Reference Data

NMR Spectra and Stereochemistry of Perhydrooxazolo[3,4-a]pyridines*

TREVOR A. CRABB (to whom correspondence should be addressed) and ANDREW N. TRETHEWEY Department of Chemistry, Portsmouth Polytechnic, Portsmouth, Hampshire PO1 2DT, UK YOSHITO TAKEUCHI Department of Chemistry, College of Arts and Sciences, University of Tokyo, Komaba Meguro-ku, Tokyo, Japan

Low-temperature ¹³C and ¹H NMR spectra show perhydrooxazolo[3,4-a]pyridine to exist in CDCl₃-CFCl₃ solution at 183 K as an equilibrium between 73% trans-fused and 27% O-inside cis-fused conformers. cis-(H-1, H-8a)-1-Alkylperhydrooxazolo-[3,4-a]pyridines (alkyl = methyl, ethyl, isopropyl) adopt equilibria heavily biased the trans-fused conformers, towards whereas the epimers adopt 18% O-inside *cis*-fused \rightleftharpoons 82% trans-fused comformational equilibria at 183 K in CDCl₃-CFCl₃. At 190 K in CDCl₃ cis-(H-

* Part 55 in the series 'Compounds with Bridgehead Nitrogen.' For Part 54, see Ref. 1. 6, H-8a)-6-ethylperhydrooxazolo[3,4a]pyridine adopts an equilibrium containing ca 3% trans-fused conformer in equilibrium with 97% O-inside cis-fused conformer.

INTRODUCTION

The conformational equilibria (e.g. $1a \rightleftharpoons 1b$) in perhydrooxazolo[3,4-a]pyridines have been investigated by NMR spectroscopy²⁻⁶ using model compounds to obtain shifts for the various conformers. Such estimates of the position of equilibrium are open to objection, since even remote substitution may exert an effect on the NMR parameter in question. Accordingly, low-temperature NMR spectra of the perhydrooxazolo[3,4-a]pyridines have been measured in order to provide direct estimates of equilibria positions.

RESULTS AND DISCUSSION

The low-temperature 13 C NMR spectra of 1, 3 and 5 in CDCl₃-CFCl₃ at 183 K showed two sets of signals, assigned as in Table 1 to the *trans* conformers (1a, 3a and 5a) and the *O*-inside *cis* conformers (1b, 3b and 5b), largely on the basis of the upfield shifts of C-1 and C-7 due to γ -axial interactions. Estimates of equilibria in CDCl₃-CFCl₃ solutions based on integration of comparable signals (provided in the footnotes to Table 1) compare favourably with those reported previously.²⁻⁶ The position of the $1a \rightleftharpoons 1b$ equilibrium was confirmed by the ¹H NMR spectrum of 1 recorded in CD₂Cl₂-CS₂ at 173 K (Table 2). Similar conformational equilibria positions to that adopted by 5 are indicated for 7 and 9 by the spectral data (Tables 1 and 2), which also show that 2, 4, 6 and 8 adopt exclusively the *trans*-fused conformations.

EXPERIMENTAL

Elemental analyses were carried out by the Butterworth Microanalytical Consultancy, Teddington, Middlesex. Melting points are uncorrected.

The ¹H NMR spectra were recorded as 10% solutions in the appropriate solvent with tetramethylsilane (TMS) as internal reference, on a Bruker WH270 spectrometer. Accumulated scans over 4K data points were normally 100, and the resultant FID was Fourier transformed over 8K data points after application of a trapezoidal window filter to the FID signal; the resultant peak-topeak resolution was 0.1 Hz, with an error of ± 0.7 Hz when the sweep width was ca 3 kHz (3012 Hz). The ¹³C NMR spectra were recorded on a Jeol FX90Q (22.5 MHz) Fourier transform spectrometer as ca 10% solutions with TMS as internal reference; pulse length 6 µs, pulse interval 2 s, 2000 scans. ¹³C chemical shifts are considered to be accurate to ± 0.05 ppm and ${}^{1}J(CH)$ values to ± 1.0 Hz.

