## 218. The *trans*-Influence in Platinum (II) Complexes. 1H- and <sup>13</sup>C-NMR. and X-Ray Structural Studies of Tridentate *Schiff*'s Base Complexes of Platinum (II)

by Herbert Motschi, Cornelius Nussbaumer and Paul S. Pregosin<sup>1</sup>)

Laboratorium für Anorganische Chemie, ETH-Zentrum, Universitätstrasse 6, CH-8092 Zürich

and Fiorella Bachechi, Pasquale Mura and Luigi Zambonelli

Istituto di Strutturistica Chimica 'Giordano Giacomello', C.N.R., Area della Ricerca, C.P. 10, I-00016 Monterotondo Stazione (Roma)

(29. V.80)

## Summary

<sup>1</sup>H- and <sup>13</sup>C-NMR. data are reported for the complexes [Pt(1)L] and [Pt(2)L]; 1=OC<sub>6</sub>H<sub>4</sub>CH=NCH<sub>2</sub>CH<sub>2</sub>O, 2=OC<sub>6</sub>H<sub>4</sub>CH=NC<sub>6</sub>H<sub>4</sub>O; L=PR<sub>3</sub>, AsR<sub>3</sub>, C≡N (cyclohexyl), DMSO, pyridine, secondary amine. The molecular structures of [Pt(2)(NHEt<sub>2</sub>)] (I) and [Pt(2)(PPh<sub>3</sub>)] (II) have been determined by X-ray analysis. Relevant bond distances for I: Pt-N (amine)=2.076 Å, Pt-N (imine)=2.017 Å, Pt-O=1.992 Å and 2.002 Å; for II: Pt-P=2.248 Å, Pt-N=2.064 Å, Pt-O=1.964 and 2.005 Å. Both the solid and solution state data are interpreted in terms of differences in the *trans* influence of the ligand L. The question of metal-ligand d-p π back bonding to the imine is discussed.

1. Introduction. – The concept of the *trans* influence in platinum chemistry has been the subject of many reports [1] [2]. As this idea involves a ground state phenomenon, several spectroscopic methods have been employed in its study, with IR., NMR. and X-ray methods appearing most frequently. Despite the extensive literature there is still some disagreement as to the relative importance of  $\sigma$ - and  $\pi$ -bonding in the weakening (or strengthening) of the M-L bond in the moiety *trans*-'L-M-(variable *trans* ligand)'. Reasonably enough, these  $\sigma$ - and  $\pi$ -components are thought to be dependent upon the metal (M) and its formal oxidation state, as well as the type of donor atom (L)[1].

We have recently reported  $^{15}NMR$ .-data for the complexes: a) trans-[PtCl<sub>2</sub>( $^{15}NH_2$ (CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>)L], L=PBu<sub>3</sub><sup>n</sup>, PMePh<sub>2</sub>, P(pCH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>)<sub>3</sub>, AsBu<sub>3</sub><sup>n</sup>, AsMePh<sub>2</sub>, As(pCH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>)<sub>3</sub>,  $^{15}NH_2$ (CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>, C<sub>2</sub>H<sub>4</sub> [3] and b) [Pt(1)L], L=PBu<sub>3</sub><sup>n</sup>, P(pCH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>)<sub>3</sub>, P(OEt)<sub>3</sub>, AsBu<sub>3</sub><sup>n</sup>, As(pCH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>)<sub>3</sub>, cyclohexyl isocyanide, dimethyl

<sup>1)</sup> Author, to whom correspondence should be addressed.

sulfoxide, pyridine and NH<sub>2</sub> (CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub> [4] and have shown that both the <sup>15</sup>N-chemical shifts and the values  ${}^{1}J({}^{195}Pt, {}^{15}N)$  are sensitive to the *trans* influence of the ligand, L. Interestingly, these two series of complexes are related in that a plot of  ${}^{1}J({}^{195}Pt, {}^{15}N_{sp3})$  vs.  ${}^{1}J({}^{195}Pt, {}^{15}N_{sp2})$  is linear [4].

