Received: 16 December 2009

Revised: 2 February 2010

(www.interscience.com) DOI 10.1002/mrc.2588

Published online in Wiley Interscience: 18 March 2010

Magnetic Resonance in

¹H and ¹³C NMR spectral data of bioactive cage-like polycyclic compounds

Roberta C. Salles,^a Valdemar Lacerda Jr,^a* Adilson Beatriz,^b Felicia M. Ito,^b Reginaldo B. dos Santos,^a Sandro J. Greco,^a Eustáquio V. R. de Castro^a and Dênis P. de Lima^b

Bioactive cage-like polycyclic compounds have attracted the attention of several research groups because of their unique appearance and their biological activities. Their structures were established on the basis of ¹H NMR and ¹³C NMR spectroscopic data. The ¹H and ¹³C signal assignments and most homonuclear hydrogen coupling constants were assigned by use of techniques such as 1D ¹H and ¹³C NMR and 2D gCOSY, non-edited gHSQC and gHMBC. The gNOESY experiments proved the endo-stereochemistry. Copyright © 2010 John Wiley & Sons, Ltd.

Keywords: ¹H ¹³C NMR; gCOSY; gHSQC; gHMBC; gNOESY; cage-like compounds

Introduction

Since 1930, cage-like compounds have attracted the attention of several research groups due to their unique appearance and their biological activities. The milestone in the study of these compounds was the classical synthesis of Cookson's diketone in 1928.^[1] In the synthesis proposed by Cookson, a pentacy-clodiketone (**1a**) (Scheme 1), which contains an important cycle of four members was formed through an intramolecular reaction photocyclization adduct **1**, obtained from a Diels–Alder reaction.

The biological activity of cage-like compounds was only discovered in 1964 by Davies *et al.*^[2] It was demonstrated in their study that amantadine has antiviral activity. Later, in 1969, Schwab *et al.*^[3] showed that amantadine is also beneficial for patients with Parkinson's disease.

From this work, other cage-like compounds were synthesized and new biological activities were studied.^[4–8] The studies show that the cage-like structures are useful in specific interaction with biological receptors and/or competitive inhibition or non-competitive with smaller chemical species in their inside.^[9]

These rigid structures enhance lipophilicity through cell membranes, increasing their affinity for lipophilic regions in the recipients, and providing metabolic stability, which may prolong the pharmacological effect, thereby reducing the dosage.^[10,11]

An important factor in the study of these compounds is the correct knowledge of their structure since they can interact in highly

Scheme 1. Intramolecular cyclization of the Diels-Alder adduct 1.

specific way with a biological receptor. However, no detailed NMR study of these compounds could be found in the relevant literature.

In this study, we present a detailed assignment of NMR data for the bioactive cage-like polycyclic compounds **1**–**6**, including the measurement of most homonuclear hydrogen coupling constants and a complete assignment of NMR signals. The 2D NMR (gCOSY,^[12] gHSQC,^[13] gHMBC^[14] and gNOESY^[15]) data are also presented. The availability of reliable NMR data for this class of compounds can provide easier and faster identification of both current cage-like compounds and new ones.

Experimental

Materials

The bioactive cage-like polycyclic compounds used in this present study were prepared from cyclopentadiene and *p*-benzoquinone as described in the relevant literature and shown in Schemes 2 and 3.^[16]

NMR measurements

¹H NMR, ¹³C NMR, ¹³C{¹H}, DEPT, gCOSY, gNOESY, gHSQC and gHMBC experiments were performed on a Bruker Avance DPX 300 spectrometer equipped with a 5-mm direct probe with z-gradient field. ¹H and ¹³C NMR spectra (at 300 and 75 MHz, respectively) were measured at a temperature of 300 K, using

- * Correspondence to: Valdemar Lacerda Jr, Departamento de Química, Centro de Ciências Exatas da Universidade Federal do Espirito Santo, Av. Fernando Ferrari 514, 29.075-910 Vitória, ES, Brazil. E-mail: vljuniorqui@gmail.com
- a Departamento de Química, Centro de Ciências Exatas da Universidade Federal do Espirito Santo, Av. Fernando Ferrari 514, 29.075-910 Vitória, ES, Brazil
- b Departamento de Química, Centro de Ciências Exatas e Tecnologia da Universidade Federal do Mato Grosso do Sul, Av. Senador Filinto Müler 1555, 79.074-460, Campo Grande MS, Brazil

Scheme 2. Preparation of the adduct 1 from the Diels-Alder reaction.

