organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Hydrogen-bonded bilayers in 7-benzyl-3-*tert*-butyl-1-phenyl-4,5,6,7-tetrahydro-1*H*-spiro[pyrazolo[3,4-*b*]pyridine-5,2'-indan]-1',3'-dione

Jairo Quiroga,^a Dayana Pantoja,^a Justo Cobo^b and Christopher Glidewell^c*

^aGrupo de Investigación de Compuestas Heteocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, ^bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and ^cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland Correspondence e-mail: cg@st-andrews.ac.uk

Received 17 June 2013 Accepted 24 June 2013

In the title compound, $C_{31}H_{29}N_3O_2$, the reduced pyridine ring adopts a conformation intermediate between the envelope and half-chair forms. The aryl rings of the benzyl and phenyl substituents are nearly parallel and overlap, indicative of an intramolecular π - π stacking interaction. A combination of two C-H···O hydrogen bonds and one C-H···N hydrogen bond links the molecules into a bilayer having *tert*-butyl groups on both faces.

Keywords: crystal structure; spiro compounds; hydrogen bonding.

1. Introduction

Compounds with spiro skeletons not only constitute subunits in numerous alkaloids, but are also templates for drug discovery that have been used as scaffolds for combinatorial libraries (Maier & Wuensch, 2002; Shaabani & Bazgir, 2004; Krasnov & Kartsev, 2005; Lang et al., 2005; Kadutskii & Kozlov, 2006; Kuster et al., 2006; Macleod et al., 2006; Nazarenko et al., 2007). The synthesis of spiro compounds can be achieved using conventional methods and procedures based on three-component one-pot reactions (Marti & Carrei, 2003; Rolandsgard et al., 2005; Arya & Dandia, 2007; Rahimizadeh et al., 2007). However, focused microwave irradiation is now emerging as a powerful tool to simplify and improve classic organic reactions, because it often leads to higher yields and cleaner and shorter reaction times, with precise control of the reaction parameters (Kappe, 2004; Martins et al., 2009). We have recently developed a route to spiro compounds through the microwave-assisted reactions between pyrazolo[3,4-b]pyridines, paraformaldehyde and cyclic β -diketones (Quiroga et al., 2010), and we report here the molecular and supra-

molecular structure of the title compound, (I), as a representative product from this procedure, which was obtained using indan-1,3-dione as the cyclic β -diketone component.

2. Experimental

2.1. Synthesis and crystallization

A mixture of *N*-benzyl-3-*tert*-butyl-1-phenyl-1*H*-pyrazol-5amine (2 mmol), indan-1,3-dione (2 mmol) and an excess of paraformaldehyde (30 mol%) was subjected to microwave radiation for 25 min at 473 K and a maximum power of 300 W. The mixture was then dissolved in hot ethanol and subsequently allowed to cool to ambient temperature. The resulting solid product was collected by filtration and washed successively with ethanol (5 ml) and hexane (2 × 5 ml) to give paleyellow crystals of (I) suitable for single-crystal X-ray diffraction (yield 52%, m.p. 458–160 K). MS (EI 70 eV) m/z(% relative abundance): 475 (M^+ , 89), 384 (25), 328 (100); HR– MS, found: 475, 2259; C₃₁H₂₉N₃O₂ requires 475, 2260. Analysis found: C 77.3, H 6.2, N 9.3%; C₃₁H₂₉N₃O₂ requires: C 78.3, H 6.1, N 8.8%.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were located in difference maps but were subsequently treated as riding in geometrically idealized positions, with C-H = 0.95 (aromatic), 0.98 (CH₃) or 0.99 Å (CH₂), and with $U_{iso}(H) = kU_{eq}(C)$, where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, or 1.2 for all other H atoms.

3. Results and discussion

The reduced pyridine ring in (I) is markedly nonplanar (Fig. 1), with a ring-puckering amplitude of 0.467 (2) Å; the ring-puckering angles (Cremer & Pople, 1975) calculated for the

Tabl	le 1	
Expe	erimental	details.

Crystal data	
Chemical formula	$C_{31}H_{29}N_3O_2$
M_r	475.57
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	120
<i>a</i> , <i>b</i> , <i>c</i> (Å)	16.6917 (18), 5.9748 (4), 24.840 (3)
β (°)	91.841 (10)
$V(Å^3)$	2476.0 (4)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.08
Crystal size (mm)	$0.34 \times 0.27 \times 0.22$
Data collection	
Diffractometer	Bruker–Nonius KappaCCD area-detector diffractometer
Absorption correction	Multi-scan (SADABS; Sheldrick, 2003)
T_{\min}, T_{\max}	0.973, 0.983
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	38299, 5679, 3889
R _{int}	0.049
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.650
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.046, 0.115, 1.04
No. of reflections	5679
No. of parameters	322
No. of restraints	0
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.23, -0.21

Computer programs: COLLECT (Nonius, 1998), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

atom sequence N7–C6–C52–C4–C3A–C7A are θ = 128.9 (2)° and φ = 283.8 (3)°. These values indicate that this ring adopts a conformation intermediate between the half-chair and envelope forms, for which the idealized values (Boeyens, 1978)

are $\theta = 129.2$ and 125.3° , respectively, and $\varphi = (60k + 30)^{\circ}$ and $(60k)^{\circ}$, respectively, where k represents an integer.

As expected, the mean planes of the two rings which are linked via atom C52 are almost orthogonal, with a dihedral angle between the mean planes of $88.1 (3)^\circ$. The orientation of the tert-butyl group is of some interest as one of the methyl C atoms, atom C34, is close to the plane of the adjacent pyrazole ring but displaced from it by 0.081 (2) Å, as indicated by the value of the N2-C3-C31-C34 torsion angle (Table 2). Both of the other hydrocarbyl substituents, at atoms N1 and N7, are twisted well out of the mean plane of the pyrazolo[3,4-b]pyridine unit, as indicated by the relevant torsion angles (Table 2), but with the result that the two aryl rings (C11-C16 and C71-C76) are themselves very nearly parallel, with a dihedral angle between them of only 9.7 (2) $^{\circ}$. The corresponding ring-centroid separation is 3.787 (2) Å and the shortest perpendicular distance from the centroid of one ring to the plane of the other is ca 3.41 Å, with a ring-centroid offset of *ca* 1.65 Å. This is indicative of an intramolecular $\pi - \pi$ stacking interaction (Fig. 2) and is probably significant in determining the overall orientation of these two substituents. The bond lengths (Table 2) indicate some bond fixation in the pyrazole ring and confirm the reduced nature of the pyridine ring, but otherwise the bond lengths present no features of note.