One possible conclusion to be drawn from the more than 200 Hz difference [4] in the values  ${}^{1}J({}^{195}\text{Pt},{}^{15}\text{N})$  within each set is that the Pt-N bond lengths vary significantly as a function of L, due to the different nature of the metal orbitals used in these bonds.

To further our understanding of the *trans* influence, and to investigate the validity of using solution NMR. data to predict qualitative differences in Pt-N bond lengths we have carried out <sup>1</sup>H- and <sup>13</sup>C-NMR. studies on the complexes [Pt(1)L] and [Pt(2)L] and report here these results and those of X-ray structural studies for two members of the latter series.

2. Experimental. - a) Synthesis. - The syntheses of the complexes [Pt(1)L] have been reported previously [4]. The complexes [Pt(2)L], were prepared using a similar method and a typical synthesis is shown below.

Preparation of [Pt(2)L]. A solution of  $K_2PtCl_4$  (830 mg, 2.00 mmol) in 20 ml of dimethyl sulfoxide at 100° was treated with N-(o,o'-dihydroxybenzylidene)aniline (426 mg, 2.00 mmol) and Na<sub>2</sub>CO<sub>3</sub> (0.50 g, 4.72 mmol), and then heated to 140° for 15 min. Cooling to 100° was followed by the addition of 2.4 mmol of L. After 15 min at this temperature the reaction mixture was cooled to RT. (= room temperature) and treated with 20 ml of water. The powder which precipitated was filtered off and washed with water until the filtrate was colourless. The crude product was dissolved in ethyl/acetate and the solution treated with active charcoal. Filtration through Celite, concentration on a RV. (= rotary evaporator) and recrystallization from chloroform gave the products in 40-70% yields.

All of the complexes gave satisfactory IR., <sup>1</sup>H- and <sup>13</sup>C-NMR. spectra. The microanalytical data for the new complexes are shown in *Table 1*.

b) Physical Measurements. - IR. spectra were measured as KBr pellets on a Beckman IR 4250 spectrophotometer. NMR. spectra were measured in CDCl<sub>3</sub> using a Bruker HX-90 spectrometer operating in Fourier transform mode. Chemical shifts (ppm) are  $\pm 0.01$  (for  $^1$ H) and  $\pm 0.1$  (for  $^{13}$ C). Coupling constants (Hz) are  $\pm 0.4$  (for  $^1$ H) and  $\pm 1.5$  (for  $^{13}$ C). The  $^1$ H-NMR. spectrum of [Pt(2)(NHEt<sub>2</sub>)] was measured at both 90 and 360 MHz.

Crystal Data. Red-orange crystals of [Pt(2)(Et<sub>2</sub>NH)] (I) and orange crystals of [Pt(2)(Ph<sub>3</sub>P)] (II), were obtained by slow evaporation of CCl<sub>4</sub> and toluene solutions, respectively. A summary of crystal data is given in Table 2.

Intensity Measurements. Intensities were measured with an automatic diffractometer Syntex P2<sub>1</sub> using graphite-monochromated MoKa radiation ( $\theta_{\text{max}} = 28^{\circ}$ ,  $\omega$ -scan range = 0.9°). Data were processed as described previously [5], with p=0.006 (I) and 0.008 (II) as calculated from the variance of the standard reflections [6], and corrected for Lorentz, polarization and shape anisotropy effects; 2084 (I) and 2494 (II) independent reflections with I>3 $\sigma$ (I) were used in the analyses.

| L                   | % C           | % H         | % N         |
|---------------------|---------------|-------------|-------------|
| PBu <sup>n</sup>    | 49.34 (49.35) | 5.96 (6.02) | 2.30 (2.30) |
| PPh <sub>3</sub>    | 55.69 (55.71) | 3.62 (3.69) | 2.09 (2.11) |
| P(OEt) <sub>3</sub> | 39.86 (40.00) | 4.23 (4.14) | 2.45 (2.30) |
| AsEt <sub>3</sub>   | 40.15 (40.29) | 4.26 (4.28) | 2.46 (2.56) |
| AsPh <sub>3</sub>   | 52.26 (52.08) | 3.40 (3.24) | 1.97 (1.96) |
| C≡N(cyclohexyl)     | 46.60 (46.65) | 3.91 (3.87) | 5.43 (5.49) |
| DMSO <sup>a</sup> ) | 37.19 (36.70) | 3.12 (3.04) | 2.89 (2.87) |
| Pyridine            | 44.54 (44.37) | 2.91 (2.93) | 5.77 (5.78) |
| NHEt <sub>2</sub>   | 42.59 (42.57) | 4.20 (4.21) | 5.84 (5.80) |
| Piperidine          | 43.99 (44.17) | 4.10 (4.20) | 5.70 (5.79) |

