Tetrahedron Letters 52 (2011) 4546-4549

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Total synthesis of fluvirucinine A₁

Palakodety Radha Krishna*, Kadimi Anitha

D-211, Discovery Laboratory, Organic Chemistry Division-III, Indian Institute of Chemical Technology, 500607, India

ARTICLE INFO

ABSTRACT

Article history: Received 27 April 2011 Revised 20 June 2011 Accepted 22 June 2011 Available online 28 June 2011

Keywords:

Macrolactam antibiotics Evans asymmetric alkylation Amidation and a ring-closing metathesis (RCM)

In 1991, Naruse et al.^{1–3} reported the isolation and structural determination of fluvirucins A_1 , A_2 , B_1 – B_5 from the fermentation broth of actinomycete strains. Fluvirucines are a family of macrolactam antibiotics and are potent inhibitors of influenza A virus.^{1–4} Among all aglycones of fluvirucin series, fluvirucinine A_1 (1) and A_2 (aglycone of II) are particularly important because of their low toxicity³ and more potent inhibitory activity against influenza A virus.^{1–4} Fluvirucinine A_1 is aglycone of fluvirucin A_1 . To date, three synthesis of fluvirucinine A_1 have been reported.^{5–7} Of all, the one reported by Suh et al.⁵ by an innovative iterative lactam ring-expansion to access the 14-membered lactam skeleton is note-worthy. Yet another equally significant synthesis by Negishi and co-worker⁶ employing zirconium catalyzed asymmetric carboalumination of alkenes-Lipase catalyzed acetylation tandem process as the key step was recently reported.

I. Fluvirucin $A_1 R^1 = CH_3$ II. Fluvirucin $A_2 R^1 = CH(OH)CH_3$

* Corresponding author. Tel.: +91 40 27193158. *E-mail address:* prkgenius@iict.res.in (P. Radha Krishna).

An efficient and highly stereocontrolled convergent synthesis of fluvirucinine A_1 is reported herein. In fluvirucinine A_1 both C_5-C_{13} and C_1-C_4 fragments were accessed from a common intermediate **6** derived from (*S*)-Roche ester in 15 and 7 steps, respectively. The key steps involve Evans asymmetric alkylation, Sharpless asymmetric epoxidation, amidation and a ring-closing metathesis reaction (RCM) for macrocyclization.

© 2011 Elsevier Ltd. All rights reserved.

Due to their promising biological activity and interesting structural features, we designed a flexible synthetic strategy suitable for accessing both fluvirucinine A_1 (1) and A_2 (aglycone of II), as they share close structural similarities. We envisioned that the second fragment (compound **4**), which is the point of structural difference, could be synthesized by a related strategy. Thus, the present approach (Scheme 1) involves an independent synthesis of fragments **3** and **4**, their connection through amidation and macrocyclization via ring-closing metathesis^{6,8} (RCM)/hydrogenation afforded the important C–C bond, a saturated C_4-C_5 linked macrocycle.

Accordingly, the retrosynthetic strategy anticipated for fluvirucinine A_1 (1) is delineated in Scheme 1. The standard disconnection of 1 at C_4-C_5 and C_1-N bonds revealed two fragments 3 and 4. We visualized that 1 could be obtained from fragments 3 and 4 by utilizing amidation and ring-closing metathesis strategy. Both fragments 3 and 4 in turn could be readily accessed from the commercially available (*S*)-Roche ester 5, wherein the naturally endowed methyl stereogenic center could be correlated to C_2 and C_6 of the target molecule 1. The stereochemistry at C_{10} was derived by invoking the highly diastereoselective Evans asymmetric alkylation,⁹ while the hydroxyl functionality at C_3 (of fragment 4) was achieved through Sharpless asymmetric epoxidation.¹⁰

Thus, the synthesis of **3** commenced with **6**¹⁰ that was easily accessed in four steps from **5** (Scheme 2). Treatment of **6** with TPP in presence of iodine and imidazole in THF produced allyl iodide **7** in 76% yield and set the stage for highly diastereoselective Evans asymmetric alkylation⁹ to install the C₁₀ ethyl group with the desired stereochemistry. Accordingly, *N*-butyryl oxazolidinone was treated with LiHMDS in dry THF at $-78 \,^{\circ}$ C to furnish an enolate intermediate that was reacted with allylic iodide **7** to afford the corresponding ethylated product **9** in good yield of 86% and in high diastereoselectivity. An excess of enolate (1.6) was found necessary

^{0040-4039/\$ -} see front matter \odot 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.06.087

Scheme 1. Retrosynthetic analysis.