The supramolecular assembly of (I) is determined by three hydrogen bonds, two of the C-H···O type and one of the C-H···N type (Table 3), but C-H··· π (arene) hydrogen bonds and intermolecular π - π stacking interactions are absent. The overall assembly takes the form of a fairly complex bilayer, but the formation of this bilayer is readily analysed in terms of

Figure 1

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A view of the molecular structure of (I), showing the partial overlap of the C11–C16 and C71–C76 rings, which are nearly parallel. All H atoms have been omitted for the sake of clarity.

Figure 3

A stereoview of part of the crystal structure of (I), showing the formation of a hydrogen-bonded sheet of $R_4^4(28)$ rings lying parallel to (100). Dashed lines indicate hydrogen bonds. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.

simple substructures (Ferguson *et al.*, 1998*a*,*b*; Gregson *et al.*, 2000). Acting alone, the hydrogen bond having atom O51 as the acceptor (Table 2) links molecules related by translation into a C(5) chain (Bernstein *et al.*, 1995) running parallel to the [010] direction, while the hydrogen bond having atom N2 as the acceptor, when acting alone, links molecules related by the *c*-glide plane at $y = \frac{1}{4}$ into a C(10) chain running parallel to the [001] direction. The combination of these two substructural motifs generates a sheet in the form of a (4,4) net lying parallel to (100) and built from $R_4^4(28)$ rings (Fig. 3). This sheet lies in the domain $0 < x < \frac{1}{2}$ and a second sheet, related to the first by inversion, lies in the domain $\frac{1}{2} < x < 1.0$. The final hydrogen bond, having atom O53 as the acceptor, links inversion-related

Figure 4

Part of the crystal structure of (I), showing the formation of a centrosymmetric hydrogen-bonded $R_2^2(20)$ ring which links pairs of (100) sheets. Dashed lines indicate hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (-x + 1, -y, -z + 1).

Table 2

Selected geometric parameters (Å, °).

N1-N2	1.3830 (18)	C3A-C4	1.498 (2)
N2-C3	1.334 (2)	C4-C52	1.551 (2)
C3-C3A	1.416 (2)	C52-C6	1.552 (2)
C3A - C7A	1.371 (2)	C6-N7	1.4656 (19)
C7A-N1	1.3628 (19)	N7-C7A	1.3900 (19)
N2-C3-C31-C32	-135.75 (16)	N2-N1-C11-C12	-65.69 (19)
N2-C3-C31-C33	104.85 (17)	C7A-N7-C77-C71	113.17 (15)
N2-C3-C31-C34	-14.0 (2)	N7-C77-C71-C72	-149.38 (14)

Table 3Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4B\cdots O51^{i}$	0.99	2.32	3.145 (2)	141
$C56 - H56 \cdots N2^{n}$	0.95	2.53	3.431 (2)	158
C75−H75···O53 ^m	0.95	2.46	3.342 (2)	154

Symmetry codes: (i) x, y - 1, z; (ii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) -x + 1, -y, -z + 1.

pairs of molecules in a centrosymmetric $R_2^2(20)$ motif (Table 3 and Fig. 4). The two molecules involved in this ring motif lie in different (100) sheets, so that the effect of this final interaction is to link the sheets in pairs to form a bilayer. The interior of the bilayer contains C-H···O hydrogen bonds, while the *tert*-butyl groups are all on the outer faces. This probably accounts for the absence of any direction-specific interactions between adjacent bilayers.

The authors thank the Centro de Instrumentación Científico-Técnica of the Universidad de Jaén and the staff for the data collection. JQ and DP thank COLCIENCIAS and the Universidad del Valle for financial support. JC thanks the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG3298). Services for accessing these data are described at the back of the journal.

References

- Arya, K. & Dandia, A. (2007). J. Fluorine Chem. 128, 224-231.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.
- Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.
- Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.
- Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.
- Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). *Acta Cryst.* B56, 39–57.
- Kadutskii, A. P. & Kozlov, N. G. (2006). Synlett, pp. 3349–3351.
- Kappe, C. O. (2004). Angew. Chem. Int. Ed. 43, 6250-6284.

Krasnov, K. A. & Kartsev, V. G. (2005). Russ. J. Org. Chem. 41, 901-906.

- Kuster, G. J. T., van Berkom, L. W. A., Kalmoua, M., van Loevezijn, A., Sliedregt, L. A. J. M., van Steen, B. J., Kruse, C. G., Rutjes, F. P. J. T. & Scheeren, H. W. (2006). J. Combin. Chem. 8, 85–94.
- Lang, G., Pinkert, A., Blunt, J. W. & Munro, M. H. G. (2005). J. Nat. Prod. 68, 1796–1798.
- Macleod, C., Martinez-Teipel, B. I., Barker, W. M. & Dolle, R. E. (2006). J. Combin. Chem. 8, 132–140.
- Maier, C. A. & Wuensch, B. (2002). J. Med. Chem. 45, 438-448.
- Marti, C. & Carrei, E. M. (2003). Eur. J. Org. Chem. pp. 2209-2219.
- Martins, M. A. P., Frizzo, C. P., Moreira, D. N., Buriol, L. & Machado, P. (2009). *Chem. Rev.* **109**, 4140–4182.
- Nazarenko, K. G., Shtil, N. A., Lozinskii, M. O. & Tolmachev, A. A. (2007). *Tetrahedron*, **63**, 7727–7732.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Quiroga, J., Trilleras, J., Pantoja, D., Abonía, R., Insuasty, B., Nogueras, M. & Cobo, J. (2010). *Tetrahedron Lett.* 51, 4717–4719.
- Rahimizadeh, M., Shiri, A. & Bakavoli, M. (2007). Chin. Chem. Lett. 18, 689–693. Rolandsgard, M., Baldawi, S., Sirbu, D., Bjørnstad, V., Rømming, C. &
- Undheim, K. (2005). *Tetrahedron*, **61**, 4129–4140. Shaabani, A. & Bazgir, A. (2004). *Tetrahedron Lett.* **45**, 2575–2577.
- Shalaballi, A. & Bazgli, A. (2004). Tetruneuron Lett. 45, 2575–2577.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.

supplementary materials

Acta Cryst. (2013). C69, 884-887 [doi:10.1107/S0108270113017435]

Hydrogen-bonded bilayers in 7-benzyl-3-*tert*-butyl-1-phenyl-4,5,6,7-tetrahydro-1*H*-spiro[pyrazolo[3,4-*b*]pyridine-5,2'-indan]-1',3'-dione

Jairo Quiroga, Dayana Pantoja, Justo Cobo and Christopher Glidewell

Computing details

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DIRAX/LSQ* (Duisenberg *et al.*, 2000); data reduction: *EVALCCD* (Duisenberg *et al.*, 2003); program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