Table 1. Microanalytical Data for the Complexes [Pt(2)L] Calc. (Found)

Structure Analysis and Refinement. The structures were solved by Patterson and Fourier methods and refined by least-squares analysis. The isotropic refinements converged at R=0.078 and 0.085 for I and II respectively. In the subsequent cycles the H-atoms were fixed. Other atoms (except phenyl rings in II) were assigned anisotropic vibration parameters. The H-atoms were then repositioned and included in the final structure factor calculations: R=0.060 and 0.052 ( $R_w=0.047$  and 0.039) for I and II, respectively. A two-block approximation of the normal-equations matrix was used in both cases. The quantity minimized was  $\sum w(|Fo|-|Fc|)^2$  with w=4 Fo<sup>2</sup>/ $\sigma^2$ (Fo<sup>2</sup>). The phenyl rings of II were refined as rigid groups ( $D_{6h}$ , C-C=1.392 Å). Atomic scattering factors including anomalous dispersion terms were taken from International Tables for X-ray Crystallography [7]. The calculations were done with local programmes on the UNIVAC 1100/20 computer of the University of Rome [8] and on the HP 21MS minicomputer of the CNR. Research Area [9]. Final positional parameters for the non-hydrogen atoms of the two compounds are given in Table 2.

3. Results. – a)  $^{I}H$ -NMR. Results. The  $^{1}H$ -NMR. spectra of [Pt(1)L] and [Pt(2)L] contain a signal for the imine proton, HC=N-, at  $\delta$  7.6–9.0 which is well resolved from the remaining aromatic protons. These chemical shift values are consistent with literature data for salicylaldehyde [10] and salicylaldehyde Schiff's base complexes of platinum [11] [12]. Where the L ligand has a phosphorus donor atom, this resonance is further split by  $^{31}P$ -coupling. Similarly, when [Pt(1)L] was prepared enriched in  $^{15}N$  (>95 atom  $^{6}M$   $^{15}N$ ), coupling to the  $^{15}N$ -isotope was also observed.

For both [Pt(1)L] and [Pt(2)L] with all L ligands except SbPh<sub>3</sub>, a coupling to <sup>195</sup>Pt was detectable. A tabulation of these <sup>1</sup>H-NMR. data may be found in *Table 3*.

The most salient feature of this *Table* stems from the three-bond coupling,  ${}^{3}J({}^{195}\text{Pt},{}^{1}\text{H})$ , which shows an inverse dependence on the *trans* influence of L  $({}^{3}J({}^{195}\text{Pt},{}^{1}\text{H})$  for PBu $_{3}^{n}=45.5$  Hz, for pyridine=74.0 Hz. The sense of this change in coupling constant is similar to that for  ${}^{1}J({}^{195}\text{Pt},{}^{15}\text{N})$  in [Pt(1)L] [4] and for many other one-, two- and three-bond platinum coupling constants [1].

A connection between the nitrogen donor atoms in 1 and 2 can be seen from the plot of  ${}^3J({}^{195}\text{Pt},{}^1H-C(7))$  in [Pt(1)L] vs.  ${}^3J({}^{195}\text{Pt},{}^1H-C(7))$  in [Pt(2)L], shown in Figure 1. The linear correlation of these two coupling constants suggests that both nitrogen functions react in an identical way when L is altered and therefore that the presence of the second aromatic ring does not influence the donor capacity of the nitrogen to a significant extent.

a) % S: 6.62 (6.64).

