Über verbesserte Darstellungsmethoden für CF₃OCH₃

Improved Methods to Prepare CF_3OCH_3

Rolf Minkwitz*, Detlef Konikowski

Universität Dortmund, Fachbereich Chemie, Anorganische Chemie, Postfach 50 05 00, D-44221 Dortmund

Z. Naturforsch. **51b**, 147–148 (1996); eingegangen am 21. Juni 1995

1,1,1-Trifluoromethyl-methyl-ether, Preparation, NMR Spectra

The reaction of CH₃I with CF₃OCl at 203 K yields CF₃OCH₃. The preparation of the ether by methylation of CsOCF₃ with (CH₃)₂SO₄ is also described.

Für den α-trifluorierten Ether CF₃OCH₃ sind Darstellungsverfahren beschrieben worden [1–4], die einen hohen präparativen Aufwand erfordern oder nur zu geringen Produktausbeuten mit unbefriedigender Reinheit führen. Ziel unserer Bemühungen war es, einfache Synthesewege für CF₃OCH₃ zu finden, um spektroskopische und strukturelle Daten der Verbindung [5] zu erhalten.

Nach Aldrich und Sheppard [1] reagiert das aus Methanol und Fluorphosgen gebildete Methylfluorformiat mit HF in Gegenwart von Schwefeltetrafluorid zu CF₃OCH₃ (Gl.(1)).

$$CH_{3}OH + OCF_{2} \xrightarrow{2h} CH_{3}-O-C \searrow G + HF \xrightarrow{8F_{4}} CF_{3}OCH_{3}$$
 (1)

Der Ether enthält anfangs 15 % Verunreinigungen und wird nach Reinigung durch präparative Gaschromatographie in Ausbeuten von 29 % erhalten.

Ginsburg *et al.* [2] setzten CF₃NO mit Stickstoffmonoxid zu N-Nitroso-N-trifluormethylhydroxylaminnitrit um, welches mit Natriummethanolat zum Natriumsalz des N-Nitroso-N- trifluormethylhydroxylamins reagiert. Beim Erhitzen mit Methanol bildet sich als Nebenprodukt CF₃OCH₃ (Gl.(2)).

$$CF_{3}NO \xrightarrow{+NO} CF_{3}-N \stackrel{NO}{\nearrow} ONO \xrightarrow{+NaOCH_{3}} CF_{3}-N \stackrel{NO}{\nearrow} O-Na^{+}$$

$$\xrightarrow{4, +CH_{3}OH} CF_{3}OCH_{3}$$

$$\xrightarrow{-N_{2}O} CF_{3}OCH_{3}$$

$$-NaOCH_{3}$$
(2)

Bei einem anderen Verfahren [3] wird Trifluornitrosomethan mit Hydroxylamin umgesetzt. Das intermediär entstehende Trifluormethyldiazohydroxid spaltet beim Erwärmen Stickstoff ab und reagiert im Verlauf einer Kondensationsreaktion in Ausbeuten von 35% zu CF₃OCH₃ (Gl.(3)).

$$CF_3NO+H_2NOH \xrightarrow{198 \text{ K}} [CF_3-N=N-OH] \xrightarrow{\Delta, +CH_3OH}$$

$$CF_3OCH_3 \xrightarrow{(3)}$$

In unseren neueren Untersuchungen ergab sich, daß CF₃OCl und CH₃I unter Komproportionierung zu CF₃OCH₃ reagieren (Gl.(4)).

$$CF_3OCl + CH_3l \xrightarrow{203 \text{ K}} CF_3OCH_3 + lCl$$
 (4)

Gegenüber den herkömmlichen Verfahren läßt sich der Ether hier auf einfache Weise durch Kondensation aus der Reaktionslösung isolieren. Die Ausbeute des Reinproduktes beträgt 50 %.

