ORIGINAL PAPER

X-ray Crystal Structure of Grandiflorenic Acid [(-)-kaura-9(11)-16-dien-19-oic Acid] Methyl Ester, a Compound Formerly Considered as an Oily Derivative

Perla Cruz-Mondragón · M. Concepción Lozada · Benjamín Ortiz · Raúl G. Enríquez · Manuel Soriano-García

Received: 20 October 2007/Accepted: 13 November 2008/Published online: 4 December 2008 © Springer Science+Business Media, LLC 2008

Abstract Grandiflorenic acid [(–)-kaura-9(11)-16-dien-19-oic acid] methyl ester (**2**), $C_{21}H_{30}O_2$, was synthesized from grandiflorenic acid, isolated from the plant *Montanoa tomentosa*. Compound (2) was formerly described as an oily derivative. X-ray diffraction analysis of (2) demonstrated that it consists of four rings, three six-membered rings (I, II and III) and one five-membered ring (IV). I, II and III rings occur in chair, twist, and envelope conformations, respectively. Ring IV occurs in a conformation between envelope and half-chair. The crystal of grandiflorenic acid methyl ester is in monoclinic crystal system with space group *P*2₁, lattice constants: *a* = 7.2170(10), *b* = 11.4170(10), *c* = 11.2850(10) Å, *β* = 98.700(10)°, *V* = 919.1(2) Å³ and *Z* = 2.

Keywords Diterpenes · Kauradienoic acid derivative · Structure and stereochemistry

Introduction

The synthesis and assessment of the spatial conformation of grandiflorenic acid methyl ester 2 is a relevant topic due to the important pharmacological effects reported for the

M. Soriano-García (🖂)

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico 04510, DF, Mexico

e-mail: soriano@servidor.unam.mx

M. Concepción Lozada Departamento de Sistemas Biológicos, UAM-Xochimilco, Calzada del Hueso 1100 Col. Villa Quietud, 04960 Coyoacán, México DF, Mexico parent grandiflorenic (or kauradienoic) acid 1 and related compounds [1].

We have previously carried out a comparative study of the solution and crystal structures of three major terpenic acids present in *Montanoa tomentosa* including the parent acid compound **1** used herein [2].

The synthesis of grandiflorenic acid and its methyl ester derivative **2** prepared with diazomethane has been reported [3], and the latter compound was described as an uncrystallizable oil although its spectroscopic data (IR, ¹H-NMR, MS) agree with the expected structure. Since other reports refer to the isolation of **1** and its derivatization into the methyl ester **2** [4, 5] a definitive proof of structure is necessary to meet the growing importance in assessing the molecular arrangements for this type of compounds [6]. In the present work, the esterification of grandiflorenic acid was accomplished with an ethereal solution of diazomethane produced by reaction of *N*-nitroso-methyl urea and aqueous KOH. The reaction gave a single product by TLC which proved adequate to obtain single crystals of **2**.

In this paper, we report the synthesis and crystal structure of grandiflorenic acid methyl ester 2 derived from *N*-nitroso-methyl urea/KOH/eter system with grandiflorenic acid 1.

The need for a definitive proof of the crystal structure of **2** is due to the growing importance in assessing the molecular arrangements known for this type of compounds [6].

Experimental

Synthesis

The title compound 2 was synthesized by addition of an ethereal solution (20 mL) of *N*-nitroso-*N*-methyl urea (5 g)

P. Cruz-Mondragón \cdot B. Ortiz \cdot R. G. Enríquez \cdot

Table 1 Crystal data, collection parameters and refinements for compound $\mathbf{2}$

