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Abstract: The diastereoselective synthesis of 2,2-disubstituted-3-
hydroxy-indanones was realized by the N-heterocyclic carbene cat-
alyzed [4+1] annulation of phthalaldehyde and 1,2-diactivated
Michael acceptors, which involves a tandem process of Stetter reac-
tion, proton shift, and aldol reaction.

Key words: [4+1] annulation, tandem reaction, N-heterocyclic car-
benes, indanone, Stetter reaction

Indanones are presented widely in many natural and un-
natural bioactive compounds, various drugs and pharma-
ceutical candidates.! Thus, many methods have been
developed for their construction,? including the classic in-
tramolecular Friedel-Crafts acylation® and Nazarov cy-
clization.* In addition, many interesting approaches have
been reported in recent years, such as the Pd-catalyzed cy-
clization of 3-(2-iodoaryl)propanenitriles,” Rh-catalyzed
[5+1+2+1] cycloaddition of vinylcyclopropane, alkynes,
and CO,° Rh-catalyzed hydroacylation of 2-vinyl benzal-
dehyde,” and other reactions.®

As a subunit of indanones, 3-hydroxyindanones show in-
teresting bioactivity and are useful intermediates for or-
ganic synthesis.” However, the efficient methods for rapid
construction of 3-hydroxyindanones are far less devel-
oped. There are only a few examples which synthesize 3-
hydroxyindanones from simple starting materials.!® Rep-
resentative examples include Hallberg et al.”s Heck—aldol
reaction of salicylic aldehydes with vinyl ether'! and Grée
et al.’s intramolecular isomerisation—aldolization of allyl-
ic alcohols.'?

Tandem reactions, which allow two or more reactions oc-
cur consecutively in one pot, are of great interest in mod-
ern synthesis.!® Recently, Gravel et al. reported a NHC-
catalyzed tandem Stetter—Michael reaction,'* and You et
al. reported a tandem aza-benzoin—Michael reaction with
interesting on-site reversal of the reactivity of N-Boc im-
ines.'>!'® We reported a N-heterocyclic carbene (NHC)-
catalyzed tandem Stetter—aldol reaction of phthalaldehyde
and Michael acceptors to give hydroxytetralones as the
[4+2]-annulation products (Scheme 1, a).!” Interestingly,
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when we try to expand the substrate to 1,2-diactivated
Michael acceptors, the corresponding hydroxyindanone
was formed exclusively instead of hydroxytetralones
(Scheme 1, b). Here we wish to report the primitive results
of this tandem [4+1]-annulation reaction.
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Scheme 1 NHC-catalyzed tandem reactions of phthalaldehyde and
Michael acceptors

It was found that thiazolium NHC 4a’, generated in situ
from thiazolium salt 4a in the presence of Cs,CO;, could
catalyze the reaction of phthalaldehyde (1) and 1,2-diacti-
vated Michael acceptor 2a to give the [4+1]-annulation
product of 3-hydroxyindanone 3a in 96% yield with ex-
clusive cis selectivity (Table 1, entry 1). It is interesting
that thiazolium salt 4b with N-ethyl substituent showed
similar catalytic activity with 4a, but salt 4¢ without a free
hydroxy group resulted in very low yield (entries 2 and 3).
Solvent screening revealed that reaction worked well in
THEF, toluene, or dichloromethane but did not in diethyl
ether (Table 1, entries 1, 4-6). Base screening showed
K,CO; and DBU worked as well as Cs,CO; (Table 1, en-
tries 7-9).

With the optimized reaction conditions in hand, the scope
of the 1,2-diactivated Michael acceptors was briefly in-
vestigated (Table 2). Michael acceptors 2b,c with elec-
tron-withdrawing group (4-O,NC¢H,, 4-CIC,H,) worked
much better than 2d,e with electron-donating group (4-
MeC¢H,, 4-MeOC(H,) (Table 2, entries 1-5). Michael
acceptors 2f,g with bulky substituent (2-CIC4H,, 2-naph-
thyl) also worked well (Table 2, entries 6 and 7). Consid-
ering the low yield of reaction of Michael acceptors 2d,e
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Table 1 Optimization of Reaction Conditions

o]
COPh -
CHO % 4, base 4 COPh
—_—
* solvent, r.t. N COREt
CHO CO,Et OH
1 (1.5 equiv) 2a 3a
R2
N/+ _ 4aR"=HO(CH,),, RZ=Bn, X =Cl
’ \> X" 4bR'=HO(CHy)p, RZ=Et, X = |
4c R' = Me, R2=Bn, X = CI
R1 S
Entry 4 Base (mol%)* Solvent Yield (%)°
1 4a Cs,CO;5 (20) THF 96
Figure 1 X-ray crystal structure of hydroxyindanone 3a
2 4b Cs,CO; (20) THF 95
3 dc Cs,CO; (20) THF 20 The cis stereochemistry of hydroxyindanone 3a was un-
4 4 Cs.COn (20 ol % ambiguously assigned by the X-ray analysis of its crystal
a 5,C05 (20) oene (Figure 1). It is worthwhile to note that only cis isomer of
5 da Cs,CO; (20) CH,Cl, 94 the hydroxyindanone was detected for all the reactions ex-
amined in Table 2.
6 4a Cs,CO; (20) Et,0 24 . S
The resulted highly functionalized indanones offer oppor-
7 4a Cs,CO; (10) THF 95 tunities for further chemical transformations. For exam-
] 4a K,CO, (10) THE 04 ple, 1ndgnone 6a cou}d be prepared smoothly from
hydroxyindanone 3a via a two-step dehydroxy process
9 4a DBU (10) THF 95 (Scheme 2).