7-Benzyl-3-tert-butyl-1-phenyl-4,5,6,7-tetrahydro-1H-spiro[pyrazolo[3,4-b]pyridine-5,2'-indan]-1',3'-dione

Crystal data	
$C_{31}H_{29}N_{3}O_{2}$ $M_{r} = 475.57$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 16.6917 (18) Å b = 5.9748 (4) Å c = 24.840 (3) Å $\beta = 91.841$ (10)° V = 2476.0 (4) Å ³ Z = 4	F(000) = 1008 $D_x = 1.276 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5680 reflections $\theta = 3.0-27.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 120 K Block, pale yellow $0.34 \times 0.27 \times 0.22 \text{ mm}$
Data collection	
Bruker Nonius KappaCCD area-detector diffractometer Radiation source: Bruker Nonius FR591 rotating anode Graphite monochromator Detector resolution: 9.091 pixels mm ⁻¹ φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2003)	$T_{\min} = 0.973, T_{\max} = 0.983$ 38299 measured reflections 5679 independent reflections 3889 reflections with $I > 2\sigma(I)$ $R_{int} = 0.049$ $\theta_{\max} = 27.5^{\circ}, \theta_{\min} = 3.0^{\circ}$ $h = -21 \rightarrow 21$ $k = -7 \rightarrow 7$ $l = -32 \rightarrow 32$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.115$	Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map
S = 1.04	Hydrogen site location: interred from

neighbouring sites

5679 reflections

322 parameters

0 restraints

 $w = 1/[\sigma^2(F_o^2) + (0.0452P)^2 + 1.1191P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\begin{array}{l} \Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.24247 (8)	0.3603 (2)	0.63330 (5)	0.0228 (3)
N2	0.16935 (8)	0.2808 (2)	0.64967 (5)	0.0250 (3)
C3	0.14271 (9)	0.1498 (3)	0.60944 (6)	0.0224 (3)
C3A	0.19774 (9)	0.1426 (3)	0.56725 (6)	0.0213 (3)
C4	0.19455 (10)	0.0355 (3)	0.51271 (6)	0.0224 (3)
H4A	0.1388	0.0376	0.4978	0.027*
H4B	0.2122	-0.1223	0.5156	0.027*
C52	0.25005 (9)	0.1651 (3)	0.47469 (6)	0.0216 (3)
C6	0.33166 (9)	0.2112 (3)	0.50430 (6)	0.0234 (3)
H6A	0.3579	0.0662	0.5126	0.028*
H6B	0.3665	0.2940	0.4796	0.028*
N7	0.32604 (8)	0.3391 (2)	0.55438 (5)	0.0211 (3)
C7A	0.25948 (9)	0.2808 (3)	0.58353 (6)	0.0208 (3)
C51	0.20610 (9)	0.3730 (3)	0.45367 (6)	0.0225 (3)
O51	0.18240 (7)	0.52709 (19)	0.48063 (4)	0.0293 (3)
C53	0.26266 (10)	0.0272 (3)	0.42381 (6)	0.0236 (4)
O53	0.29945 (7)	-0.1477 (2)	0.42245 (5)	0.0308 (3)
C54	0.22283 (9)	0.1434 (3)	0.37753 (6)	0.0231 (3)
C55	0.21537 (10)	0.0773 (3)	0.32371 (6)	0.0274 (4)
H55	0.2367	-0.0611	0.3120	0.033*
C56	0.17571 (10)	0.2205 (3)	0.28785 (7)	0.0317 (4)
H56	0.1691	0.1791	0.2510	0.038*
C57	0.14545 (11)	0.4244 (3)	0.30528 (7)	0.0336 (4)
H57	0.1189	0.5204	0.2799	0.040*
C58	0.15310 (10)	0.4909 (3)	0.35875 (7)	0.0279 (4)
H58	0.1325	0.6305	0.3703	0.033*
C59	0.19181 (9)	0.3464 (3)	0.39461 (6)	0.0226 (3)
C11	0.29000 (9)	0.4909 (3)	0.67070 (6)	0.0214 (3)
C12	0.26215 (10)	0.6979 (3)	0.68680 (6)	0.0265 (4)
H12	0.2132	0.7554	0.6720	0.032*
C13	0.30642 (11)	0.8207 (3)	0.72471 (7)	0.0309 (4)
H13	0.2877	0.9630	0.7359	0.037*
C14	0.37777 (10)	0.7363 (3)	0.74627 (6)	0.0307 (4)
H14	0.4076	0.8197	0.7726	0.037*
C15	0.40544 (10)	0.5308 (3)	0.72946 (6)	0.0293 (4)
H15	0.4548	0.4741	0.7439	0.035*
C16	0.36168 (10)	0.4066 (3)	0.69159 (6)	0.0249 (4)
H16	0.3807	0.2652	0.6801	0.030*
C31	0.05951 (10)	0.0486 (3)	0.61060 (6)	0.0263 (4)
C32	0.05998 (11)	-0.1994 (3)	0.59411 (8)	0.0341 (4)
H32A	0.0821	-0.2139	0.5582	0.051*
H32B	0.0051	-0.2576	0.5935	0.051*
H32C	0.0931	-0.2847	0.6201	0.051*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C33	0.00517 (10)	0.1790 (3)	0.57030 (7)	0.0305 (4)
H33A	0.0039	0.3372	0.5807	0.046*
H33B	-0.0492	0.1174	0.5705	0.046*
H33C	0.0262	0.1653	0.5341	0.046*
C34	0.02508 (11)	0.0698 (4)	0.66680 (7)	0.0421 (5)
H34A	0.0573	-0.0200	0.6925	0.063*
H34B	-0.0304	0.0159	0.6659	0.063*
H34C	0.0263	0.2271	0.6780	0.063*
C77	0.34898 (10)	0.5767 (3)	0.55292 (6)	0.0230 (3)
H77A	0.3066	0.6665	0.5697	0.028*
H77B	0.3520	0.6244	0.5149	0.028*
C71	0.42857 (9)	0.6264 (3)	0.58165 (6)	0.0215 (3)
C72	0.44048 (10)	0.8345 (3)	0.60595 (6)	0.0251 (4)
H72	0.3995	0.9447	0.6034	0.030*
C73	0.51192 (10)	0.8816 (3)	0.63387 (7)	0.0293 (4)
H73	0.5196	1.0241	0.6502	0.035*
C74	0.57188 (10)	0.7225 (3)	0.63803 (7)	0.0302 (4)
H74	0.6201	0.7541	0.6580	0.036*
C75	0.56146 (10)	0.5170 (3)	0.61303 (7)	0.0295 (4)
H75	0.6030	0.4082	0.6152	0.035*
C76	0.49021 (10)	0.4696 (3)	0.58466 (6)	0.0251 (4)
H76	0.4836	0.3290	0.5672	0.030*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0218 (7)	0.0290 (8)	0.0176 (6)	-0.0061 (6)	0.0002 (5)	-0.0029 (6)
N2	0.0224 (7)	0.0319 (8)	0.0206 (7)	-0.0057 (6)	-0.0001 (5)	-0.0005 (6)
C3	0.0230 (8)	0.0242 (8)	0.0197 (8)	-0.0012 (7)	-0.0033 (6)	0.0013 (7)
C3A	0.0240 (8)	0.0207 (8)	0.0192 (7)	0.0004 (7)	-0.0023 (6)	0.0002 (6)
C4	0.0250 (8)	0.0215 (8)	0.0204 (8)	-0.0007 (7)	-0.0028 (6)	-0.0013 (6)
C52	0.0251 (8)	0.0206 (8)	0.0191 (7)	0.0006 (7)	0.0000 (6)	-0.0017 (6)
C6	0.0240 (8)	0.0262 (9)	0.0200 (8)	-0.0012 (7)	0.0000 (6)	-0.0017 (7)
N7	0.0224 (7)	0.0217 (7)	0.0192 (6)	-0.0030 (6)	0.0004 (5)	-0.0013 (5)
C7A	0.0223 (8)	0.0218 (8)	0.0181 (7)	-0.0003 (7)	-0.0011 (6)	0.0004 (6)
C51	0.0234 (8)	0.0230 (9)	0.0210 (8)	-0.0029 (7)	-0.0001 (6)	-0.0014 (7)
O51	0.0394 (7)	0.0232 (6)	0.0252 (6)	0.0039 (5)	-0.0011 (5)	-0.0052 (5)
C53	0.0247 (8)	0.0227 (9)	0.0233 (8)	-0.0015 (7)	0.0025 (6)	-0.0034 (7)
O53	0.0361 (7)	0.0264 (7)	0.0301 (6)	0.0052 (6)	0.0036 (5)	-0.0042 (5)
C54	0.0204 (8)	0.0285 (9)	0.0204 (8)	-0.0038 (7)	0.0021 (6)	-0.0025 (7)
C55	0.0255 (9)	0.0347 (10)	0.0222 (8)	-0.0043 (8)	0.0034 (7)	-0.0065 (7)
C56	0.0280 (9)	0.0483 (12)	0.0189 (8)	-0.0058 (8)	0.0009 (7)	-0.0025 (8)
C57	0.0325 (10)	0.0453 (12)	0.0226 (8)	-0.0004 (9)	-0.0027 (7)	0.0086 (8)
C58	0.0282 (9)	0.0300 (9)	0.0254 (8)	0.0007 (8)	0.0002 (7)	0.0016 (7)
C59	0.0206 (8)	0.0277 (9)	0.0194 (7)	-0.0026 (7)	0.0007 (6)	-0.0013 (7)
C11	0.0228 (8)	0.0256 (9)	0.0159 (7)	-0.0059 (7)	0.0003 (6)	-0.0015 (6)
C12	0.0248 (8)	0.0288 (9)	0.0259 (8)	0.0000 (7)	0.0005 (7)	-0.0005 (7)
C13	0.0370 (10)	0.0274 (9)	0.0288 (9)	-0.0055 (8)	0.0081 (7)	-0.0074 (7)
C14	0.0306 (9)	0.0392 (11)	0.0222 (8)	-0.0132 (8)	0.0003 (7)	-0.0075 (8)
C15	0.0232 (8)	0.0414 (11)	0.0230 (8)	-0.0019 (8)	-0.0036 (7)	0.0011 (8)

