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ABSTRACT: A metal- and reagent-free, electrochemical intra-

molecular oxidative amination reaction of tri- and tetrasubstituted 

alkenes has been developed. The electrosynthetic method pro-

ceeds through radical cyclization to form the key C–N bond, al-

lowing a variety of hindered tri- and tetrasubstituted olefins to 

participate in the amination reaction. The result is the efficient 

synthesis of a host of alkene-bearing cyclic carbamates and ureas 

and lactams. 

Allylic amines are important synthetic building blocks that can 

be converted into a diverse range of products through the manipu-

lation of the amino as well as alkenyl moieties.1 Recently, there 

has been considerable interest in preparing these compounds 

through the cross-coupling between a N–H bond and an allylic C–

H bond, which allows for an efficient route from easily available 

starting materials.2 Particularly, the aza-Wacker type cyclizations, 

which is often catalyzed by a palladium species, allows the easy 

access to alkene-containing N-heterocycles (Scheme 1a).3 A num-

ber of excellent recent studies have reported successful aza-

Wacker cyclizations under mild conditions and with molecular 

oxygen as the terminal oxidant.4 Despite this progress, reported 

methods are generally not efficient with multisubstituted alkenes 

and oxidative amination of tri- and tetrasubstituted olefins re-

mains challenging. 

Nitrogen-centered radical (NCR) intermediates have attracted 

considerable interest from organic chemists due to their ability to 

cyclize with alkenes of diverse steric properties, leading to the 

formation of new C–N bonds.5 The synthetic utility of these reac-

tive species has been further boosted by the emergence of various 

new methodologies, particularly those involving single electron 

transfers, that greatly facilitated their preparation.5b,c We have 

been involved in developing sustainable C–N bond-forming reac-

tions by employing electrochemically generated NCRs.6,7 Based 

on these results, we envisioned an electrochemical amination 

reaction (Scheme 1b).8 The anodic activation of the amidyl N–H 

bond in an alkene-tethered amide could lead to the generation of a 

NCR intermediate I,9 which could then readily undergo intramo-

lecular cyclization with the alkenyl moiety to give the carbon-

centered radical II. Oxidation of this latter C-radical followed by 

the loss of a proton would afford the cyclic allylamine product. 

The challenge of this approach lies in its requirement for the effi-

cient and regioselective installation of an alkenyl moiety in the 

absence of a metal-based catalyst. The C-radical II is prone to 

reduction through H-abstraction,7a,10 whereas its derived cation III 

can be trapped by a nucleophile,8a,b,11 or participate in nonselec-

tive/undesired proton elimination.12 Herein, we report the success-

ful development of an intramolecular oxidative amination of the 

challenging tri- and tetrasubstituted alkenes through electrochem-

ical oxidation (Scheme 1b).13 Advantageously, this process pro-

ceeds in a metal-14 and reagent-free15 fashion to provide function-

alized cyclic carbamates and ureas and lactams. 

Scheme 1. Intramolecular Oxidative Amination of Alkenes 

 

We first identified the optimal reaction conditions for the cy-

clization of carbamate 1 bearing a trisubstituted olefin, which 

involved constant-current electrolysis using a reticulated vitreous 

carbon (RVC) anode and a Pt plate cathode, in an undivided cell 

containing a mixed electrolyte solution of Et4NPF6 in dimethyla-

cetamide (DMA) and acetic acid (40:1). Under these conditions, 

the desired cyclic carbamate 2 was isolated in 82% yield (Table 1, 

entry 1). Particularly noteworthy is the fact that the regeneration 

of the C–C double bond occurred regioselectively at the terminus, 

instead of favoring the formation of the more thermodynamically 

stable enamine derivative (a tetrasubstituted alkene). Despite that 

the redox potentials (Ep/2 vs SCE in MeCN) of 1 (1.23 V) and 2 

(1.39 V) were close to each other, over-oxidation was not ob-

served. Conducting the electrolysis without AcOH (entry 2),16 or 

in other solvents such as DMF (entry 3) or MeCN (entry 4), dra-

matically decreased product formation. In comparison, slightly 

reduced but still acceptable yields were obtained when the reac-

tion conditions were modified in one of the following manners: 

lowering the concentration of Et4NPF6, changing the electrolyte to 

nBu4NBF4 or Et4NOTs(entry 5), switching to a platinum plate 

anode (entry 6) with a surface  
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Table 1. Optimization of Reaction Conditions
a 

 

Entry Conditions Yield%b 

 

aReaction conditions: RVC anode (100 PPI, 1 cm x 1 cm x 1 

cm), Pt cathode (1 cm x 1 cm), 1 (0.3 mmol), solvent (4 mL), 

argon, 2.4 h (3 F). bYield of the major diastereomer determined by 
1H-NMR analysis of the crude reaction mixture using 1,3,5-

trimethoxybenzene as the internal standard. cIsolated yield. dReac-

tion time = 1.2 h. eReaction time = 4.8 h. PMP = p-

methoxyphenyl. 

area much lower than that of the RVC anode, or adjusting the 

current to 20 mA (entry 7). However, performing the electrolytic 

amination at 5 mA (entry 8) or at RT (entry 9) greatly diminished 

the yield. 