2The NHC 4’ was generated from the corresponding thiazolium salt 4
in situ in the presence of the noted base. 0

b Isolated yields of pure cis isomer of 3a. No trans-3a was detected. CICOCO,Et

DMAP

with an electron-rich aryl group, it is better than expected CH%%LZ’ ot
that Michael acceptors with 2-furyl and 2-thienyl gave the
corresponding hydroxyindanone in very good yields (en-

tries 8 and 9). Michael acceptor 2j with diketo group also

showed good reactivity (entry 10). The spirocyclic hy- BugSnH, AIBN
droxyindanone 3k could be obtained in reasonable yield toluene, 75°C

66%

(46%) when N-phenylmaleimide was used as the substrate
(Table 2, entry 11).

Scheme 2 Synthesis of indanone 6a from hydroxyindanone 3a

Table 2 Synthesis of 3-Hydroxyindanones via NHC-Catalyzed Tandem Reaction of Phthalaldehyde and Michael Acceptors 2

7?2 4a, C32003
CHO (10 mol%)
" THF, .t
CHO 71 T
1 (1.5 equiv) 2

Z', Z2 = electron-withdrawing group

Entry 2 3 Yield (%)*

0}
1 EtO,C 95
X
2aX=H
2 2b X =NO, 97
3 2¢ X =Cl 95
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Table 2 Synthesis of 3-Hydroxyindanones via NHC-Catalyzed Tandem Reaction of Phthalaldehyde and Michael Acceptors 2 (continued)

22 4a, C52003

CHO (10 mol%)
" THF, rt
CHO b

71
1 (1.5 equiv) 2 3
Z', Z2 = electron-withdrawing group
Entry 2 3 Yield (%)*
4 2d X = Me 3d X =Me 58
5 2e X =0OMe 3e X =0OMe 50

Cl

(o]
6 Etozc/\)

2f

0
7 Etozc/\) X

2g

\

0
8 Etogc/\) X

Ly
2h X=0
9 2iX=S
o}
10 PhNPh
O
2j

0]
C 0O
O
2k

92

93

98

95

65

2 Isolated yields of pure cis isomer of 3 and no trans-3 was detected for all entries.

A possible catalytic cycle of this NHC-catalyzed [4+1]-
annulation reaction is depicted in Scheme 3. The addition
of NHC to phthalaldehyde gives the Breslow intermediate
A, which reacts with Michael acceptor 2 affording zwitte-
rion B. As we reported previously, zwitterion B reacts via
an intramolecular aldol reaction to give [4+2]-annulation
product if no additional withdrawing group is installed in
the Michael acceptor (Z?> = H). However, when the addi-
tional withdrawing group is present in the B-position of
the Michael acceptor (Z? = electron-withdrawing group),

proton shift occurs to provide another zwitterionic C
which is stabilized by the additional electron-withdrawing
group (Z?), hydroxy and thiazolium group. The intramo-
lecular aldol reaction and fragmentation of intermediate C
affords final [4+1]-annulation product of hydroxyin-
danone and regenerates the N-heterocyclic carbene.'®

In conclusion, the synthesis of 2,2-disubstituted 3-hy-
droxyindanones was realized by a NHC-catalyzed tandem
reaction of phthalaldehyde and 1,2-diactivated Michael
acceptors. The additional electron-withdrawing group in
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Scheme 3 Proposed catalytic cycle

the Michael acceptor facilitates the proton shift of the in-
termediate of the Stetter reaction and thus results in a
[4+1]-annulation product. This tandem reaction features
several advantages, including exclusive cis diastereose-
lectivity, readily available starting materials, and catalyst,
and construction of two C—C bonds in one pot, which
makes it potentially useful for the synthesis of the 3-hy-
droxyindanones.

Typical Procedure of the NHC-Catalyzed [4+1] Annulation

To an oven-dried 50 mL Schlenk tube equipped with a stir bar was
charged with thiazolium salt 4a (12.7 mg, 0.047 mmol) and phthal-
aldehyde (94.9 mg, 0.71 mmol). The tube was closed with a septum,
evacuated, and back-filled with argon. To this mixture was added
solvent THF (4.7 mL) and Michael acceptor 2a (96.3 mg, 0.47
mmol). Then, Cs,CO; (15.4 mg, 0.047 mmol) was added to the
tube. The mixture was further stirred overnight, then diluted with
EtOAc and passed through a short silica pad. The solvent was re-
moved under reduced pressure, and the residue was purified by
chromatography on silica gel (EtOAc—PE, 1:3) to give 151.6 mg
(95%) of hydroxyindanone 3a as a white solid; R,=0.22 (PE-
EtOAc, 3:1); mp 125-126 °C. '"H NMR (300 MHz, CDCl,): § =
8.05(d, J=7.2Hz, 2 H), 7.87-7.83 (m, 2 H), 7.79-7.74 (m, 1 H),
7.63 (t,J=7.2Hz, 1 H), 7.57-7.48 (m, 3 H), 5.46 (s, 1 H), 4.33 (d,
J =183 Hz, 1 H), 4.15-4.08 (m, 3 H), 3.53 (d, /= 18.3 Hz, 1 H),
1.11 (t, J=7.2 Hz, 3 H). 3C NMR (75 MHz, CDCL,): § = 198.4,
198.3,168.4, 153.5, 136.3,135.8, 135.5, 133.7, 129.2, 128.7, 128.3,
125.2,123.8,76.4,65.5, 62.1,40.8, 13.8. IR (KBr): v=1738, 1717,
1684, 1210. MS (EI): m/z (%) = 338 (3.0), 105 (100). HRMS (EI):
m/z [M*] caled for C,,H;305: 338.1154; found: 338.1150.
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At this stage, we don’t know whether the NHC leaves before
or after the aldol reaction.
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