Scheme 3. Preparation of the compounds studied.

10 mg ml⁻¹ in CDCl₃ as solvent. Tetramethylsilane was used as an internal reference. Chemical shifts are given on the δ scale. The experiments were performed through standard pulse sequences, as suggested by the equipment manufacturer. Typical parameters were as follows.

For ¹H NMR analysis, 16 transients were acquired with a 1-s relaxation delay using 64 K data points. The 90° pulse was 8.0 μ s with a spectral width of 3612 Hz. ¹³C{¹H} and DEPT spectra were obtained for a spectral width of 23 809 Hz, collecting 64 K data points. The 90° pulse was 14.5 μ s. Overall, 1024 transients were acquired for ¹³C{¹H} and 512 transients for DEPT with a relaxation delay of 2 s.

The number of scans for the gCOSY, gNOESY, gHSQC and gHMBC was 16, 16, 32 and 64, respectively. The gNOESY experiments were performed on degassed samples with a mixing time of 800 ms. Recording parameters were take from standard Bruker microprograms.

Results and Discussion

Compounds **1–6** were prepared from a Diels–Alder reaction between cyclopentadiene and *p*-benzoquinone (Scheme 2).

From the adduct of Diels–Alder adduct **1**, the studied compounds were synthesized, as shown in Scheme 3.^[16]

Table 1.	⁻¹ H and ¹³ C NMR chemical shifts, δ (ppm), multiplicities and coupling constants $J(^{1}H, ^{1}H)$ (Hz), ¹ H – ¹ H and ¹ H – ¹³ C correlations in gCOSY and
gHMBC sp	pectra for compound 1 ^a

С	δ (¹³ C)	δ (¹ H)	Coupling constants (Hz)	Multiplicity	gCOSY	gHMBC
1/8	48.2	3.49 (2H)	1.7	sept	H2; H7; H9; H10; H11; H11'	C2; C7; C11
2/7	48.7	3.18 (2H)	1.7	t	H1; H8	C9; C10; C3; C6; C1; C8
3/6	199.3	-	-	_	_	-
4/5	141.9	6.52 (2H)	_	S	_	C3; C6; C2; C7
9/10	135.2	6.01 (2H)	1.7	t	H1; H8	C2; C7; C11
11	48.6	H ₁₁ – 1.39 (1H)	8.2; 1.7	dt	H11′; H1; H8	C9; C10
		H ₁₁ ′ – 1.48 (1H)	8.2; 1.7	dt	H11; H1; H8	C9; C10; C1; C8

In CDCl₃ solution, all these assignments are in agreement with the gCOSY, gHSQC and gHMBC spectra.

Table 2. ¹H and ¹³C NMR chemical shifts, δ (ppm), multiplicities and coupling constants J(¹H, ¹H) (Hz), ¹H–¹H and ¹H–¹³C correlations in gCOSY and gHMBC spectra for compound **2**^a

С	δ (¹³ C)	δ (¹ H)	Coupling constants (Hz)	Multiplicity	gCOSY	gHMBC	
1/8	47.4	3.40 (2H)	1.7	sept	H2; H7; H9 e H10; H11; H11'	C2; C7	
2/7	51.8	3.17 (2H)	1.7	t	H1; H8	C3; C6; C9; C10; C11	
3/6	209.6	-	-	_	_	-	
4	37.8	H ₄ – 2.59 (1H)	-	m	H4'; H5'	C3; C6; C5	
		H ₄ ′ – 2.26 (1H)			H4; H5		
5	37.8	H ₅ – 2.59 (1H)	-	m	H4'; H5'	C3; C6; C4	
		H ₅ ′ – 2.26 (1H)			H4; H5		
9/10	136.5	6.13 (2H)	1.7	t	H1; H8	C1; C8	
11	48.7	H ₁₁ – 1.31 (1H)	8.6; 1.7	dt	H11'; H1; H8	C1; C8; C9; C10	
		H ₁₁ ′ – 1.43(1H)	8.6; 1.7	dt	H11; H1; H8	C2; C7; C3; C6; C9; C10	
A la CDCL solution all those assignments are in agreement with the gCOCV gHSOC and gHMPC spectra							

In CDCl₃ solution, all these assignments are in agreement with the gCOSY, gHSQC and gHMBC spectra.