Table 1. ¹³C NMR spectra (CDCl₃-CFCl₃)^a of perhydrooxazolo[3,4-a]pyridines

Compound	Temperature (K)	Chemical shifts, (ppm)											
		C-1	C-3	C-5	C-6	C-7	C-8	C-8a	Alkyl				
1	273	69.0	86.9	47.7	25.0	22.5	25.7	60.8					
1a ^b	183	71.6	85.8	47.4	24.5	23.6	26.5	61.8					
1b	183	62.9	88.5	47.1	24.8	18.5	22.5	57.4					
2	301 °	71.5	86.0	53.3	37.6	30. 9	26.5	62.35	27.3, 11.65				
2	185	71.5	85.6	52.85	37.3	30.6	26.3	62.1	27.25, 11.9				
3	301	64.0	88.4	53.1	37.4	22.8	25.5	58.1	27.1, 11.4				
3a°	190	71.6	85.6	52.9	37.4	30.5	19.8	62.1	27.3, 11.6				
3b	190	62.9	88.6	52.9	37.4	22.6	24.8	57.4	27.3, 11.6				
4	301	76.1	86.0	48.4	24.1	24.6	24.9	64.5	17.6				
5	298	76.8	85.9	48.2	24.9	23.0	25.8	68.4	18.0				
5a ^d	183	78.9	85.5	47.8	24.4	23.5	26.2	68.4	17.9				
5b	183	75.9	86.8	48.4	24.4	18.5	30.0	64.4	19.1				
6	298	81.4	85.8	48.4	24.8	24.2	24.8	64.5	24.5, 10.3				
7	298	81.9	85.8	48.0	24.8	22.9	26.2	66.3	26.1, 10.4				
8	298	85.2	85.2	48.1	24.3	23.7	24.4	63.8	29.3, 18.8, 20.3				
9	298	85.5	85.7	47.9	23.5	23.0	24.2	64.2	31.2, 18.5, 19.1				

^a Ambient temperature spectra of all the compounds in CDCl₃-CFCl₃ and in CDCl₃ provide very similar chemical shift values.

^b 73% 1a ≓ 27% 1b at 183 K.

° 3% 3a ⇒ 97% 3b at 190 K.

^d 82% 5a ≓ 18% 5b at 183 K.

Table 2. ¹H NMR spectra of perhydrooxazolo[3,4-a]pyridines

			Chemical shifts, δ (ppm)													
Compound	Solvent	Temperature (K)	1'eq'	1'ax'	3'eq'	3′ax′	5eq	Бax	6eq	6ax	7eq	7ax	8eq	8ax	8a	Aikyi
1ª	CD ₂ Ci ₂ -CS ₂	300	3.74	3.34	4.40	3.81	2.85	2.20							2.42	
1a	CD ₂ Cl ₂ -CS ₂	173	3.92	3.38	4.50	3.68	3.02	2.01							2.12	
1b	CD_CICS_	173	3.48	3.55	4.27	4.33	2.50	2.72							3.38	
2	CDĈIĴ	301	3.95	3.46	4.59	3.78	3.06	1.74	_	1.58	1.80	1.00	1.90	1.32	2.21	1.28. 0.92
3	CDCI	301	3.62	3.48	4.40	4.33	2.73	2.30		1.49	1.78	1.05	1.64	1.97	3.23	1.26, 0.90
6	CDCI	301	3.90		4.60	3.73	3.04	2.02			1.85				2.23	1.44, 0.96
7ª	ເວເັ	301		3.58	4.54	3.95	2.90	2.07			1.82				2.24	1.53, 1.02
8	ເມເງັ	301	3.69		4.58	3.83	3.03	2.12	1.57	1.57	1.87	1.29	1.69	1.43	2.39	1.76, 0.98, 0.89
9 ª	CDCI3	301		3.42	4.42	3.89	2.93	2.18							2.24	0.98, 0.95
					Co	upling co	nstants (H	z)								
			1'eq',	1'eq',	1'ax',	3'eq',	5eq,	5ax,	5ax,	8a,						
Compound	Solvent	Temperature (K)	1'ax'	8a	8a	3'ax'	5ax	6ax	6eq	8ax						
1ª	CD_CICS	300	-6.8	6.8	10.3	-2.5										
1a	CD_CLCS_	173	-6.7	6.7		0	-9.7									
1ь	CD_CL_CS_	173				-5.8										
2	CDĈI	301	-6.6	6.6	9.4	-0.8	-10.3	10.3								
3	CDCI	301	-7.2	7.2	9.7	-5.6	-10.6	10.6								
6	CDCI	301		6.9		-1.3	-10.6	11.3	3.4	10.0						
7°	ເມເງ	301			8.1	-2.5	-11.3	8.9	3.8	10.6						
8	CDCI	301		6.7		-1.1	-11.3	9.7		11.9						
9 °	CDCI	301			8.75	-2.8	-10.6	8.8								
^a Spectra r	enresent ave	erage of <i>trans</i> -=	<i>→ ci</i> s co	nforma	tional e	quilibri	a									