Table 2 Bond distances (Å) and angles (°) for compound 2

compound 2		Bond lengths (Å)			
Compound	2	01–C19	1.331(5)	O1-C21	1.447(5)
CCDC deposit no.	639253	O2-C19	1.188(4)	C1–C2	1.519(5
Crystal size (mm)	$0.50\times0.28\times0.26$	C1-C10	1.536(5)	C2–C3	1.492(7
Color/shape	Colorless/prism	C3–C4	1.542(5)	C4C19	1.528(5
Empirical formula	$C_{21}H_{30}O_2$	C4–C18	1.533(5)	C4–C5	1.565(4
Formula weight	314.45	C5-C6	1.525(5)	C5-C10	1.547(4
Crystal system	Monoclinic	C6-C7	1.520(5)	C7–C8	1.518(5
Space group	<i>P</i> 2 ₁	C8–C9	1.524(5)	C8-C15	1.540(4
Unit cell dimensions		C8-C14	1.540(4)	C9-C11	1.330(5
<i>a</i> (Å)	7.2170(10)	C9-C10	1.545(4)	C10-C20	1.539(4
<i>b</i> , (Å)	11.4170(10)	C11-C12	1.513(5)	C12-C13	1.519(7
<i>c</i> (Å)	11.2850(10)	C13-C16	1.514(5)	C13-C14	1.517(5
β (°)	98.700(10)	C15-C16	1.512(4)	C16-C17	1.314(5
Volume (Å) ³	919.1(2)	Bond angles (°)			
Ζ	2	C19-O1-C21	116.5(4)	C2C1C10	114.0(3)
Density (calculated) (g cm^{-3})	1.136	C3-C2-C1	110.2(3)	C2-C3-C4	114.9(3)
Absorption coefficient (mm ⁻¹)	0.547	C19-C4-C18	107.3(3)	C19-C4-C3	107.5(3)
$F_{(000)}$	344	C18-C4-C3	109.1(3)	C19-C4-C5	115.3(2)
θ range for data collection (°)	2.16-24.99	C18-C4-C5	109.3(3)	C3-C4-C5	108.2(3)
Index ranges	$-1 \le h \le 7, -1 \le k \le 12,$ $-12 \le l \le 12$	C6-C5-C10	113.9(3)	C6C5C4	113.0(3)
Poflactions collocted/unique	$-12 \ge l \ge 12$	C10-C5-C4	116.2(2)	C7-C6-C5	114.7(3)
Observed reflections $(L > 2\pi D)^a$	1,050/1,457 1,254(B - 0.0226)	C6-C7-C8	113.7(3)	С7-С8-С9	111.5(3)
Deta/restraints/parameters	$1,554(R_{int} = 0.0250)$ 1.254/0/200	C7-C8-C15	114.5(3)	C9-C8-C15	108.4(2)
Coodness of fit ^a on F^2	1,007	C7-C8-C14	112.1(3)	C9-C8-C14	108.9(3)
Final <i>P</i> indices $[(D > 2\sigma(D)]^a$	P = 0.0278 wP = 0.1062	C15-C8-C14	100.9(2)	C11-C9-C8	118.7(3)
$P \text{ indices } (all data)^a$	$R_1 = 0.0378, wR_2 = 0.1002$ $R_2 = 0.0410, wR_2 = 0.1007$	C11-C9-C10	122.8(3)	C8-C9-C10	118.5(2)
K matter (an data) L argest diff, peak and hele (a A^{-3})	$R_1 = 0.0410, WR_2 = 0.1097$	C1-C10-C20	109.7(3)	C1-C10-C9	109.3(3)
Largest unit, peak and note (e A)	0.119 and -0.115	C20-C10-C9	108.9(3)	C1-C10-C5	108.0(3)
^a $R_{1} = \frac{\sum F_o^2 - (F_o^2) }{R_1}$ $R_1 = \frac{\sum F_o - F_o^2 }{R_1}$	$\frac{ F_{\rm c} }{\sum}, \qquad wR_2 = \sqrt{\frac{\sum w(F_{\rm o}^2 - F_{\rm c}^2)^2}{\sum w(F_{\rm o}^2)^2}},$	C20-C10-C5	112.8(3)	C9-C10-C5	108.1(2)
$\sum F_o^2, \qquad m_1 = \sum F_o $		C9-C11-C12	123.2(4)	C13-C12-C11	112.7(3)
$S = \sqrt{\frac{\sum w(F_o^2 - F_c^2)^2}{m - n}}$		C16-C13-C12	110.6(3)	C16-C13-C14	102.7(3)
•		C12-C13-C14	107.6(3)	C13-C14-C8	101.5(3)

to KOH (1.0N, 30 mL) solution. The formation of diazomethane was corroborated by a yellowish coloration ethereal phase. The organic phase was separated and 15 mL of grandiflorenic acid (50 mg) was slowly added to it. The reaction mixture was stirred on an ice bath during the addition. When diazomethane was completely added, the mixture was allowed to room temperature, and ether was removed by slow evaporation. White single crystals of

compound **2** were obtained from MeOH by slow evaporation and mp 55–57 °C. ¹H NMR (300 MHz, CDCl₃) δ /ppm main signals: 5.23, 4.91, 4.79 (vinylic hydrogens), 1.18 and

C17-C16-C13

C13-C16-C15

O2-C19-C4

104.8(3)

126.2(3)

121.2(4)

112.4(3)

C16-C15-C8

C17-C16-C15

O2-C19-O1

O1-C19-C4

126.2(3)

107.6(3)

126.3(3)

Fig. 1 Molecular structure of 2, with displacement ellipsoids at the 50% probability level. Hydrogen atoms are drawn as *circles* with an arbitrary radius

0.931 (methyl groups); ¹³C NMR (75 MHz, CDCl₃) δ /ppm: 177.95, 158.55, 156.02, 114.86, 105.43, 51.24, 50.33, 46.64, 44.96, 44.88, 42.27, 41.26, 40.82, 38.65, 38.43, 37.92, 29.75, 28.17, 23.48, 20.24, 18.60, MS (EI, 70 eV) (*m*/*z*, %) 314 (M⁺, 62), 299 (100), 255 (32), 239 (95). IR KBr (cm⁻¹): 2,936, 1,717, 1,462, 1,432, 1,208, 1,147.