Table 2. Crystal data and final positional parameters for the non-hydrogen atoms for I and II (standard deviations are given in parentheses)

|                                                                                          |                                                      |             | I                                                                | 11                                                             |                                                                              |             |             |  |
|------------------------------------------------------------------------------------------|------------------------------------------------------|-------------|------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------|-------------|-------------|--|
| Cell constants <sup>a</sup> )                                                            | 11S <sup>a</sup> )                                   |             | a = 11.866(5)A<br>b = 9.353(2)<br>c = 15.302(5)<br>R = 101.58(3) | 15.721(4)A<br>9.106(2)<br>18.500(5)                            |                                                                              |             |             |  |
| Space group $P2_I/a$<br>Density (gcm <sup>-3</sup> )<br>$\mu$ (MoKa) (cm <sup>-1</sup> ) | $P_{21}/a = P_{11}/a = P_{21}/a = P_{21}/a = P_{21}$ |             | 1.914 (calc.); 1.95 (found)<br>85.29                             | P2//n (monoclinic: $Z=4$ )<br>1.745 (calc); 1.73(1)(foun 56.59 | 21/n (monoclinic: Z=4)<br>.745 (calc); 1.73(1)(found) <sup>b</sup> )<br>6.59 |             |             |  |
|                                                                                          | Х                                                    | y           | Z                                                                |                                                                | ×                                                                            | y           | Z           |  |
| Complex I                                                                                |                                                      |             |                                                                  |                                                                |                                                                              |             |             |  |
| Pt                                                                                       | 0.2318(0)                                            | 0.0152(0)   | 0.2469(0)                                                        | C(7)                                                           | 0.4399(14)                                                                   | 0.1481(17)  | 0.2407(12)  |  |
| 0(1)                                                                                     | 0.3410(8)                                            | -0.0867(10) | 0.3425(6)                                                        | C(8)                                                           | 0.2863(12)                                                                   | 0.2513(14)  | 0.1360(9)   |  |
| 0(2)                                                                                     | 0.1204(7)                                            | 0.1176(9)   | 0.1518(6)                                                        | C(9)                                                           | 0.1685(12)                                                                   | 0.2223(13)  | 0.1104(10)  |  |
| z                                                                                        | 0.3397(11)                                           | 0.1585(12   | 0                                                                | C(10)                                                          | 0.1024(11)                                                                   | 0.2962(14)  | 0.0417(10)  |  |
| Z(I)                                                                                     | 0.1070(9)                                            | -0.1259(11) | 0                                                                | C(11)                                                          | 0.1536(13)                                                                   | 0.3966(15)  | -0.0021(10) |  |
| C(1)                                                                                     | 0.4523(12)                                           | -0.0472(14) | 0.3584(10)                                                       | C(12)                                                          | 0.2711(14)                                                                   | 0.4278(16)  | 0.0234(10)  |  |
| C(2)                                                                                     | 0.5265(14)                                           | -0.1258(14) | 0.4285(10)                                                       | C(13)                                                          | 0.3382(11)                                                                   | 0.3519(14)  | 0.0927(10)  |  |
| C(3)                                                                                     | 0.6420(13)                                           | -0.0934(18) | 0.4506(11)                                                       | C(14)                                                          | 0.0078(12)                                                                   | -0.0625(17) | 0.3008(11)  |  |
| C(4)                                                                                     | 0.6881(12)                                           | 0.0111(19)  | 0.4039(13)                                                       | C(15)                                                          | 0.0437(12)                                                                   | 0.0230(16)  | 0.3850(11)  |  |
| C(5)                                                                                     | 0.6206(13)                                           | 0.0853(17)  | 0.3393(11)                                                       | C(16)                                                          | 0.0679(15)                                                                   | -0.2266(15) | 0.1931(10)  |  |
| C(6)                                                                                     | 0.5009(13)                                           | 0.0608(15)  | 0.3152(10)                                                       | C(17)                                                          | 0.1642(17)                                                                   | -0.3124(16) | 0.1708(13)  |  |
|                                                                                          |                                                      |             |                                                                  |                                                                |                                                                              |             |             |  |