Scheme 2. Reagents and conditions: (a) TPP, I₂, imidazole, THF, 0.5 h, 76%; (b) **8**, LiHMDS, -78 °C, 1 h, **7** after 6 h, -20 °C, 14 h; (c) NaBH₄, MeOH, 0 °C to rt, 1 h, 81%; (d) (i) IBX, CH₂Cl₂, DMSO, 0°C to rt, 4 h; (ii) Ph₃P CHCOOEt, C₆H₆, 70°C, 4 h, 85% (over two steps) (e) H₂ Pd/C, EtOAc, 4 h, 92%; (f) DIBAL-H, CH₂Cl₂, -40 °C, 1 h, 84%; (g) (i) TsCl, Et₃N, CH₂Cl₂, 0 °C to rt, 3 h; (ii) NaN₃, DMF, 80 °C, 4 h, 85% (over two steps); (h) (i) H₂, Pd/C, EtOAc, 9 h; (ii) (Boc)₂O, Et₃N, CH₂Cl₂, 1 h, 83% (over two steps); (i) TBAF, THF, 3 h, 78%; (j) (i) (COCl)₂, DMSO, Et₃N, -78 °C, 1 h (ii) Ph₃ PCH₃⁺ I⁻, ^tBuOK, THF, -10 °C to rt, 4 h, 65% (over two steps).

to achieve completion of the reaction. The second diastereoisomer was not detected either by 1 H or 13 C NMR of crude reaction mixture, thus suggesting high selectivity and diastereoselectivity and hence assumed to be >95:5.

Next, reductive cleavage (NaBH₄/MeOH/0 °C to rt/1 h) of the chiral auxiliary gave alcohol 10 (81%). Oxidation of 10 with IBX provided the corresponding aldehyde, which was subjected to Wittig olefination to afford 11 (85% yield over two steps). Exposure of **11** to hydrogenation in the presence of Pd/C in EtOAc produced the corresponding saturated ester 12 (92%), which upon treatment with DIBAL-H in CH₂Cl₂ gave alcohol 13 (84%). Alcohol 13 was converted to its corresponding tosylate (TsCl/Et₃N/CH₂Cl₂/0 °C to rt/ 3 h), which was subsequently transformed into the corresponding azide 14 (85%, over two steps) under conventional conditions (NaN₃/DMF/80 °C/4 h). The resulting azide 14 was converted to N-Boc derivative 15 in 83% yield by a two-step process, firstly reduction of the azide to the amine via hydrogenation $(Pd/C-H_2)$ rt/9 h) followed by the bocylation reaction $\{(Boc)_2O/Et_3N/CH_2Cl_2/$ 0 °C to rt/1 h}. Later, deprotection (TBAF/THF/0 °C to rt/3 h) of silyl ether in 15 furnished alcohol 16 (78%). Alcohol 16 was transformed into alkene **17** by Swern oxidation and one carbon Wittig olefination in 65% yield over two steps.

As outlined in Scheme 3, the synthesis of C_1-C_4 fragment (compound 4) began with 6.¹⁰ Sharpless asymmetric epoxidation¹⁰ of 6 using (–)-DIPT afforded epoxy alcohol 18. Compound 18 was treated with TPP, iodine and imidazole to give the corresponding iodo derivative, which on treatment with Zn in ethanol¹¹, gave allylic alcohol 19 (78% yield over two steps). The resulting allylic alcohol 19 was protected (NaH/PMBBr/THF/0 °C to rt/14 h) as its PMB ether 20 (74%). Later, deprotection (TBAF/THF/0 °C to rt/3 h) of TBS ether gave alcohol 21 (79%). The oxidation of the resultant primary alcohol 21 under Swern conditions furnished the aldehyde which on subsequent oxidation¹² (NaClO₂/NaH₂PO₄·2H₂O/2-methyl 2-butene/12 h) afforded acid 4 (75%).

Compound **17** was treated with TFA in CH_2Cl_2 to liberate the free amine **3** which was immediately used for the amidation reaction (Scheme 4). With the requisite fragments **3** and **4** in hand, the coupling reaction was undertaken. Thus, coupling of **3** and **4** was achieved by treating the acid **4** with EDCI/HOBT followed by addition of amine **3** to afford amide **2** (98%). The resulting diene **2** was

Scheme 3. Reagents and conditions: (a) (-)-DIPT, Ti(O[†]Pr)₄, cumene hydroperoxide (CHP), CH₂Cl₂, -20 °C, 4–5 h, 86%; (b) (i) TPP, l₂, imidazole, THF, 0.5 h; (ii) Zn, EtOH, 80 °C, 3 h, 78% (over two steps); (c) NaH, PMBBr, THF, 0 °C to rt, 14 h, 74%; (d) TBAF, THF, 3 h, 79%; (e) (i) (COCl)₂, DMSO, Et₃N, -78 °C, 1 h; (ii) NaClO₂ NaH₂PO₄·2H₂O, 2-Methyl 2-butene, 'BuOH/H₂O (3:1), 0 °C to rt, 12 h, 75% (over two steps).