Table 3. ¹H and ¹³C NMR chemical shifts, δ (ppm), multiplicities and coupling constants $J(^{1}H,^{1}H)$ (Hz), $^{1}H-^{1}H$ and $^{1}H-^{13}C$ correlations in gCOSY, gHMBC and gNOESY spectra for compound 3^a

С	δ (¹³ C)	δ (¹ H)	Coupling constants (Hz)	Multiplicity	gCOSY	gHMBC	GNOESY		
1	45.7	3.16 (1H)	_	br.s	H2; H10; H11; H11'	_	H9; H10; H11; H11'		
2	51.3	2.79 (1H)	10.1; 4.1	dd	H7; H1	C1; C3; C7; C10	H11		
3	213.7	-	-	-	-	-	-		
4	35.9	H ₄ – 2.09 (1H)	-	m	H5; H5′	C3; C5; C6	-		
		H ₄ ′ – 2.09 (1H)							
5	27.6	H ₅ – 1.72 (1H)	-	m	H4; H4'; H6	C3; C4; C6; C7	-		
		$H_{5}' - 1.72 (1H)$							
6	67.4	4.22 (1H)	-	m	H5; H5′; H7	C2; C7	-		
7	45.6	2.76 (1H)	10.1; 4.1	td	H2; H6; H8	C2; C3; C8	H11		
8	44.9	2.99 (1H)	-	br.s	H7; H9; H11; H11'	C2; C7	H11		
9	135.1	6.11 (1H)	5.5; 3.0	dd	H10; H8	C7; C8; C10; C11	H1		
10	136.4	6.03 (1H)	5.5; 3.0	dd	H9; H1	C1; C11	H1		
11	49.8	H ₁₁ – 1.25 (1H)	8.2; 1.4	dt	H11'; H1; H8	C1; C2; C7; C8; C9; C10	H1; H2; H7; H8		
		H ₁₁ ′ – 1.31 (1H)	8.2; 1.4	dt	H11; H1; H8		H1		
a In C	^a In CDCL, colution, all these assignments are in agreement with the gCOCV, gHSOC, gHMPC and gNOECV spectra								

In CDCI3 solution, all these assignments are in agreement with the gCOSY, gHSQC, gHMBC and gNOESY spectra.

Table 4. ¹H and ¹³C NMR chemical shifts, δ (ppm), multiplicities and coupling constants $J(^{1}H,^{1}H)$ (Hz), ¹H – ¹H and ¹H – ¹³C correlations in gCOSY, gHMBC and gNOESY spectra for compound 4^a

с	δ (¹³ C)	δ (¹ H)	Coupling constants (Hz)	Multiplicity	gCOSY	gHMBC	gNOESY
1	45.4	2.99 (1H)	_	m	H2; H10; H11; H11'	C3	H10
2	51.7	3.04 (1H)	5.4; 2.7	dd	H7; H1	C8	H4; H6; H11
3	211.5	_	_	-	-	-	-
4	35.6	H ₄ – 2.25 (1H)	-	m	H4'; H5; H5'	C3; C5; C6	H2; H5; H6
		H ₄ ′ – 2.31 (1H)	-	m	H4; H5; H5′		H5′
5	25.6	H ₅ – 2.01 (1H)	-	m	H4; H4'; H5'; H6	C3; C6; C7	H4; H6; H7
		H ₅ ′ – 2.09 (1H)	-	m	H4; H4'; H5; H6		H4′
6	70.0	5.58 (1H)	7.4; 5.4; 2.9	ddd	H5; H5'; H7	-	H2; H4; H5
7	44.4	3.07 (1H)	5.4; 2.9	dd	H2; H6	C2; C9	H5; H11
8	45.0	3.30 (1H)	-	br.s	H9; H11; H11'	-	H9; H11; H11'
9	135.8	6.18 (1H)	5.6; 2.7	dd	H10; H8	C8	H8
10	135.4	6.00 (1H)	5.6; 2.7	dd	H9; H1	C8	H1
11	49.7	H ₁₁ – 1.31 (1H)	8.4; 2.7	dt	H11; H8; H1	C9	H2; H7; H8
		H ₁₁ ′ – 1.43 (1H)	8.4; 2.7	dt	H11'; H8; H1	C2; C8; C9	H8