OCF₂ reagiert mit CsF und (CH₃)₂SO₄ (DMS) in Diethylenglycoldimethylether zu CF₃OCH₃, welches mit geringfügigen Verunreinigungen an CH₃F isoliert wird [4]. Bei dem von uns jetzt modifizierten Verfahren reagiert CsOCF₃ mit einem Überschuß an Dimethylsulfat in guten Ausbeuten (80 %) zu reinem CF₃OCH₃ (Gl.(5)).

$$CsOCF_3 + (CH_3)_2SO_4 \xrightarrow{RT} CF_3OCH_3 + CsOSO_3CH_3$$
 (5)

Der Ether wird zur Reinigung aus der Reaktionslösung abkondensiert.

Experimentelles

CF₃OCl [6] und CsOCF₃ [7] werden nach Literaturvorschrift hergestellt und gereinigt. CH₃I (Fa. Fluka) und (CH₃)₂SO₄ (Fa. Merck) werden ohne zusätzliche Reinigung eingesetzt. Die Synthesen werden in einer Glasvakuumapparatur durchgeführt. Die Handhabung nicht flüchtiger Substanzen erfolgt unter Schutzgas (N₂) mittels Schlenktechnik.

¹⁹F- ,¹H- ,¹³C-NMR-Spektren: (Bruker AM 300) in abgeschmolzenen Glasröhrchen (Ø 8 mm) in 10 mm-Außenrohr mit d₆-Aceton als Locksubstanz und (CH₃)₄Si bzw. CFCl₃ als externer Standard.

Sonderdruckanforderungen an Prof. Dr. Rolf Minkwitz.

Darstellung von CF₃OCH₃

- a) In eine abschmelzbare Glasampulle (V = 35 ml) werden 2–4 mmol CF_3OCl und die äquimolare Menge CH_3I bei 77 K kondensiert. Nach Abschmelzen der Ampulle unter Vakuum wird das Reaktionsgemisch zunächst 1 h bei 203 K zur Reaktion gebracht und anschließend auf RT erwärmt. Der Ether wird bei 183 K abkondensiert und von nicht umgesetztem CF_3OCl durch Abpumpen im dynamischen Vakuum bei 163 K getrennt (Ausb. 50 % d.Th.).
- b) In einer abschmelzbaren Glasampulle (V = 35 ml) werden 1.0 g (4.59 mmol) CsOCF₃ mit 5 ml

(CH₃)₂SO₄ bei 77 K versetzt und nach Abschmelzen im Vakuum 4 d bei 293 K zur Reaktion gebracht. Der Ether wird bei 203 K abkondensiert (Ausb.: 80% d.Th.).

CF₃OCH₃ bei 263 K: 1 H: δ (CH₃) = 3.35(s) ppm; 19 F: δ (CF₃) = -65.03(s) ppm; 13 C: δ (CH₃) = 52.64(s) ppm, δ (CF₃) = 122.52(q) ppm, ${}^{1}J_{CF}$ = 246.3 Hz.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Unterstützung dieser Arbeit.

^[1] P. E. Aldrich, W. A. Sheppard, J. Org. Chem. 29, 11 (1964).

^[2] V. A. Ginsburg, L. L. Martinova, M. N. Vasil'eva, Zh. Obshch. Khim. 37, 1083 (1967).

^[3] S. P. Makarov, A. Ya. Yabukovich, A. S. Filatov, M. A. Énglin, T. Ya. Nikiforova, Zh. Obshch. Khim. 38, 709 (1968).

^[4] G. J. Martens, C. A. 64, 9595 (1966).

^[5] R. Kühn, D. Christen, H. G. Mack, D. Konikowski, R. Minkwitz, H. Oberhammer, J. Mol. Struct., zur Publikation eingereicht.

^[6] C. J. Schack, W. Maya, J. Am. Chem. Soc. **91**, 2902 (1969).

^[7] M. E. Redwood, C. J. Willis, Can. J. Chem. 43, 1893 (1965).