supplementary materials

C16	0.0251 (9)	0.0277(0)	0.0210 (8)	0.0002 (7)	0.0010(6)	0.0011.(7)
C16	0.0251(8)	0.0277(9)	0.0219 (8)	0.0002(7)	0.0010 (6)	-0.0011 (7)
C31	0.0234 (8)	0.0324 (10)	0.0231 (8)	-0.0045 (7)	-0.0013 (6)	-0.0015 (7)
C32	0.0277 (9)	0.0314 (10)	0.0429 (11)	-0.0055 (8)	-0.0042 (8)	0.0045 (8)
C33	0.0246 (9)	0.0322 (10)	0.0342 (9)	0.0006 (8)	-0.0054 (7)	-0.0068 (8)
C34	0.0289 (10)	0.0693 (15)	0.0283 (9)	-0.0172 (10)	0.0029 (7)	-0.0027 (9)
C77	0.0253 (8)	0.0222 (8)	0.0213 (8)	-0.0014 (7)	-0.0022 (6)	0.0023 (7)
C71	0.0239 (8)	0.0238 (8)	0.0167 (7)	-0.0035 (7)	0.0012 (6)	0.0032 (6)
C72	0.0289 (9)	0.0226 (9)	0.0235 (8)	-0.0020 (7)	-0.0020 (7)	0.0027 (7)
C73	0.0338 (10)	0.0271 (9)	0.0267 (9)	-0.0093 (8)	-0.0029 (7)	-0.0001 (7)
C74	0.0235 (9)	0.0405 (11)	0.0266 (9)	-0.0082 (8)	-0.0020 (7)	0.0025 (8)
C75	0.0234 (9)	0.0369 (10)	0.0284 (9)	0.0017 (8)	0.0025 (7)	0.0034 (8)
C76	0.0248 (8)	0.0256 (9)	0.0250 (8)	-0.0015 (7)	0.0033 (7)	-0.0012 (7)

Geometric parameters (Å, °)

N1—N2	1.3830 (18)	C12—C13	1.388 (2)
N1-C11	1.433 (2)	C12—H12	0.9500
N2—C3	1.334 (2)	C13—C14	1.385 (2)
C3—C3A	1.416 (2)	C13—H13	0.9500
C3—C31	1.516 (2)	C14—C15	1.381 (3)
C3A—C7A	1.371 (2)	C14—H14	0.9500
C7A—N1	1.3628 (19)	C15—C16	1.387 (2)
C3A—C4	1.498 (2)	C15—H15	0.9500
C4—C52	1.551 (2)	C16—H16	0.9500
C4—H4A	0.9900	C31—C34	1.532 (2)
C4—H4B	0.9900	C31—C32	1.537 (2)
C52—C51	1.526 (2)	C31—C33	1.541 (2)
C52—C53	1.529 (2)	C32—H32A	0.9800
С52—С6	1.552 (2)	C32—H32B	0.9800
C6—N7	1.4656 (19)	C32—H32C	0.9800
С6—Н6А	0.9900	С33—Н33А	0.9800
С6—Н6В	0.9900	С33—Н33В	0.9800
N7—C7A	1.3900 (19)	С33—Н33С	0.9800
N7—C77	1.471 (2)	C34—H34A	0.9800
C51—O51	1.2124 (19)	C34—H34B	0.9800
C51—C59	1.487 (2)	C34—H34C	0.9800
C53—O53	1.2135 (19)	C77—C71	1.517 (2)
C53—C54	1.482 (2)	С77—Н77А	0.9900
C54—C59	1.391 (2)	С77—Н77В	0.9900
C54—C55	1.396 (2)	C71—C76	1.392 (2)
C55—C56	1.388 (2)	C71—C72	1.393 (2)
С55—Н55	0.9500	C72—C73	1.389 (2)
C56—C57	1.393 (3)	С72—Н72	0.9500
С56—Н56	0.9500	C73—C74	1.382 (3)
С57—С58	1.388 (2)	С73—Н73	0.9500
С57—Н57	0.9500	C74—C75	1.385 (3)
C58—C59	1.386 (2)	C74—H74	0.9500
С58—Н58	0.9500	C75—C76	1.392 (2)
C11—C16	1.384 (2)	С75—Н75	0.9500
C11—C12	1.385 (2)	С76—Н76	0.9500