| Rigid group atoms (derived parameters)         Rigid group atoms (derived parameters)         0.1125(4)         0.1125(4)         0.1125(4)         0.1125(4)         0.1125(4)         0.1125(4)         0.1125(4)         0.1125(4)         0.1125(4)         0.1125(4)         0.1125(4)         0.1125(4)         0.1125(4)         0.1125(4)         0.1125(4)         0.1125(4)         0.1125(4)         0.1125(4)         0.1307(5)         0.1991(5)         0.1991(5)         0.1991(5)         0.1991(5)         0.1991(5)         0.1991(5)         0.1991(5)         0.1991(5)         0.1991(5)         0.1991(5)         0.1991(5)         0.1991(5)         0.1991(5)         0.1991(5)         0.1991(5)         0.1991(5)         0.1991(5)         0.1991(5)         0.1991(5)         0.1991(6)         0.22912(8)         0.1042(6)         0.1627(5)         0.1627(5)         0.1627(5)         0.1627(5)         0.1627(5)         0.1627(5)         0.1627(5)         0.1627(5)         0.1627(5)         0.1627(5)         0.1627(5)         0.1627(5)         0.1627(5)         0.1123(4)         0.1627(5)         0.1627(5)         0.1123(4)         0.1627(5)         0.1627(5)         0.1627(5)         0.1627(5)         0.1627(5)         0.1627(5)         0.1627(5)         0.1627(5)         0.1627(5)         0.1627(5)         0.1627(5)         0.0227(7)         0.0227(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Part   Part | plex II<br>group at |                       |             |            |            |                     |            |            |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|-------------|------------|------------|---------------------|------------|------------|-------|
| rough atoms         Rigid group atoms (derived parameters)           0.3548(0)         0.3380(1)         0.0291(0)         C(14)         0.1883(6)         0.3798(10)         0.1125(4)           0.1354(3)         0.1380(1)         0.0228(2)         C(14)         0.1883(6)         0.4704(9)         0.1190(5)           0.3167(5)         0.1867(9)         0.0228(2)         C(16)         0.1065(5)         0.4531(8)         0.1991(5)           0.3487(7)         0.1867(9)         0.02488(4)         C(16)         0.1065(5)         0.4531(8)         0.1991(5)           0.34879(7)         0.1352(12)         0.0378(6)         C(17)         0.1494(6)         0.246(9)         0.0244(4)           0.3718(8)         0.0227(13)         0.0378(6)         C(17)         0.1494(6)         0.246(9)         0.0244(4)           0.3718(8)         0.0227(13)         0.0378(6)         C(17)         0.1494(6)         0.1564(9)         0.0221(5)         0.0244(1)           0.3788(10)         0.0355(14)         0.1562(6)         C(22)         0.0257(8)         0.01173(4)         0.1564(6)         0.0250(8)         0.01173(4)           0.5152(10)         0.0355(14)         0.1002(7)         C(22)         0.0574(8)         0.0354(8)         0.0354(8)         0.0354(8)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rough atoms         Rigid group atoms (derived parameters)           0.138(1)         0.0291(0)         C(14)         0.1883(6)         0.0195(1)         0.1125(4)           0.138(2)         0.3386(3)         0.0228(2)         C(14)         0.1883(6)         0.4704(9)         0.1107(5)           0.138(2)         0.1387(9)         0.0228(1)         0.1266(5)         0.4704(9)         0.1901(5)           0.4004(5)         0.4832(3)         0.1122(4)         C(15)         0.126(5)         0.4531(8)         0.1991(5)           0.4004(5)         0.4832(1)         0.0112(4)         C(15)         0.1243(6)         0.2494(4)         0.1991(5)           0.4004(5)         0.1125(12)         0.0378(6)         C(18)         0.2117(5)         0.2494(4)         0.1921(5)           