Table 4.	(Continued)						
С	δ (¹³ C)	δ (¹ H)	Coupling constants (Hz)	Multiplicity	gCOSY	gHMBC	gNOESY
12	165.1	_	_	_	_	-	-
13	125.0	-	-	-	_	-	-
14	106.8	7.14 (2H)	-	S	_	C12; C13; C15; C16	-
15	152.9	-	-	-	-	-	-
16	142.2	-	-	-	-	-	-
19/21	56.2	3.88 (6H)	-	S	-	C16	-
20	60.9	3.88 (3H)	-	S	-	C15	-
	1.75 11.71	• •					

 a In CDCl₃ solution, all these assignments are in agreement with the gCOSY, gHSQC, gHMBC and gNOESY spectra.

Table 5. ¹H and ¹³C NMR chemical shifts, δ (ppm), multiplicities and coupling constants $J(^{1}H,^{1}H)$ (Hz), $^{1}H-^{1}H$ and $^{1}H-^{13}C$ correlations in gCOSY, gHMBC and gNOESY spectra for compound **5**^a

С	δ (¹³ C)	δ (¹ H)	Coupling constants (Hz)	Multiplicity	gCOSY	gHMBC	gNOESY		
1	39.3	2.43 (1H)	-	m	H2; H10; H10'; H11; H11'	_	H10		
2	51.2	2.60 (1H)	-	m	H1; H10′	-	-		
3	214.0	-	-	-	_	_	_		
4	35.1	H ₄ – 2.49 (1H)	-	m	H4'; H5; H5'	C3; C5; C6	H6		
		H ₄ ′ – 2.30 (1H)	-	m	H4; H5; H5′		_		
5	26.5	H ₅ – 2.20 (1H)	-	m	H4; H4'; H5'; H6	C3; C4; C6; C7	H6		
		H ₅ ′ – 1.87 (1H)	-	m	H4; H4'; H5; H6	C4	_		
6	74.4	4.26 (1H)	3.7; 1.6	td	H7; H5; H5′	C2; C4	H4; H5		
7	43.5	2.54 (1H)	3.7	t	H6; H8	C2; C3; C5; C6; C9	H11		
8	49.1	2.93 (1H)	-	m	H7; H9; H11; H11'	C2; C11	H10		
9	79.6	4.44 (1H)	6.2	t	H10; H8	C10	H10		
10	37.2	H ₁₀ – 1.40 (1H)	-	m	H1; H9; H10'	C2; C9	H1; H8; H9		
		H ₁₀ ′ – 1.48 (1H)	7.1; 3.0; 1.8	ddd	H10; H1; H2	C2; C8; C9; C11	_		
11	37.4	H ₁₁ – 1.55 (1H)	10.6; 1.5	dt	H11'; H1; H8	C10	H7		
		H ₁₁ ′ – 1.34 (1H)	10.6; 1.5	dt	H11; H1; H8	C2; C7; C8; C10	-		
a la C									

^a In CDCl₃ solution, all these assignments are in agreement with the gCOSY, gHSQC, gHMBC and gNOESY spectra.

Table 6. ¹H and ¹³C NMR chemical shifts, δ (ppm), multiplicities and coupling constants $J(^{1}H,^{1}H)$ (Hz), $^{1}H-^{1}H$ and $^{1}H-^{13}C$ correlations in gCOSY, gHMBC and gNOESY spectra for compound **6**^a