C7A—N1—C11 130.59 (13) C13—C12—H12 N2—N1—C11 118.16 (12) C14—C13—C12 C3—N2—N1 104.91 (12) C14—C13—H13 N2—C3—C3A 111.32 (14) C12—C13—H13	120.3
N2-N1-C11 118.16 (12) C14-C13-C12 C3-N2-N1 104.91 (12) C14-C13-H13 N2-C3-C3A 111.32 (14) C12-C13-H13	100 15 (10)
C3-N2-N1 104.91 (12) C14-C13-H13 N2-C3-C3A 111.32 (14) C12-C13-H13	120.15 (16)
N2-C3-C3A 111.32 (14) C12-C13-H13	119.9
	119.9
N2-C3-C31 120.21 (14) C15-C14-C13	119.90 (16)
C3A—C3—C31 128.20 (14) C15—C14—H14	120.0
C7A—C3A—C3 105.22 (13) C13—C14—H14	120.0
C7A—C3A—C4 121.91 (14) C14—C15—C16	120.43 (16)
C3—C3A—C4 132.64 (14) C14—C15—H15	119.8
C3A—C4—C52 109.45 (13) C16—C15—H15	119.8
C3A—C4—H4A 109.8 C11—C16—C15	119.33 (16)
C52—C4—H4A 109.8 C11—C16—H16	120.3
C3A—C4—H4B 109.8 C15—C16—H16	120.3
C52—C4—H4B 109.8 C3—C31—C34	110.80(13)
H4A—C4—H4B 108.2 C3—C31—C32	111.51 (14)
C51—C52—C53 103.48 (12) C34—C31—C32	109.14 (15)
C51—C52—C4 108.94 (13) C3—C31—C33	107.86 (14)
C53—C52—C4 109.59 (13) C34—C31—C33	108.67 (15)
C51—C52—C6 115.01 (13) C32—C31—C33	108.80 (14)
C53—C52—C6 110.21 (13) C31—C32—H32A	109.5
C4—C52—C6 109.42 (12) C31—C32—H32B	109.5
N7—C6—C52 114.57 (13) H32A—C32—H32B	109.5
N7—C6—H6A 108.6 C31—C32—H32C	109.5
С52—С6—Н6А 108.6 Н32А—С32—Н32С	109.5
N7—C6—H6B 108.6 H32B—C32—H32C	109.5
N7—C6—H6B 108.6 H32B—C32—H32C C52—C6—H6B 108.6 C31—C33—H33A	109.5 109.5
N7—C6—H6B108.6H32B—C32—H32CC52—C6—H6B108.6C31—C33—H33AH6A—C6—H6B107.6C31—C33—H33B	109.5 109.5 109.5
N7—C6—H6B108.6H32B—C32—H32CC52—C6—H6B108.6C31—C33—H33AH6A—C6—H6B107.6C31—C33—H33BC7A—N7—C6112.68 (12)H33A—C33—H33B	109.5 109.5 109.5 109.5
N7—C6—H6B108.6H32B—C32—H32CC52—C6—H6B108.6C31—C33—H33AH6A—C6—H6B107.6C31—C33—H33BC7A—N7—C6112.68 (12)H33A—C33—H33BC7A—N7—C77117.90 (13)C31—C33—H33C	109.5 109.5 109.5 109.5 109.5
N7—C6—H6B 108.6 H32B—C32—H32C C52—C6—H6B 108.6 C31—C33—H33A H6A—C6—H6B 107.6 C31—C33—H33B C7A—N7—C6 112.68 (12) H33A—C33—H33B C7A—N7—C77 117.90 (13) C31—C33—H33C C6—N7—C77 117.28 (12) H33A—C33—H33C	109.5 109.5 109.5 109.5 109.5 109.5
N7—C6—H6B 108.6 H32B—C32—H32C C52—C6—H6B 108.6 C31—C33—H33A H6A—C6—H6B 107.6 C31—C33—H33B C7A—N7—C6 112.68 (12) H33A—C33—H33B C7A—N7—C77 117.90 (13) C31—C33—H33C C6—N7—C77 117.28 (12) H33A—C33—H33C N1—C7A—C3A 107.52 (13) H33B—C33—H33C	109.5 109.5 109.5 109.5 109.5 109.5 109.5
N7—C6—H6B 108.6 H32B—C32—H32C C52—C6—H6B 108.6 C31—C33—H33A H6A—C6—H6B 107.6 C31—C33—H33B C7A—N7—C6 112.68 (12) H33A—C33—H33B C7A—N7—C77 117.90 (13) C31—C33—H33C C6—N7—C77 117.28 (12) H33A—C33—H33C N1—C7A—C3A 107.52 (13) H33B—C33—H33C N1—C7A—N7 125.35 (14) C31—C34—H34A	109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
N7—C6—H6B 108.6 H32B—C32—H32C C52—C6—H6B 108.6 C31—C33—H33A H6A—C6—H6B 107.6 C31—C33—H33B C7A—N7—C6 112.68 (12) H33A—C33—H33B C7A—N7—C77 117.90 (13) C31—C33—H33C C6—N7—C77 117.28 (12) H33A—C33—H33C N1—C7A—C3A 107.52 (13) H33B—C33—H33C N1—C7A—N7 125.35 (14) C31—C34—H34A C3A—C7A—N7 127.08 (14) C31—C34—H34B	109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
N7—C6—H6B 108.6 H32B—C32—H32C C52—C6—H6B 108.6 C31—C33—H33A H6A—C6—H6B 107.6 C31—C33—H33B C7A—N7—C6 112.68 (12) H33A—C33—H33B C7A—N7—C77 117.90 (13) C31—C33—H33C C6—N7—C77 117.28 (12) H33A—C33—H33C N1—C7A—C3A 107.52 (13) H33B—C33—H33C N1—C7A—N7 125.35 (14) C31—C34—H34A C3A—C7A—N7 127.08 (14) C31—C34—H34B O51—C51—C59 125.52 (15) H34A—C34—H34B	109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
N7—C6—H6B 108.6 H32B—C32—H32C C52—C6—H6B 108.6 C31—C33—H33A H6A—C6—H6B 107.6 C31—C33—H33B C7A—N7—C6 112.68 (12) H33A—C33—H33B C7A—N7—C77 117.90 (13) C31—C33—H33C C6—N7—C77 117.28 (12) H33A—C33—H33C N1—C7A—C3A 107.52 (13) H33B—C33—H33C N1—C7A—N7 125.35 (14) C31—C34—H34A C3A—C7A—N7 127.08 (14) C31—C34—H34B O51—C51—C59 125.52 (15) H34A—C34—H34B O51—C51—C52 126.22 (14) C31—C34—H34C	109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
N7—C6—H6B 108.6 H32B—C32—H32C C52—C6—H6B 108.6 C31—C33—H33A H6A—C6—H6B 107.6 C31—C33—H33B C7A—N7—C6 112.68 (12) H33A—C33—H33B C7A—N7—C77 117.90 (13) C31—C33—H33C C6—N7—C77 117.28 (12) H33A—C33—H33C N1—C7A—C3A 107.52 (13) H33B—C33—H33C N1—C7A—N7 125.35 (14) C31—C34—H34A C3A—C7A—N7 127.08 (14) C31—C34—H34B O51—C51—C52 126.22 (14) C31—C34—H34B O51—C51—C52 126.22 (14) C31—C34—H34B O51—C51—C52 126.22 (14) C31—C34—H34C C59—C51—C52 108.12 (13) H34A—C34—H34C	109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
N7—C6—H6B108.6H32B—C32—H32CC52—C6—H6B108.6C31—C33—H33AH6A—C6—H6B107.6C31—C33—H33BC7A—N7—C6112.68 (12)H33A—C33—H33BC7A—N7—C77117.90 (13)C31—C33—H33CC6—N7—C77117.28 (12)H33A—C33—H33CN1—C7A—C3A107.52 (13)H33B—C33—H33CN1—C7A—N7125.35 (14)C31—C34—H34AC3A—C7A—N7127.08 (14)C31—C34—H34BO51—C51—C59125.52 (15)H34A—C34—H34BO51—C51—C52126.22 (14)C31—C34—H34CC59—C51—C52108.12 (13)H34A—C34—H34CO53—C53—C54126.63 (15)H34B—C34—H34C	109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