Scheme 4. Reagents and conditions: (a) TFA, CH₂Cl₂, 0 °C, 15 min; (b) EDCI, HOBT, CH₂Cl₂, 98% (over two steps); (c) Grubbs-II, CH₂Cl₂, 45 °C, 12 h, 79%; (d) H₂Pd/C, EtOAc, 3 h, 89%.

exposed to the RCM reaction using Grubbs-II catalyst in refluxing dichloromethane to produce the desired macrolactam **22** (79%) as an *E/Z* mixture. Since the isomeric status was irrelevant, no attempts were made to purify compound **22** into separate entities. Compound **22** was subjected to a hydrogenation reaction (Pd/C–H₂/rt/3 h) wherein both the saturation of the C₄–C₅ olefinic bond and C₃-OPMB-deprotection occurred in one-pot to furnish **1** (89%).¹³ The spectroscopic data (¹H and ¹³C NMR) and specific rotation of the synthetic material **1** was in good agreement with the reported data.^{1–3,13}

In summary, we have accomplished a stereoselective synthesis of **1** from the common intermediate **6**,¹⁰ using Evans asymmetric alkylation,⁹ Sharpless asymmetric epoxidation,¹⁰ amidation and RCM^{6,8} in an overall yield of 10.5%. Further application of this strategy toward synthesis of fluvirucinine A_2 and B_1 is under progress and will be reported elsewhere.

Acknowledgment

One of the authors (K.A.) thanks the CSIR, New Delhi for the financial support in the form of the fellowship.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2011.06.087.

References and notes

- Naruse, N.; Tenmyo, O.; Kawauo, K.; Tomita, K.; Ohgusa, N.; Miyaki, T.; Konishi, M.; Oki, T. J. Antibiot. 1991, 44, 733–740.
- Naruse, N.; Tsuno, T.; Sawada, Y.; Konishi, M.; Oki, T. J. Antibiot. 1991, 44, 741– 755.
- 3. Naruse, N.; Konishi, M.; Oki, T.; Inouye, Y. J. Antibiot. 1991, 44, 756-761.
- Tomita, K.; Oda, N.; Hoshino, Y.; Ohgusa, N.; Chikazawa, H. J. Antibiot. 1991, 44, 940–948.
- Suh, Y.-G.; Kim, S.-A.; Jung, J.-K.; Shin, D.-Y.; Min, K.-H.; Koo, B.-A.; Kim, H.-S. Angew. Chem., Int. Ed. 1999, 38, 3545–3547.