с	δ (¹³ C)	δ (¹ H)	Coupling constants (Hz)	Multiplicity	gCOSY	gHMBC	gNOESY	
1	46.9	2.71 (1H)	_	Br.s	H2; H11; H11'	C3; C7; C10	H10; H11	
2	49.8	2.75 (1H)	4.0	t	H1; H7	C1; C7	-	
3	211.7	-	-	_	_	_	-	
4	35.0	H ₄ – 2.34 (1H)	-	m	H4'; H5; H5'	C3; C5; C6	H6	
		H ₄ ′ – 2.37 (1H)	-	m	H4; H5; H5′		-	
5	25.8	H ₅ – 1.89 (1H)	13.8; 11.0; 6.9; 2.0; 0.6	ddddd	H5'; H4; H4'; H6	C4	H6	
		H ₅ ′ – 2.26 (1H)	13.8; 6.9; 4.0	ddd	H5; H4; H4'; H6		-	
6	75.2	4.27 (1H)	4.0; 2.0	td	H7; H5′; H5	C2; C4	H4; H5; H7; H8	
7	42.2	2.57 (1H)	10.2; 4.0	dt	H2; H6; H8	C2; C4	H6; H11	
8	48.5	2.99 (1H)	-	m	H7; H9	C2	H6; H9; H11; H11'	
9	88.4	4.58 (1H)	5.2	d	H8	_	H8; H10; H11'	
10	55.0	3.71 (1H)	2.1	d	H11	C8; C9; C11	H1	
11	34.8	H ₁₁ – 1.65 (1H)	-	m	H1; H8; H10; H11'	-	H1; H7; H8	
		H ₁₁ ′ – 2.18 (1H)	_	m	H1; H8; H11		H8; H9	
3. 0								

^a In CDCl₃ solution. All these assignments are in agreement with the gCOSY, gHSQC, gHMBC and gNOESY spectra.

Figure 1. Experimental (a) and simulated (b) second-order coupling pattern signals of hydrogens 4 and 5 of compound 2.

Figure 2. Expansion of 2D NMR spectrum (¹H, ¹H-COSY) of compound 3.

The unequivocal assignment of ¹H and ¹³C NMR signals of compounds 1-6 is listed in Tables 1–6.

The signals of hydrogens 4 and 5 of compound**2** are multiplets and have a second-order coupling pattern. They were simulated in the SimEsp_NMR software,^[17] in which a great deal of similarity to the experimental spectrum was observed (Fig. 1).

The distinction between hydrogens H₂ and H₇ of **3** was confirmed by analyzing the 2D gCOSY spectrum (Fig. 2) where the H₇ couples with H₈ and H₆ (δ = 2.76 ppm) and H₂ (δ = 2.79 ppm) with H₁. From the HMBC experiment, it was possible to assign the signals of C₉ and C₁₀ and from the HSQC experiment those of H₉

Figure 3. Expansion of 2D NMR spectrum (¹H, ¹H-COSY) of compound 4.

and H₁₀. The bridge hydrogens (H₁₁ and H₁₁') were assigned by the 2D gNOESY NMR spectrum in which the signal of H₁₁' was attributed to the larger chemical shift value. The determination of the endo/exo stereochemistry was done in a trustworthy way based upon the observed coupling between the bridge hydrogen H₁₁ and hydrogens H₂ and H₇ in the 2D NOESY NMR spectrum. This attribution is possible only in endo configuration.

Figure 4. Expansion of 2D NMR spectrum (¹H, DEPT-HSQC) of compound 5.

In the ¹H NMR spectrum of **4**, the distinction between the hydrogens H₁ (δ = 2.99 ppm), H₂ (δ = 3.04 ppm), H₇ (δ = 3.07 ppm) and H₈ (δ = 3.30 ppm) was made with the aid of 2D gCOSY and gHMBC NMR spectra in which the couplings between hydrogens H₈ and H₉, H₇ and H₆ as well as between H₁ and H₁₀ can be observed (Fig. 3). With these assignments and using a gHSQC spectrum, it was possible to assign the signals of C₁ (δ = 45.4 ppm), C₂ (δ = 51.7 ppm), C₇ (δ = 44.4 ppm) and C₈ (δ = 45.0 ppm).

Figure 5. Expansion of 2D NMR spectrum (¹H, ¹H-NOESY) of compound 6.

With the gNOESY spectrum, it was possible to assign the signals of hydrogens H_{11} and $H_{11'}$ and the stereochemistry as described for **3**.

The signals of the hydrogens 5, 5' and 7 of **5** were attributed on the basis of the 2D gCOSY and gHMBC spectra. With these assignments, it was possible to make a distinction between carbons C4 and C5 through the gHSQC spectrum (Fig. 4).