N7—C6—H6B108.6H32B—C32—H32CC52—C6—H6B108.6C31—C33—H33AH6A—C6—H6B107.6C31—C33—H33BC7A—N7—C6112.68 (12)H33A—C33—H33BC7A—N7—C77117.90 (13)C31—C33—H33CC6—N7—C77117.28 (12)H33A—C33—H33CN1—C7A—C3A107.52 (13)H33B—C33—H33CN1—C7A—N7125.35 (14)C31—C34—H34AC3A—C7A—N7127.08 (14)C31—C34—H34BO51—C51—C52126.22 (14)C31—C34—H34BO51—C51—C52126.22 (14)C31—C34—H34CC59—C51—C52108.12 (13)H34A—C34—H34CO53—C53—C54126.63 (15)H34B—C34—H34CO53—C53—C52124.78 (15)N7—C77—C71	109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
N7—C6—H6B108.6H32B—C32—H32CC52—C6—H6B108.6C31—C33—H33AH6A—C6—H6B107.6C31—C33—H33BC7A—N7—C6112.68 (12)H33A—C33—H33BC7A—N7—C77117.90 (13)C31—C33—H33CC6—N7—C77117.28 (12)H33A—C33—H33CN1—C7A—C3A107.52 (13)H33B—C33—H33CN1—C7A—N7125.35 (14)C31—C34—H34AC3A—C7A—N7127.08 (14)C31—C34—H34BO51—C51—C59125.52 (15)H34A—C34—H34BO51—C51—C52126.22 (14)C31—C34—H34CC59—C51—C52108.12 (13)H34B—C34—H34CO53—C53—C54126.63 (15)H34B—C34—H34CO53—C53—C52124.78 (15)N7—C77—C71C54—C53—C52108.58 (13)N7—C77—H77A	109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
N7—C6—H6B108.6H32B—C32—H32CC52—C6—H6B108.6C31—C33—H33AH6A—C6—H6B107.6C31—C33—H33BC7A—N7—C6112.68 (12)H33A—C33—H33BC7A—N7—C77117.90 (13)C31—C33—H33CC6—N7—C77117.28 (12)H33A—C33—H33CN1—C7A—C3A107.52 (13)H33B—C33—H33CN1—C7A—N7125.35 (14)C31—C34—H34AC3A—C7A—N7127.08 (14)C31—C34—H34BO51—C51—C52126.22 (14)C31—C34—H34BO51—C51—C52126.22 (14)C31—C34—H34CC59—C51—C52108.12 (13)H34A—C34—H34CO53—C53—C54126.63 (15)H34B—C34—H34CO53—C53—C52124.78 (15)N7—C77—C71C54—C53—C52108.58 (13)N7—C77—H77AC59—C54—C55121.08 (15)C71—C77—H77A	109.5 109.5
N7—C6—H6B108.6H32B—C32—H32CC52—C6—H6B108.6C31—C33—H33AH6A—C6—H6B107.6C31—C33—H33BC7A—N7—C6112.68 (12)H33A—C33—H33BC7A—N7—C77117.90 (13)C31—C33—H33CC6—N7—C77117.28 (12)H33A—C33—H33CN1—C7A—C3A107.52 (13)H33B—C33—H33CN1—C7A—N7125.35 (14)C31—C34—H34AC3A—C7A—N7127.08 (14)C31—C34—H34BO51—C51—C59125.52 (15)H34A—C34—H34BO51—C51—C52126.22 (14)C31—C34—H34CC59—C51—C52108.12 (13)H34A—C34—H34CO53—C53—C54126.63 (15)H34B—C34—H34CO53—C53—C52124.78 (15)N7—C77—C71C54—C53—C52121.08 (15)C71—C77—H77AC59—C54—C55121.08 (15)C71—C77—H77AC59—C54—C53109.52 (13)N7—C77—H77A	109.5 109.5
N7C6H6B108.6H32BC32H32CC52C6H6B108.6C31C33H33AH6AC6H6B107.6C31C33H33BC7AN7C6112.68 (12)H33AC33H33BC7AN7C77117.90 (13)C31C33H33CC6N7C77117.28 (12)H33AC33H33CN1C7AC3A107.52 (13)H33BC33H33CN1C7AN7125.35 (14)C31C34H34AC3AC7AN7127.08 (14)C31C34H34BO51C51C59125.52 (15)H34AC34H34BO51C51C52126.22 (14)C31C34H34CC59C51C52108.12 (13)H34AC34H34CO53C53C54126.63 (15)H34BC34H34CO53C53C54126.63 (15)H34BC34H34CC59C54C55121.08 (15)C71C77H77AC59C54C53109.52 (13)N7C77H77BC55C54C53129.39 (16)C71C77H77B	109.5 109.5
N7—C6—H6B108.6H32B—C32—H32CC52—C6—H6B108.6C31—C33—H33AH6A—C6—H6B107.6C31—C33—H33BC7A—N7—C6112.68 (12)H33A—C33—H33BC7A—N7—C77117.90 (13)C31—C33—H33CC6—N7—C77117.28 (12)H33A—C33—H33CN1—C7A—C3A107.52 (13)H33B—C33—H33CN1—C7A—N7125.35 (14)C31—C34—H34AC3A—C7A—N7127.08 (14)C31—C34—H34BO51—C51—C59125.52 (15)H34A—C34—H34BO51—C51—C52126.22 (14)C31—C34—H34CC59—C51—C52108.12 (13)H34A—C34—H34CO53—C53—C54126.63 (15)H34B—C34—H34CO53—C53—C52124.78 (15)N7—C77—C71C54—C53121.08 (15)C71—C77—H77AC59—C54—C53129.39 (16)C71—C77—H77BC55—C54—C53129.39 (16)C71—C77—H77B	109.5 108.8 108.8 108.8 108.8 108.8 108.8
N7—C6—H6B108.6H32B—C32—H32CC52—C6—H6B108.6C31—C33—H33AH6A—C6—H6B107.6C31—C33—H33BC7A—N7—C6112.68 (12)H33A—C33—H33BC7A—N7—C77117.90 (13)C31—C33—H33CC6—N7—C77117.28 (12)H33A—C33—H33CN1—C7A—C3A107.52 (13)H33B—C33—H33CN1—C7A—N7125.35 (14)C31—C34—H34AC3A—C7A—N7127.08 (14)C31—C34—H34BO51—C51—C59125.52 (15)H34A—C34—H34BO51—C51—C52108.12 (13)H34A—C34—H34CC53—C54126.63 (15)H34B—C34—H34CO53—C53—C52124.78 (15)N7—C77—H77AC59—C54—C53120.52 (13)N7—C77—H77AC59—C54—C53129.39 (16)C71—C77—H77BC56—C55—C54117.81 (16)H77A—C77—H77BC56—C55—H55121.1C76—C71—C72	109.5 109.7 113.70 (13) 108.8 108.8 108.8 108.8
N7—C6—H6B108.6H32B—C32—H32CC52—C6—H6B108.6C31—C33—H33AH6A—C6—H6B107.6C31—C33—H33BC7A—N7—C6112.68 (12)H33A—C33—H33BC7A—N7—C77117.90 (13)C31—C33—H33CC6—N7—C77117.28 (12)H33A—C33—H33CN1—C7A—C3A107.52 (13)H33B—C33—H33CN1—C7A—N7125.35 (14)C31—C34—H34AC3A—C7A—N7127.08 (14)C31—C34—H34BO51—C51—C59125.52 (15)H34A—C34—H34BO51—C51—C52126.22 (14)C31—C34—H34CC59—C51—C52108.12 (13)H34A—C34—H34CO53—C53—C54126.63 (15)H34B—C34—H34CO53—C53—C52124.78 (15)N7—C77—C71C54—C53121.08 (15)C71—C77—H77AC59—C54—C53129.39 (16)C71—C77—H77BC56—C55—C54117.81 (16)H77A—C77—H77BC56—C55—H55121.1C76—C71—C72C54—C55—H55121.1C76—C71—C77	109.5 109.7 113.70 (13) 108.8 108.8 108.8 108.8 108.8 107.7 118.84 (15) 121.88 (15)
N7—C6—H6B108.6H32B—C32—H32CC52—C6—H6B108.6C31—C33—H33AH6A—C6—H6B107.6C31—C33—H33BC7A—N7—C6112.68 (12)H33A—C33—H33BC7A—N7—C77117.90 (13)C31—C33—H33CC6—N7—C77117.28 (12)H33A—C33—H33CN1—C7A—C3A107.52 (13)H33B—C33—H33CN1—C7A—N7125.35 (14)C31—C34—H34AC3A—C7A—N7127.08 (14)C31—C34—H34BO51—C51—C59125.52 (15)H34A—C34—H34BO51—C51—C52126.22 (14)C31—C34—H34CC59—C51—C52108.12 (13)H34B—C34—H34CO53—C53—C54126.63 (15)H34B—C34—H34CO53—C53—C52124.78 (15)N7—C77—H77AC59—C54—C55121.08 (15)C71—C77—H77AC59—C54—C53109.52 (13)N7—C77—H77BC56—C55—C54117.81 (16)H77A—C77—H77BC56—C55—H55121.1C76—C71—C77C54—C55—H55121.1C76—C71—C77C55—C56—C57120.65 (16)C72—C71—C77	109.5 113.70 (13) 108.8 108.8 108.8 108.8 107.7 118.84 (15) 121.88 (15) 121.88 (15) 121.88 (15) 121.88 (15)

