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Various �-keto radicals are generated from cyclopropanols
by treatment with a catalytic amount of AgNO3 and (NH4)2S2O8

as a reoxidant in the presence of pyridine. Thus, generated �-
keto radicals react with alkenes to yield addition products.

In the previous papers, our laboratory reported that the treat-
ment of cyclopropanols with manganese(III) tris(2-pyridinecar-
boxylate) [Mn(pic)3] generates �-keto radicals,1 which add to ei-
ther electron-rich or deficient alkenes to give the corresponding
addition products (Scheme 1).2

Though this oxidative radical generation exhibits wide gen-
erality, the use of a stoichiometric amount of Mn(pic)3 prevents
the application to a large-scale synthesis. In fact, in our total syn-
thesis of a natural product, sordaricin,3 it was desired to improve
this stoichiometric reaction to a catalytic process. Herein, we
would like to report a catalytic �-keto radical formation from
cyclopropanol derivatives by the use of AgNO3–(NH4)2S2O8–
pyridine system.

Peroxodisulfate salts, [M2þS2O8
2�] are widely used as an

oxidant of metal salts.4 For example, Citterio et al. reported
the generation of �-keto radicals from ketones by the use of a
catalytic amount of AgNO3 and Na2S2O8 as a reoxidant in aque-
ous media, in which AgII species were supposed to participate in
the oxidation.5

We considered that cyclopropanols might be oxidized even
with AgI species under mild reaction conditions and examined
the reaction of 1-phenylcyclopropanol (1a)6 and �-(t-butyldi-
methylsiloxy)styrene (2a) with the combination of cat. AgNO3

and (NH4)2S2O8 (Eq 1).7 When a 0.1 molar amount of AgNO3

and 2.4 molar amounts of (NH4)2S2O8 were added to a mixture
of 1a and 2a in DMF, the reaction proceeded at room tempera-
ture to afford the addition product 3aa and propiophenone (4) in
20 and 53% yield, respectively. Then, the reaction was examined
in the presence of various amines, which would act as a trapping
reagent of the acid generating during this oxidation and also as a
ligand coordinating to AgI species.8 When 2 molar amounts of
pyridine was added, the yield of 3aa was improved to 86%,9

while 2,6-lutidine, 2,2-bipyridine, pyrazine, and DBU were not
so effective for this reaction.10 Contrary to the formation of high-
ly reactive AgII species by the oxidation with peroxodisulfate

salts under harsh conditions (for example, refluxing in water),5

this catalytic reaction under milder conditions presumably pro-
ceeds via AgI–Ag0 cycle.11
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Next, the reactions of 1a and various silyl enol ethers were
examined as shown in Table 1. Silyl enol ethers having a termi-
nal methylene moiety 2b and 2c gave the corresponding prod-
ucts 3ab and 3ac in good yield (Runs 1 and 2). In the case of tri-
substituted silyl enol ether 2d, the reaction proceeded slowly to
give the desired product 3ad in only 19% yield with the adduct
of �-keto radical and pyridine 512 in 27% yield and with a 25%
recovery of 1a (Run 3).

A wide range of cyclopropanols13 reacted with silyl enol
ethers 2a and 2b as summarized in Table 2. 1-Phenethylcyclo-
propanol (1b) reacted with 2a and 2b to afford the corresponding
adducts in good yield (Run 1 and 2). As shown in Run 3–5, 1-tri-
methylsilylcyclopropanol (1c) and cyclopropanone hemiacetal
1d could be employed as �-trimethylsilylcarbonyl and �-eth-
oxycarbonyl radical sources, respectively. The reaction of bicy-
clo[4.1.0]heptan-1-ol (1e) gave the ring-expanded seven-mem-
bered adduct 3ea as a major product (Run 6). 1-(2-Oxoalkyl)-
cyclopropanol derivative 1fwas found to act as a �-diketone unit
to give tricarbonyl compound 3fa by the reaction with 2a in
moderate yield (Run 7), while the protection of the carbonyl
group of 1f as an acetal improved the yield to 79% (Run 8).

Three component coupling14 was carried out with the com-
bination of cyclopropanols and electoron-deficient and rich al-
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Table 1. The reactions of 1-phenylcyclopropanol (1a) with
various silyl enol ethers 2a

bProduct (yield/%)
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aReaction conditions; DMF, rt. 1a:2:AgNO3:(NH4)2S2O8:pyridine =

1:2:0.1:2.4:2. bIsolated yield based on cyclopropanol 1a. c5 was obtained

in 27% yield, and 1a was recovered in 25% yield.
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kenes. Electron-deficient alkenes were expected to react firstly
with nucleophilic �-keto radicals to generate electron-deficient
radicals, which would be trapped finally with electron-rich al-
kenes. As expected, cyclopropanols (1a, 1b, and 1d) reacted
with electoron-deficient alkenes (2c or 2d), and electron-rich
alkene 2a in this order, and the three components coupling
products (6a, 6b, and 6d) were obtained in good to moderate
yield with a small amount of cyclopropanol-electron-rich alkene
addition products 3 (Table 3).

This catalytic system could be applied to the intramolecular

radical addition of bicyclo[n.1.0] compounds bearing an alkene
moiety at the suitable position (Eq 2). 5-(3-Butenyl)bicyclo-
[4.1.0]heptan-1-ol (7a) and 6-(3-butenyl)bicyclo[5.1.0]octan-1-
ol (7b) were successfully transformed to bicyclo[5.3.0]decan-
3-one derivative 8a having a guaiane skeleton, and bicyclo-
[6.3.0]dodecan-3-one derivative 8b with high stereoselectivity2e

under this catalytic system in the presence of 1,4-cyclohexadiene
as a radical-trapping reagent.
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Table 2. The oxidative radical reaction of various cyclopropa-
nols 1 with silyl enol ethers 2a and 2ba
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aReaction conditions; DMF, rt, 2.5–5.5 h. 1:2:AgNO3:(NH4)2S2O8:

pyridine = 1:2:0.1:2.4:2. bIsolated yield based on cyclopropanol 1.

Table 3. Three component coupling reactionsa
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aReaction conditions; DMF, rt, 3.5–4 h. 1a:2:AgNO3:(NH4)2S2O8:pyridine

= 1:2:0.1:2.4:2. bIsolated yield based on cyclopropanol 1a. cThe undesira-

ble cross-addition products 3 were obtained in 6% (3aa), 5% (3ba), and

14% (3da) yield, respectively.
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