Compounds 1 and 4-9 were prepared by modifications of published routes.^{2,3}

 $R^{1} = R^{2} = R^{3} = R^{4} = H$ $R^{1} = Et, R^{2} = R^{3} = R^{4} = H$ $R^{1} = R^{3} = R^{4} = H, R^{2} = Et$ $R^{3} = Me, R^{1} = R^{2} = R^{4} = H$ $R^{4} = Me, R^{1} = R^{2} = R^{3} = H$ $R^{3} = Et, R^{1} = R^{2} = R^{4} = H$ $R^{4} = Et, R^{1} = R^{2} = R^{3} = H$ $R^{3} = i$ -Pr, $R^{1} = R^{2} = R^{4} = H$ $R^{4} = i$ -Pr, $R^{1} = R^{2} = R^{3} = H$

5-Ethyl-2-piperidylcarbinol

2-(5-Ethylpyridyl)carbinol (0.3 M, 40 g) was dissolved in glacial acetic acid (100 ml) and reduced with hydrogen at 60 lb in⁻² in a Parr hydrogenator in the presence of Adams platinum oxide catalyst (1 g). When the

reduction was complete the catalyst was filtered off and the acetic acid removed in vacuo. The residue was basified with 30% aqueous sodium hydroxide solution and extracted with diethyl ether (3×200 ml). The combined extracts were dried (Na₂SO₄), concentrated and the residue was distilled in vacuo to yield a mixture of the 5-ethyl-2piperidylcarbinols (33 g, 79%) as a colourless oil, b.p. 89–90 °C at 0.04 mmHg (found, C 67.2, H 12.15, N 9.6; C₈H₁₇NO requires C 67.1, H 12.0, N 9.8%).

6-Ethylperhydro-oxazolo[3,4-a]pyridine

The mixture of isomeric 2-(5-ethylpiperidyl)carbinols (0.16 M, 23 g) was shaken with an excess of 36% aqueous formaldehyde solution (20 ml) for 0.5 h. The solution was basified with 30% sodium hydroxide solution and extracted with diethyl ether $(3 \times 60 \text{ ml})$. The extracts were combined, dried (Na₂SO₄), concentrated and the residue was distilled in vacuo to give a mixture of 6ethylperhydrooxazolo[3,4-a]pyridines (20.7 g, 83%) as a colourless oil, b.p. 87-90°C at 6.5 mmHg. Isomer separation (4 g of mixture) was achieved by column chromatography over Grade IV Woelm neutral alumina (400 g). Elution was begun with light petroleum (b.p. 40-60 °C) (1 l) followed by diethyl etherlight petroleum (5:95). Sixty fractions (15 ml) of the latter solvent were collected before the eluate was detected. The progress of the elution was monitored by ¹H NMR spectroscopy. Evaporation of the next 100 fractions gave trans-(H-6, H-8a)-6-ethylperhydrooxazolo[3,4- a]pyridine (found, C 69.8, H 11.1; N 8.8; C₉H₁₇NO requires C 69.6, H 11.0, N 9.0%). The following 200 fractions yielded a mixture of isomers but the next 100 fractions gave, on evaporation, cis-(H-6, H-8a)-6-ethylperhydrooxazolo[3,4-a]pyridine (found, C 69.7, H 10.8, N 9.0; C₉H₁₇NO requires C 69.6, H 11.0, N 9.0%).