0.3371(8)         0.0220(13)         -0.1880(6)         C(21)         0.2137(5)         0.2440(4)         0.1627(5)           0.3371(8)         0.0220(13)         -0.1880(6)         C(22)         0.0664(5)         0.2194(6)         0.0131(4)           0.453(8)         0.0603(15)         -0.186(6)         C(22)         0.0664(5)         0.2194(6)         0.0131(6)           0.5397(8)         0.44928(14)         0.1001(6)         C(22)         0.0046(5) <t< td=""><td>group at</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | group at            |                       |             |            |            |                     |            |            |       |
| 0.3548(0)         0.3380(1)         0.0291(0)         C(14)         0.1883(6)         0.3798(10)         0.1125(4)           0.2138(2)         0.3284(3)         0.0228(2)         C(15)         0.126(5)         0.4704(9)         0.1130(3)           0.3153(2)         0.3167(3)         0.0488(4)         C(16)         0.1065(5)         0.4404(9)         0.1307(3)           0.4004(5)         0.4822(9)         0.1122(4)         C(17)         0.1494(6)         0.244(4)         0.1307(3)           0.4879(7)         0.3152(12)         0.0378(6)         C(18)         0.2117(5)         0.244(4)         0.2494(4)           0.4879(7)         0.0220(13)         -0.0803(6)         C(18)         0.2117(5)         0.246(9)         0.2312(5)           0.3371(8)         0.0220(13)         -0.1761(6)         C(17)         0.1347(4)         0.2276(8)         -0.1477(4)           0.5888(10)         -0.0557(15)         -0.1761(6)         C(23)         0.0664(5)         0.2173(8)         -0.1173(4)           0.4661(8)         0.1496(12)         -0.1606(6)         C(23)         0.0645(5)         0.2173(8)         -0.1173(4)           0.4522(10)         0.2364(15)         -0.0066(5)         C(24)         0.0154(8)         0.1404(4)         0.1173(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3248(0)         0.3380(1)         0.0291(0)         C(14)         0.1883(6)         0.3798(10)         0.1125(4)           0.1218(2)         0.3346(3)         0.0228(2)         C(15)         0.1506(5)         0.4704(9)         0.1107(5)           0.3167(5)         0.1867(9)         0.0488(4)         C(15)         0.1506(5)         0.4531(8)         0.1307(5)           0.4004(5)         0.4832(9)         0.11122(4)         C(17)         0.1494(6)         0.24531(9)         0.1307(5)           0.4904(5)         0.4832(9)         0.11122(4)         C(17)         0.1494(6)         0.2494(4)         0.2494(4)           0.4879(7)         0.13152(12)         0.0378(6)         C(19)         0.2312(5)         0.2494(4)         0.2494(4)           0.4879(7)         0.03220(13)         -0.1862(6)         C(19)         0.2312(5)         0.2494(4)         0.1494(6)           0.3786(10)         -0.0527(13)         -0.1862(6)         C(21)         0.1237(4)         0.279(8)         -0.1733(5)           0.4779(9)         -0.0355(14)         -0.1862(6)         C(22)         0.0664(5)         0.279(8)         -0.1733(5)           0.5161(8)         0.1499(12)         -0.1862(6)         C(22)         0.0548(5)         0.1334(8)         -0.1733(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                       |             |            | Rigid gro. | up atoms (derived p | arameters) |            |       |