- 6. Liang, B.; Negishi, E. Org. Lett. 2008, 10, 193-195.
- 7. Fu, G. C.; Son, S. Synfacts 2008, 0907.
- (a) Radha Krishna, P.; Kadiyala, R. R. *Tetrahedron Lett.* **2010**, *51*, 2586–2588; (b) Radha Krishna, P.; Jagannadgarao, T. Org. Bimol. Chem. **2010**, *8*, 3130–3132; (c) Radha Krishna, P.; Ramana, D. V.; Reddy, B. K. Synlett **2009**, 2924–2926.
- (a) Evans, D. A.; Takacs, J. M. Tetrahedron Lett. **1980**, *21*, 4233–4236; (b) John, J. P.; Jost, J.; Novikov, A. V. J. Org. Chem. **2009**, *74*, 6083–6091; (c) Crimmins, M. T.; Emmitte, K. A.; Katz, J. D. Org. Lett. **2000**, *2*, 2165–2167; (d) Cribiú, R.; Jäger, C.; Nevado, C. Angew. Chem., Int. Ed. **2009**, *48*, 8780–8783; (e) Carter, R. G.; Weldon, D. J. Org. Lett. **2000**, *2*, 3913–3916.
- (a) Fürstner, A.; Bouchez, L. C.; Funel, J. A.; Liepins, V.; Porée, F.-H.; Gilmour, R.; Beaufis, F.; Laurich, D.; Tamiya, M. Angew. Chem., Int. Ed. 2007, 46, 9265–9270; (b) Mandlik, M. T.; Cottord, M.; Rein, T.; Helquista, P. Tetrahedron Lett. 1997, 38, 6375–6378.
- Sabita, G.; Reddy, C. N.; Gopal, P.; Yadav, J. S. Tetrahedron Lett. 2010, 51, 5736– 5739.
- 12. Bal, B. S.; Childers, W. E., Jr.; Pinnick, H. W. Tetrahedron 1981, 37, 2091-2096
- Spectral data for selected compounds. Compound **10**: Colorless liquid; [α]²⁵₂ +1.1 (*c* 1.04, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 5.67–5.47 (m, 2H), 3.71–3.50 (m, 4H), 2.47–2.38 (m, 1H), 1.67–1.40 (m, 2H), 1.14–1.08 (m, 9H), 1.05 (s, 9H), 0.19 (s, 6H). $^{13}\mathrm{C}$ NMR (75 MHz, CDCl₃): δ 134.8, 128.3, 68.3, 65.1, 42.7, 39.6, 34.5, 26.2, 23.3, 18.3, 16.8, 11.5, -4.9. ESIMS: m/z 309 [M+Na]⁺, HRMS m/z: Calcd for C₁₆H₃₄O₂NaSi: 309.2225. Found: 309.2224. Compound 17: Pale yellow liquid; $[\alpha]_D^{25}$ – 7.1 (c 0.57, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 5.64–5.47 (m, 1H), 4.90–4.83 (m, 2H), 4.42 (br. s, 1H), 3.04–3.03 (m, 2H), 2.06–2.04 (m, 1H), 1.40 (s, 9H), 1.24–1.20 (m, 13H), 0.94 (d, *J* = 6.8 Hz, 3H), 0.80 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 145.6, 112.9, 78.9, 41.0, 38.7, 37.8, 37.1, 33.2, 30.3, 28.5, 27.4, 25.9, 24.3, 20.6, 10.9. ESIMS: m/z 320 [M+Na]⁺, HRMS *m/z*: Calcd for C₁₈H₃₅NO₂Na: 320.2565. found: 320.2559. Compound **4**: Colorless liquid; [α]_D²⁵ +50.6 (*c* 2.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.15 (d, J = 8.4 Hz, 2H), 6.78 (d, J = 8.4 Hz, 2H), 5.84–5.69 (m, 1H), 5.36–5.25 (m, 2H), 4.55 (d, J = 11.5 Hz, 1H), 4.29 (d, J = 11.5 Hz, 1H), 4.02–3.85 (m, 1H), 3.77 (s, 3H), 2.66–2.57 (m, 1H), 1.19 (d, J = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 179.4, 159.1, 135.5, 129.3, 120.1, 119.2, 113.7, 80.4, 70.1, 55.1, 44.7, 13.3. ESIMS: m/z 273 [M+Na]⁺, HRMS m/z: Calcd for C₁₄H₁₈O₄Na: 273.1102. found: 273.1093. Compound **2**: Colorless liquid; $[\alpha]_{25}^{25}$ +2.5 (*c* 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 7.16 (d, *J* = 8.3 Hz, 2H), 6.83 (d, *J* = 8.3 Hz, 2H), 6.22 (t, J = 5.5 Hz, 1H), 5.76–5.57 (m, 2H), 5.29 (d, J = 9.8 Hz, 2H), 4.88 (d, J = 8.3 Hz, 2H), 4.53 (d, J = 11.3 Hz, 1H), 4.25 (d, J = 11.3 Hz, 1H), 3.89–3.83 (m, 1H), 3.79 (s, 3H), 3.25-3.13 (m, 2H), 2.50-2.41 (m, 1H), 2.12-2.03 (m, 1H), 1.47-1.33 (m, TH), 1.28–1.14 (m, 12H), 1.08 (d, J = 6.7 Hz, 3H), 0.96 (d, J = 6.0 Hz, 3H), 0.81 (t, J = 7.5, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 173.2, 158.9, 135.2, 129.4, 119.5, 113.9, 112.5, 81.7, 70.7, 55.2, 45.6, 39.7, 38.6, 37.9, 37.2, 33.2, 30.4, 26.9, 25.8, 24.3, 20.3, 12.8, 10.9. ESIMS: m/z 430 [M+H]⁺, 452 [M+Na]⁺, HRMS m/z: Calcd for C₂₇H₄₄NO₃: 430.3321. Found: 430.3388. Compound 1: white solid; mp 229–236 °C. $[\alpha]_D^{25}$ +138.3 (*c* 0.69, MeOH); ¹H NMR (500 MHz, CDCl₃: CD₃OD = 1:1): 7.89 (br. s, 1H), 3.61-3.48 (m, 1H), 3.46-3.40 (m, 1H), 2.66-

2.56 (m, 1H), 2.28–2.15 (m, 1H), 1.56–1.18 (m, 18H), 1.05 (d, J = 6.9 Hz, 3H), 0.81 (d, J = 6.9 Hz, 3H), 0.77 (t, J = 6.9 Hz, 3H). $^{13}\mathrm{C}$ NMR (75 MHz, CDCl_3:CD_3OD = 1:1): δ 175.7, 72.8, 47.8, 38.3, 36.0, 34.0, 31.8, 31.5, 30.7,

30.0, 27.5, 26.4, 25.2, 20.1, 16.4, 14.0, 10.6. ESIMS: m/z 284 [M+H]⁺, 306 [M+Na]⁺, HRMS: m/z [M+Na]⁺ Calcd for C₁₇H₃₃NO₂Na: 306.2408. Found: 306.2405.