, B. A. Johns, K. S. Gudmundsson, G. A. Freeman, F. L. Boyd Jr., C. J. Sexton, D. W. Selleseth, K. L. Creech, K. R. Moniri, *Bioorg. Med. Chem.* 2006, 14, 944–954; d) B. A. Johns, K. S. Gudmundsson, S. H. Allen, *Bioorg. Med. Chem.* Lett. 2007, 17, 2858–2862.
- [5] a) A. Akahane, H. Katayama, T. Mitsunaga, Y. Kita, T. Kusunoki, T. Terai, K. Yoshida, Y. Shiokawa, *Bioorg. Med. Chem. Lett.* **1996**, *6*, 2059–2062; b) A. Akahane, H. Katayama, T. Mitsunaga, T. Kato, T. Kinoshita, Y. Kita, T. Kusunoki, T. Terai, K. Yoshida, Y. Shiokawa, *J. Med. Chem.* **1999**, *42*, 779–783.
- [6] T. Koike, T. Takai, Y. Oaci, M. Nakayama, Y. Kosugi, M. Nakashima, S.-i. Yoshikubo, K. Hirai, O. Uchikawa, J. Med. Chem. 2011, 54, 4207–4218.
- [7] T. Aboul-Fadl, S. Löber, P. Gmeiner, Synthesis 2000, 1727– 1732.
- [8] A. S. Howard, *Comprehensive Heterocyclic Chemistry II* (Eds.: A. R. Katritzky, C. W. Rees, E. F. V. Scriven), Pergamon Press, Oxford, **1996**, vol. 8, p. 255–258.
- [9] A. S. Kiselyov, Tetrahedron Lett. 2006, 47, 1395-1398.
- [10] J. J. Mousseau, A. Fortier, A. B. Charrette, *Org. Lett.* **2010**, *12*, 516–519.
- [11] a) S. Nagai, T. Ueda, N. Oda, J. Sakakibara, *Heterocycles* 1983, 20, 995–1000; b) S. D. Larsen, *Synlett* 1997, 8, 1013–1014.
- [12] a) S. Fustero, R. Román, J. F. Sanz-Cervera, A. Simón-Fuentes, A. C. Cuñat, S. Villanova, M. Murguía, J. Org. Chem. 2008, 73, 3523–3529; b) S. Fustero, R. Román, J. F. Sanz-Cervera, A. Simón-Fuentes, J. Bueno, S. Villanova, J. Org. Chem. 2008, 73, 8545–8552.
- [13] See, for example: a) M. E. Maier, Angew. Chem. 2000, 112, 2153; Angew. Chem. Int. Ed. 2000, 39, 2073–2077; b) A. Deiters, S. F. Martin, Chem. Rev. 2004, 104, 2199–2238; c) A. Michaut, J. Rodriguez, Angew. Chem. 2006, 118, 5870; Angew. Chem. Int. Ed. 2006, 45, 5740–5750.
- [14] a) Y. Chen, H. V. R. Dias, C. J. Lovely, *Tetrahedron Lett.* 2003, 44, 1379–1382; b) J. Perron, B. Joseph, J.-Y. Mérour, *Tetrahedron* 2004, 60, 10099–10109; c) V. Gracias, A. F. Gasieki, S. W. Djuric, *Org. Lett.* 2005, 7, 3183–3186; d) K. C. Majumdar, S. Mondal, D. Ghosh, *Synthesis* 2010, 1176–1180; e) P. A. Suryavanshi, V. Sridharan, J. C. Menéndez, *Org. Biomol. Chem.* 2010, 8, 3426–3436.
- [15] X. H. Jiang, L. D. Song, Y. Q. Long, J. Org. Chem. 2003, 68, 7555–7558.
- [16] a) A. F. C. Flores, S. Brondani, L. Pizzuti, M. A. P. Martins, N. Zanatta, H. G. Bonacorso, D. C. Flores, *Synthesis* 2005, 2744–2750; b) H. Saikachi, T. Kitagawa, *Chem. Pharm. Bull.* 1971, 19, 1562–1566.
- [17] J. Ichikawa, M. Kobayashi, Y. Noda, N. Yolota, K. Amano, T. Minami, J. Org. Chem. 1996, 61, 2763–2769.
- [18] M. Moreno-Mañas, R. Pleixats, M. Villarroya, *Tetrahedron* 1993, 49, 1457–1464.
- [19] When RCM was performed with the Grubbs' second-generation catalyst, in the presence of *p*-toluensulfonic acid (Y. Chen,