С57—С56—Н56	119.7	С73—С72—Н72	119.8
C58—C57—C56	121.63 (16)	С71—С72—Н72	119.8
С58—С57—Н57	119.2	C74—C73—C72	120.39 (16)
С56—С57—Н57	119.2	С74—С73—Н73	119.8
C59—C58—C57	117.61 (17)	С72—С73—Н73	119.8
С59—С58—Н58	121.2	C73—C74—C75	119.77 (16)
С57—С58—Н58	121.2	С73—С74—Н74	120.1
C58—C59—C54	121.20 (15)	С75—С74—Н74	120.1
C58—C59—C51	128.65 (15)	C74—C75—C76	120.03 (16)
C54—C59—C51	110.15 (14)	С74—С75—Н75	120.0
C16—C11—C12	120.72 (15)	С76—С75—Н75	120.0
C16—C11—N1	119.94 (15)	C71—C76—C75	120.56 (16)
C12—C11—N1	119.30 (14)	С71—С76—Н76	119.7
C11—C12—C13	119.45 (16)	С75—С76—Н76	119.7
C7A—N1—N2—C3	0.73 (17)	C59—C54—C55—C56	-0.3(2)
$C_{11} = N_1 = N_2 = C_3$	-174.20(14)	C53—C54—C55—C56	-179.00(16)
N1—N2—C3—C3A	0.22 (18)	C54—C55—C56—C57	0.8 (2)
N1—N2—C3—C31	-174.25 (14)	C55—C56—C57—C58	-0.5(3)
N_2 C_3 C_3 C_7 C_7	-1.06(18)	$C_{56} - C_{57} - C_{58} - C_{59}$	-0.3(3)
C_{31} C_{3} C_{3A} C_{7A}	172.86 (16)	C57 - C58 - C59 - C54	0.8(2)
$N_2 - C_3 - C_3 A - C_4$	-17540(16)	C57 - C58 - C59 - C51	-178 19 (16)
$C_{31} - C_{3} - C_{3} - C_{4}$	-15(3)	$C_{55} - C_{54} - C_{59} - C_{58}$	-0.6(2)
C7A - C3A - C4 - C52	-194(2)	C_{53} C_{54} C_{59} C_{58}	17840(15)
C_{3} C_{3} C_{4} C_{52}	154 13 (17)	$C_{55} = C_{54} = C_{59} = C_{51}$	178.61 (14)
$C_{3}A - C_{4} - C_{5}^{2} - C_{5}^{1}$	-80.74(15)	$C_{53} - C_{54} - C_{59} - C_{51}$	-242(18)
$C_{3A} - C_{4} - C_{52} - C_{53}$	166 70 (13)	051 - 051 - 059 - 051	31(3)
$C_{3A} - C_{4} - C_{52} - C_{6}$	45 76 (17)	C_{52} C_{51} C_{59} C_{58}	178 98 (16)
C_{51} C_{52} C_{6} N_{7}	64 66 (17)	051 - 051 - 059 - 050	-176.01(16)
C_{53} C_{52} C_{6} N_{7}	-178 87 (13)	C_{52} C_{51} C_{59} C_{54} C_{54}	-0.13(17)
$C_{33} = C_{32} = C_{0} = N_{7}$	-58.31(17)	C74 - N1 - C11 - C16	-615(2)
$C_{1}^{2} = C_{2}^{2} = C_{0}^{2} = N_{1}^{2}$	37.90 (18)	$N_{-N_{-}}^{-N_{-}} = C_{10}^{-10}$	112 29 (17)
$C_{52} = C_{6} = N_{7} = C_{77}$	-103.91(16)	$C7A_{1}N1_{1}C11_{1}C12$	112.29(17) 120.54(19)
$N_2 = N_1 = C_1 + C_2 $	-1.41(18)	C_{16} C_{11} C_{12} C_{13}	-0.6(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.41(10) 172.71(15)	N1 = C11 = C12 = C13	177 32 (14)
$N_{1} = N_{1} = C_{1} = C_{2}$	172.71(13) 176.11(14)	$C_{11} C_{12} C_{13} C_{14}$	-0.1(2)
$\frac{11}{12} - \frac{11}{12} - 11$	-0.8(3)	$C_{12} = C_{12} = C_{13} = C_{14} = C_{15}$	0.1(2)
$C_{11} = N_{11} = C_{1A} = N_{1}$	9.0(3)	$C_{12} = C_{13} = C_{14} = C_{15}$	-0.9(3)
C_{3} C_{3} C_{7} N_{1}	1.43(17) 176 55 (14)	C_{13} C_{14} C_{15} C_{10} C_{10}	-0.9(3)
$C_4 = C_3 A = C_7 A = N_1$	1/0.55(14) -176.01(15)	C12 - C11 - C10 - C13	0.0(2) -177.21(14)
C_{3} C_{3} C_{7} N_{7}	-1/0.01(13) -0.0(2)	N1 - C11 - C10 - C13	-1/7.31(14)
C4 - C3A - C/A - N/	-0.9(3)	C14 - C13 - C10 - C11	0.1(2)
C_{0} N/ C_{A} NI	1/4.92(13)	$N_2 = C_3 = C_3 = C_{32}$	-155.75(10)
C//-N/-C/A-NI	-43.3(2)	$C_{3A} = C_{3} = C_{31} = C_{32}$	30.0(2)
$C_{1} = C_{1} = C_{1} = C_{2} = C_{2}$	0.1(2) 122 50 (17)	$112 - C_3 - C_3 1 - C_{33}$	104.03(17)
$C_{1} = N_{1} = C_{1} = C_{1} = C_{2}$	133.30(1/) 179.21(15)	1N2 - C3 - C31 - C34	-14.0(2)
$C_{3} = C_{3} = C_{3$	1/0.31(13)	$C_{2A} = C_{2} = C_{21} = C_{22}$	1/2.38(1/)
$C_4 = C_5 $	01.0(2)	C_{3A} C_{3} C_{11} C_{12} C_{12}	-00.0(2)
0 - 0.52 - 0.51 - 0.51	-01.4(2)	N2 - N1 - U11 - U12	-05.09 (19)
033-032-031-039	∠.4/(10)	U/A = N/ = U/I	113.17(13)