Acknowledgements

This work was carried out with the support of the Procurement Executive, Ministry of Defence, UK. We thank the SERC for the ^{13}C NMR spectra.

Reference Data

References

- 1. T. A. Crabb, A. N. Trethewey and Y. Takeuchi, J. Chem. Soc., Perkin Trans. 1 in press.
- T. A. Crabb and R. F. Newton, *Tetra*hedron 24, 1997 (1968).
- T. A. Crabb and R. F. Newton, J. Heterocycl. Chem. 3, 418 (1966).
- P. J. Chivers, T. A. Crabb and Y. Takeuchi, J. Chem. Soc. Chem. Commun. 210 (1974); P. J. Chivers, T. A. Crabb and Y. Takeuchi, J. Chem. Soc. Perkin Trans. 2 51 (1975).
- 5. T. A. Crabb and M. J. Hall, J. Chem. Soc., Perkin Trans 2 1419 (1974).
- T. A. Crabb and P. A. Jupp, Org. Magn. Reson. 13, 63 (1980).

¹³C NMR Chemical Shift Assignments for Some Carbazole Derivatives

ALAN R. KATRITZKY (to whom correspondence should be addressed), GORDON W. REWCASTLE, LUIS M. VAZQUEZ DE MIGUEL and ZUOQUAN WANG Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA

¹³C NMR chemical shift assignments have been made for a series of 1-substituted carbazoles, 8-substituted 1,2,3,4-tetrahydrocarbazoles, 1-substituted benzo[a]carbazoles and 6-substituted dibenzo-[c,g]carbazoles. Single examples were examined of other classes of substituted carbazoles: 3-butylcarbazole and its tetrahydro precursor 6-butyl-1,2,3,4-tetrahydrocarbazole, 8-butyl- and 8,10-diethylbenzo[a]carbazoles and their 5,6-dihydro precursors, dibenzo[a,i]carbazole and its 5,6,7,8-tetrahydro precursor, benzo[c]carbazole and its 6-chloro derivatives and 5,6-dihydrobenzo[c]carbazole and 5,6, 8,9-tetrahydrodibenzo[c,g]carbazole and their N-methyl derivatives. In addition, the N-(1-pyrrolidinomethyl) derivatives of 1,2,3,4-tetrahydrocarbazole, carbazole. benzo[c]carbazole and dibenzo[c,g] carbazole were also studied.

KEY WORDS ¹³C NMR Chemical shift assignments Carbazole derivatives.

INTRODUCTION

Although several publications are available on the 13 C NMR chemical shift assignments of carbazoles, these mainly deal with N- substituted or symmetrically substituted compounds,¹⁻⁴ and the amount of data for unsymmetrical C-substituted derivatives is limited.^{5,6} We now report the analyses of the ¹³C NMR spectra of a range of unsymetrically substituted carbazoles, including some benzo and dibenzo derivatives, which allow considerable insight into the pattern of chemical shifts in these compounds.

EXPERIMENTAL

The compounds studied were prepared by procedures described elsewhere.^{7,8} Thus, 3–11, 16, 17, 31, 36 and 37 were prepared via lithiation of the respective aminal derivatives 2, 14, 30 and 35, and 19–21 were prepared from benzo[a]carbazole-1,11-dianion.⁷ 6-Chlorobenzo[c]carbazole (31) was available only as a mixture containing a smaller amount of the 8-isomer, but the signals due to the major component were readily identi-

- **21** $R^1 = CO_2H; R^2 = R^3 = H$
- **22** $R^1 = R^3 = H; R^2 = CH_2CH_2CH_2CH_3$
- **23** $R^1 = H; R^2 = R^3 = CH_2CH_3$

24 $R^1 = R^2 = H$ **25** $R^1 = CH_2CH_2CH_2CH_3; R^2 = H$

26 $R^1 = R^2 = CH_2CH_3$