For recent reviews on the chemistry and properties of pyrazoles, see: a) Y. L. Janin, *Chem. Rev.* 2012, *112*, 3924–3958; b)
 S. Fustero, M. Sánchez-Roselló, P. Barrio, A. Simón-Fuentes, *Chem. Rev.* 2011, *111*, 6984–7034; c) J. Elguero, A. M. S. Silva,
 A. C. Tome, *Mod. Heterocycl. Chem.* 2011, *2*, 635–725; d) A.
 Schmidt, A. Dreger, *Curr. Org. Chem.* 2011, *15*, 1423–1463; e)
 J.-Y. Yoon, S.-g. Lee, H. Shin, *Curr. Org. Chem.* 2011, *15*, 657– 674; f) S. Fustero, A. Simón-Fuentes, J. F. Sanz-Cervera, *Org. Prep. Proced.* 2009, *41*, 253–290.

Pyrazolopyridines and -azepines by Ring-Closing Metathesis

H. V. Rasika, C. J. Lovely, *Tetrahedron Lett.* **2003**, *44*, 1379–1382), **1a** and **2a** were obtained in very low yield.

- [20] J. Vagner, H. Qu, V. J. Hruby, Curr. Opin. Chem. Biol. 2008, 12, 292–296, and references cited therein.
- [21] L. Halab, F. Gosselin, W. D. Lubell, *Biopolymers Pept. Sci.* 2000, 55, 101–122.
- [22] a) R. Bloch, Chem. Rev. 1998, 98, 1407–1438; b) D. Enders, U. Reinhold, Tetrahedron: Asymmetry 1997, 8, 1895–1946.
- [23] a) M. A. T. Robak, M. A. Herbage, J. A. Ellman, *Chem. Rev.* 2010, 110, 3600–3740; b) S. Fustero, I. Ibáñez, P. Barrio, M. A. Maestro, S. Catalán, *Org. Lett.* 2013, 15, 832–835.
- [24] G. Liu, D. A. Cogan, J. A. Ellman, J. Am. Chem. Soc. 1997, 119, 9913–9914.
- [25] When allylzinc bromide was used instead of allylmagnesium bromide, the yield was similar (82%) but the selectivity lower (13aa/13ab = 1:2.5).
- [26] X.-W. Sun, M. Liu, M.-H. Xu, G.-Q. Lin, Org. Lett. 2008, 10, 1259–1262.

- [27] Cyclic and acyclic transition states have been proposed to explain the observed diastereoselectivities, see: a) D. A. Cogan, G. Liu, J. A. Ellman, *Tetrahedron* 1999, 55, 8883–8904; b) X.-W. Sun, M.-H. Xu, G.-Q. Lin, *Org. Lett.* 2006, *8*, 4979–4982.
- [28] R. Almansa, D. Guijarro, M. Yus, *Tetrahedron: Asymmetry* 2008, 19, 603–606.
- [29] Suitable crystals were obtained by slow evaporation of a solution of (S,S)-15aa in DCM/hexane at room temperature. CCDC-941485 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [30] Suitable crystals were obtained by slow evaporation of a solution of (S,S)-9aa in DCM/hexane at room temperature; CCDC-841484.

Received: June 20, 2013 Published Online: ■ Da

FULL PAPER

The *N*-allylation of readily available 3,5substituted pyrazoles followed by ring-closing metathesis of the resulting 1,5-diolefinic derivatives leads to the formation of 2,4-substituted pyrazolo[1,5-*a*]pyridines and pyrazolo[1,5-*a*]azepines in high yields. The application of this protocol to the diastereoselective synthesis of potential peptidomimetics is described.

Heterocyclic Chemistry

S. Fustero,* R. Román, A. Asensio,	
M. A. Maestro, J. L. Aceña,	
A. Simón-Fuentes*	1–12

An Approach to 2,4-Substituted Pyrazolo[1,5-*a*]pyridines and Pyrazolo[1,5-*a*]azepines by Ring-Closing Metathesis

Keywords: Synthetic methods / Asymmetric synthesis / Metathesis / Peptidomimetics / Nitrogen heterocycles