Figure 6. Experimental (a) and simulated (b) signals of hydrogen H₅ of compound 6.

The assignments of the hydrogens H₄, H'₄, H₅ and H'₅ of **6** were performed with the aid of 2D gNOESY spectrum, in which it is possible to observe contacts of hydrogens H₄ and H₅ with H₆ (Fig. 5). In this spectrum, we can also see the spatial proximity of H₂ and H₁₁ and assign the bridge hydrogens H₁₁ (δ = 1.65 ppm) and H₁₁' (δ = 2.18 ppm).

In order to confirm the coupling constants for hydrogen H_5 of compound **6**, a simulation in the FOMSC3 program^[17] was performed. From the simulated spectrum (Fig. 6(b)), it is possible to observe a great deal of similarity to the experimental spectrum (Fig. 6(a)). This confirms the multiplicity attributed to H_5 .

Acknowledgements

The authors thank the Fundação de Amparo à Pesquisa do Estado do Espírito Santo (FAPES/FUNCITEC), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenadoria de Aperfeiçoamento de Pessoal do Nível Superior (CAPES), the Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT) and Laboratório Pesquisa e Desenvolvimento de Metodologias para Análise de Petróleos do Departamento de Química da UFES (LabPetro-DQUI/UFES), for financial support.

References

- [1] R. C. Cookson, E. Grundwell, J. Hudec, *Chem. & Ind.* **1958**, 1003.
- [2] W. L. Davies, R. R. Grunert, R. F. Haff, J. W. Mcgahen, E. M. Neumayer, M. Paulshock, J. C. Watts, T. R. Wood, E. C. Hermann, C. E. Hoffman, *Science* **1964**, 144, 862.

- [3] R. S. Schwab, A. C. England Jr, D. C. Poskanzer, R. R. Young, JAMA 1969, 208, 1168.
- [4] J. K. Chakrabarti, T. M. Hotten, S. Sutton, D. E. Tupper, J. Med. Chem. 1976, 19, 967.
- [5] J. W. Larrick, S. A. Lipton, Y. Wang, W. Ye, J. S. Stemler, US Patent US6444702, 2002.
- [6] G. Stamatiou, G. B. Foscolos, G. Fytas, A. Kolocouris, N. Kolocouris, C. Pannecouque, M. Witvrouw, E. Padalko, J. Neyts, E. De Clereq, *Bioorg. Med. Chem.* 2003, 11, 5485.
- [7] D. W. Oliver, S. F. Malan, Med. Chem. Res. 2007, 17, 137.
- [8] W. J. Geldenhuys, S. F. Malan, T. Murugesan, C. J. Schyf, J. R. Bloomquist, *Bioorg. Med. Chem.* 2003, 12, 1799.
- [9] D. Ranganathan, A. Thomas, V. Haridas, S. Kurur, P. Madhusudanan, R. Roy, A. C. Kunwar, A. V. S. Sarma, M. Vairamani, K. D. Sarma, *J. Org. Chem.* **1999**, *64*, 3620.
- [10] K. B. Brookes, P. W. Hickmott, K. K. Jutle, C. A. Schreyer, S. Afr. J. Chem. 1992, 45, 8.
- [11] T. Govender, H. K. Hariprakasha, H. G. Kruger, T. S. Raasch, S. Afr. J. Chem. 2005, 58, 37.
- [12] R. E. Hurd, J. Magn. Reson. 1990, 87, 422.
- [13] W. Wilker, D. Leibfritz, R. Kerssebaum, W. Bermel, Magn. Reson. Chem. 1993, 31, 287.
- [14] R. Wagner, S. Berger, J. Magn. Reson., Ser. A 1996, 123, 119.
- [15] R. E. Hurd, B. K. John, J. Magn. Reson. **1991**, 91, 648.
- [16] F. M. Ito, J. M. Petroni, D. P. Lima, A. Beatriz, M. R. Marques, M. O. Moraes, L. V. C. Lotufo, R. C. Montenegro, H. I. Magalhães, C. Pessoa, *Molecules* 2007, 12, 271.
- [17] M. G. Constantino, G. V. J. Silva, V. C. G. Heleno, I. A. Borin, *Quím. Nova* **2006**, *29*, 160.