Crystal Structure Determination

X-ray data were collected on a Nicolet P3/F Single crystal diffractometer with a graphite monochromator and Mo–K α radiation ($\lambda = 0.71073$ Å) by the ω -scan method. The observed reflections were corrected for Lorentz and polarization effects, but not for X-rays absorption. The structure was solved using direct methods and refined [7] on F^2 by full-matrix least-squares with anisotropic displacements parameters for all non-hydrogen atoms. All

Fig. 2 The packing diagram for 2 projected along the *a*-axis

hydrogen atoms were geometrically fixed and allowed to ride on the parent C atoms. The crystals data and pertinent details of the experimental conditions are summarized in Table 1. The software used to prepare material for publication was PARST97 [8]. The synthetic scheme for the synthesis of compound **2** is depicted in Scheme 1.

Results and Discussion

Table 2 gives the bond distances and bond angles of nonhydrogen atoms, respectively. In all essential details, the molecular geometry of (2) in terms of the bond lengths and angles are in good agreement with standard values. However, the C10-C5-C4 and C19-C4-C5 bond angles of 116.2(2) and $115.3(2)^{\circ}$ have been increased to minimize the steric interactions between the methyl group at C10 and the O atoms of the methyl ester group at C4. Figure 1 represents the ORTEP [9] diagram of the molecule with thermal ellipsoids drawn at 50% probability. The molecule is comprised of a quadricyclic skeleton consisting of three six-membered rings (I, II and III) and one five-membered ring (IV). Rings I:II, and II:III are cis- and trans-fused at C5-C10 and C8-C9, respectively. Ring IV is fused at C8-C14-C13 to ring III. For the puckering-parameters values $(\Phi_2, \theta_2 \text{ and } Q)$ [10], rings I, II and III occur in chair $({}^4C_1)$, twist $({}^{3}T_{1})$, and envelope (E_{6}) conformations, respectively. Ring IV occurs in a conformation between envelope and half-chair. Although the absolute configuration could not be determined from the diffraction data alone, it was

established by the configuration of compound **1**. The stereochemistry of the title compound is as follows: C5– β H is *trans* to C10– α CH₃; C5– β H is *trans* to C4– α COOCH₃; C5– β H is *cis* to C4– β CH₃. Figure 2 shows the unit-cell packing arrangement for two along the *a*-axis. The molecules in the crystal are packed at normal van der Waals distances.

Supplementary Materials

CCDC-639253 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/cgi-bin/catreq.cgi, by e-mailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK, fax: +44-1223-336033.

Acknowledgments We acknowledge financial support from CO-NACYT and DGAPA (UNAM). Spectroscopic determinations are kindly acknowledged to Rubén A. Toscano, Simón Hernández, Héctor Rios and Luis Velazco.

References

- 1. Enríquez RG, Bejar E (1984) Arch Invest Med (Mex) 15:236
- Enríquez RG, Barajas J, Ortiz B, Lough AL, Reynolds WF, Yu M, Leon I, Gnecco D (1997) Can J Chem 75:342. doi:10.1139/ v97-039
- 3. Piozzi F (1972) Can J Chem 50:109. doi:10.1139/v72-016
- Bohlmann F (1977) Phytochemistry 16:579. doi:10.1016/0031-9422(77)80019-8
- Lewis NJ, MacMillan J (1980) J Chem Soc Perkin I:1279. doi: 10.1039/p19800001279
- Nakano T, Maillo MA, Spinelli AC, Martín A, Usubillaga A (1994) Pure Appl Chem 66:2357. doi:10.1351/pac199466102357
- 7. Sheldrick GM (1997) SHELX97 users manual. University of Götingen, Germany
- Nardelli M (1995) J Appl Cryst 28:659. doi:10.1107/S00218 89895007138
- Johnson CK (1976) ORTEP-II, a fortran thermal-ellipsoid plot program, report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge
- Cremer D, Pople JA (1975) J Am Chem Soc 97:1354. doi: 10.1021/ja00839a011