C4—C52—C51—C59	-114.06 (14)	C6—N7—C77—C71	-107.03 (15)
C6—C52—C51—C59	122.71 (14)	N7—C77—C71—C76	30.4 (2)
C51—C52—C53—O53	176.06 (15)	N7—C77—C71—C72	-149.38 (14)
C4—C52—C53—O53	-67.9 (2)	C76—C71—C72—C73	-1.7 (2)
C6—C52—C53—O53	52.6 (2)	C77—C71—C72—C73	178.07 (15)
C51—C52—C53—C54	-3.88 (16)	C71—C72—C73—C74	-0.2 (2)
C4—C52—C53—C54	112.20 (14)	C72—C73—C74—C75	1.7 (3)
C6—C52—C53—C54	-127.34 (14)	C73—C74—C75—C76	-1.2 (2)
O53—C53—C54—C59	-175.90 (16)	C72—C71—C76—C75	2.2 (2)
C52—C53—C54—C59	4.04 (18)	C77—C71—C76—C75	-177.57 (15)
O53—C53—C54—C55	3.0 (3)	C74—C75—C76—C71	-0.8 (2)
C52—C53—C54—C55	-177.10 (16)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H··· A
C4—H4 <i>B</i> ···O51 ⁱ	0.99	2.32	3.145 (2)	141
C56—H56…N2 ⁱⁱ	0.95	2.53	3.431 (2)	158
C75—H75…O53 ⁱⁱⁱ	0.95	2.46	3.342 (2)	154

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) *x*, -*y*+1/2, *z*-1/2; (iii) -*x*+1, -*y*, -*z*+1.