We next explored the substrate scope of the electrolytic amina-

tion reaction using a host of carbamates carrying various trisubsti-

tuted alkenyl moieties (Scheme 2, 3–18). The reaction was 

demonstrated to be compatible with a diverse range of (het-

ero)aryl- (3–12), alkynyl- (13) and alkyl- (14–18) substituted 

olefins. The cyclic carbamate products were produced with good 

to high diastereoselectivity and proton elimination proceeded 

regioselectively at the distal carbon relative to the newly formed 

N-heterocycle, leading to an allylamine moiety regardless of the 

substitution pattern of the starting alkene. Both terminal and in-

ternal olefins, including a tetrasubstituted one (7), could be 

achieved.  

Further studies revealed that unsaturated amides (19–25) and 

ureas (26–27) were also viable substrates (Scheme 2). Carbamates 

bearing less electron-rich N-aryl rings, such as p-Me-Ph (28) and 

p-Br-Ph (29), also underwent smooth cyclization with satisfactory 

yields, albeit in reduced current efficiency. However, no reaction 

occurred when the substrate contained the highly electron-

withdrawing p-CN-Ph group (30). The increased oxidation poten-

tials17 of these substrates tipped the reaction toward solvent de-

composition. Furthermore, a variety of functional groups were 

found to be well-tolerated, including ester (5, 24–25), imide (6), 

arylbromide (8), thiazole (10), pyridine (11), thiophene (27), al-

kyne (13), alcohol (22) and silyl ether (23).

Scheme 2. Substrate Scope
a 

 

aReaction conditions from Table 1, entry 1 were used unless otherwise noted. bIsolated yield. cDetermined by 1H NMR analysis of the 

crude reaction mixture. dReaction at 130 °C. eE/Z = 5:1. TBDPS = tert-butyldiphenylsilyl. NR = no reaction.  
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One major advantage of the electrochemical method lies in its 

efficient amination of sterically demanding tetrasubstituted al-

kenes.18 As summarized in Scheme 2, both acyclic (31–32) and 

cyclic (33–37) olefins, including two that contained a steroid-

based core structure (36–37), were shown to readily react to af-

ford desired products with aza-quarternary stereocenters. 

The facile preparation of enantioenriched cyclic carbamates 

from easily available enantioenriched allylic alcohols19 lent fur-

ther support to the synthetic utility of the intramolecular amina-

tion reaction in the current study (Scheme 3). As examples, sub-

jecting (+)-38 and (−)-40 to the standard electrolysis conditions 

resulted in the stereoselective formation of (−)-39 and (−)-3, re-

spectively, without any observable loss of the enantiomeric ratio. 

Scheme 3. Cyclization of Enantioenriched Carbamates 

 

Scheme 4. Gram-Scale Synthesis and Product Transfor-

mations 

 

Reaction conditions. a) KOH, EtOH/H2O, reflux, 82%. b) Cop-

per (II) 2-ethylhexanoate, IBX, DMSO/TFA, 110 °C, 64%. c) H2, 

Pd/C, MeOH, RT, 93%. d) m-CPBA, CH2Cl2, RT, 83%. e) OsO4, 

NMO, RT, 84%. f) Pb(OAc)4, RT, 91%. g) Piperidine, AcOH, 

40 °C, 84%.  

 

Two additional advantages of our electrolytic amination pro-

cess include its easy scalability and the synthetic value of the 

generated alkene-bearing N-heterocycles. For instance, the cy-

clization of 3.2 grams of 41 produced the corresponding product 

12 in 70% yield (Scheme 4), showing no appreciable loss in prod-

uct formation efficiency in comparison to the same reaction con-

ducted on a 0.1-gram scale. The hydrolysis of the carbamate moi-

ety in 12 afforded allylamine 42, whereas the same starting com-

pound could also be converted to benzimidazolidinone 43 via 

copper-catalyzed dehydrogenative aromatization. Furthermore, 

the alkene C–C double bond in 12 was amenable to a variety of 

chemical transformations such as hydrogenation, epoxidation and 

dihydroxylation to furnish saturated carbo-cycle 44, epoxide 45 

and vicinal diol 46, respectively.20 Compound 46 could be con-

verted to ketoaldehyde 47 through the oxidative cleavage of its 

diol moiety, and further to ketoaldehyde 48 by aldol condensa-

tion.21   

In summary, we have successfully developed an efficient in-

tramolecular oxidative amination reaction of challenging tri- and 

tetrasubstituted alkenes. Our electrosynthetic method is broadly 

compatible with a wide range of carbamate, amide, and urea sub-

strates, can be easily scaled up, and provide access to various 

functionalized N-heterocycles with great synthetic values. 
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