| 0.2138(2)         0.3946(3)         0.0228(2)         C(15)         0.1260(5)         0.4704(9)         0.1307(5)           0.3167(5)         0.31867(9)         -0.0488(4)         C(16)         0.1055(5)         0.4704(9)         0.1307(5)           0.4004(5)         0.4837(9)         -0.0488(4)         C(16)         0.1055(5)         0.4533(10)         0.2494(4)           0.4879(7)         0.3152(12)         -0.0803(6)         C(18)         0.1147(4)         0.2546(4)         0.1391(5)           0.3718(8)         0.0220(13)         -0.1886(10)         -0.1389(6)         C(19)         0.2312(5)         0.254(4)         0.1627(5)           0.3888(10)         -0.0527(15)         -0.1880(6)         C(21)         0.0645(3)         0.2719(8)         0.1627(5)           0.4779(9)         -0.0527(15)         -0.1862(6)         C(21)         0.0245(3)         0.2719(8)         0.1627(5)           0.4779(9)         -0.0527(15)         -0.1862(6)         C(21)         0.0245(4)         0.0404(4)         0.1677(3)           0.5152(10)         0.1304(15)         -0.1002(7)         C(23)         -0.0057(4)         0.1334(8)         -0.1504(4)           0.5122(10)         0.2364(15)         -0.1002(1)         C(23)         0.0548(5)         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.138(2).         0.3946(3)         0.0228(2)         C(15)         0.1260(5)         0.4704(9)         0.1307(5)           0.3167(3).         0.1867(9)         0.0288(4)         C(16)         0.1665(5)         0.4531(8)         0.1991(5)           0.4004(5)         0.4867(9)         0.0208(4)         C(16)         0.1695(5)         0.4531(8)         0.1991(5)           0.4879(7)         0.315Z(12)         0.0378(6)         C(18)         C(119)         0.2312(5)         0.2546(9)         0.2434(4)           0.371(8)         0.01215(12)         0.0803(6)         C(19)         0.2312(5)         0.2546(9)         0.2434(4)           0.378(8)         0.0220(13)         -0.1889(6)         C(20)         0.1569(4)         0.2546(9)         0.1677(5)           0.478(8)         0.0220(13)         -0.1889(6)         C(21)         0.1569(4)         0.2546(4)         0.1677(4)           0.5152(10)         0.05037(15)         -0.1666(5)         C(23)         -0.0664(5)         0.2030(8)         -0.1173(3)           0.5152(10)         0.04903(13)         0.10001(6)         C(23)         -0.0657(4)         0.1303(4)         -0.1030(4)           0.5397(4)         0.4903(13)         0.1001(6)         C(24)         -0.0115(4)         0.2344(8) <td></td> <td>48(0)</td> <td>0.3380(1)</td> <td>0.0291(0)</td> <td>C(14)</td> <td>0.1883(6)</td> <td>0.3798(10)</td> <td>0.1125(4)</td> <td>Ph(1)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | 48(0)                 | 0.3380(1)   | 0.0291(0)  | C(14)      | 0.1883(6)           | 0.3798(10) | 0.1125(4)  | Ph(1) |
| 0.3167(5)          0.1867(9)         -0.0488(4)         C(16)         0.1065(5)         0.4531(8)         0.1991(5)           0.44879(7)         0.4832(9)         0.1122(4)         C(17)         0.1494(6)         0.2453(10)         0.2494(4)           0.4879(7)         0.13152(12)         -0.0803(6)         C(18)         0.2117(5)         0.2546(9)         0.2312(5)           0.3371(8)         0.0220(13)         -0.1880(6)         C(20)         0.1326(4)         0.2312(5)         0.0446(4)           0.3371(8)         -0.0527(13)         -0.1761(6)         C(21)         0.1327(4)         0.2750(8)         -0.10440(4)           0.3477(9)         -0.0356(14)         -0.1562(6)         C(22)         0.0664(5)         0.2070(8)         -0.1703(3)           0.5152(10)         0.2564(15)         -0.1002(7)         C(23)         -0.0057(4)         0.1334(8)         -0.1703(3)           0.5152(10)         0.2564(15)         -0.0002(7)         C(24)         -0.0115(4)         0.1334(8)         -0.1703(4)           0.5152(10)         0.2564(15)         -0.0002(7)         C(24)         -0.0115(4)         0.1334(8)         -0.1703(7)           0.5397(8)         0.4908(14)         0.1341(6)         C(23)         0.1234(5)         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.3167(5)         C. 0.1867(9)         -0.0488(4)         C(16)         0.1065(5)         0.4531(8)         0.1991(5)           0.4004(5)         0.3482(9)         -0.0488(4)         C(17)         0.1494(6)         0.3453(18)         0.1991(5)           0.4879(7)         0.3152(12)         0.0378(6)         C(17)         0.1494(6)         0.246(9)         0.2494(4)           0.3178(8)         0.1215(12)         -0.0803(6)         C(19)         0.2312(5)         0.2446(9)         0.02312(5)           0.3386(10)         -0.0257(15)         -0.1380(6)         C(20)         0.1269(4)         0.2719(8)         0.1627(5)           0.3886(10)         -0.0257(15)         -0.1380(6)         C(21)         0.1374(4)         0.1627(8)         0.1627(5)           0.3886(10)         -0.0356(14)         -0.1562(6)         C(21)         0.1374(4)         0.1627(8)         0.1607(6)           0.4779(9)         0.0603(15)         -0.1002(7)         C(23)         0.0067(4)         0.1334(8)         -0.1034(1)           0.5152(10)         0.1409(12)         -0.0066(5)         C(23)         0.0067(4)         0.1534(8)         -0.1034(1)           0.5152(10)         0.1409(12)         -0.0060(5)         C(23)         0.0067(4)         0.1534(8)         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | 38(2)                 | 0.3946(3)   | 0.0228(2)  | C(15)      | 0.1260(5)           | 0.4704(9)  | 0.1307(5)  |       |
| 0.4479(7) 0.4832(9) 0.1122(4) C(17) 0.1494(6) 0.2453(10) 0.2494(4) 0.44004(5) 0.4512(12) 0.0378(6) C(18) 0.2117(5) 0.2546(9) 0.2312(5) 0.2312(5) 0.23718(8) 0.1215(12) -0.0803(6) C(19) 0.2312(5) 0.23718(8) 0.1215(12) -0.0803(6) C(19) 0.2312(5) 0.23718(8) 0.0257(13) -0.1389(6) C(20) 0.1237(4) 0.2370(8) -0.10356(14) -0.0557(15) -0.1562(6) C(21) 0.1377(4) 0.2009(8) -0.1173(4) 0.2368(10) 0.2364(15) -0.0603(15) -0.0162(6) C(22) 0.0664(5) 0.2009(8) -0.1173(4) 0.2312(10) 0.2364(15) -0.00605(3) C(22) 0.0664(5) 0.2009(8) -0.1173(4) 0.2312(10) 0.2364(15) -0.00605(3) C(22) 0.0664(5) 0.1431(8) -0.0173(4) 0.2312(10) 0.2389(14) 0.1001(6) C(25) 0.0548(5) 0.1533(8) -0.0077(4) 0.2312(10) 0.5397(14) 0.1934(6) C(28) 0.1631(5) 0.6245(7) 0.0093(4) 0.6327(9) 0.1934(16) 0.1238(7) C(29) 0.1631(5) 0.8474(7) 0.0133(4) 0.6527(9) 0.1238(7) C(21) 0.2442(4) 0.6872(9) 0.3625(6) 0.1238(7) 0.1238(7) 0.2442(4) 0.6872(9) 0.3625(6) 0.1238(7) 0.1631(9) 0.2442(4) 0.6602(9) 0.1238(7) 0.1681(9) 0.2442(4) 0.6602(9) 0.1234(6) 0.0093(4) 0.1238(7) 0.1681(9) 0.2442(4) 0.6602(9) 0.1234(6) 0.1238(7) 0.1681(9) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1238(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10) 0.1334(10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4004(5)         0.4832(9)         0.1122(4)         C(17)         0.1494(6)         0.3453(10)         0.2494(4)           0.4004(5)         0.4832(9)         0.11122(1)         0.0318(6)         C(18)         0.2117(5)         0.2546(9)         0.2312(5)           0.4718(8)         0.01215(12)         -0.0833(6)         C(19)         0.2117(5)         0.2746(9)         0.02312(5)           0.33718(8)         0.0220(13)         -0.1562(6)         C(20)         0.1264(4)         0.2756(8)         0.1604(4)           0.3868(10)         -0.0527(15)         -0.1562(6)         C(21)         0.0564(5)         0.2009(8)         -0.1703(3)           0.5868(10)         -0.0527(15)         -0.1562(6)         C(22)         0.0664(5)         0.2009(8)         -0.1703(3)           0.5152(10)         0.2564(15)         -0.0057(7)         C(23)         -0.0057(4)         0.1431(8)         -0.1703(3)           0.5397(8)         0.4093(13)         0.1001(6)         C(24)         0.0153(8)         0.0537(3)         -0.0057(4)         0.1534(8)         -0.1703(3)           0.5397(8)         0.4903(13)         0.1001(6)         C(23)         0.0664(5)         0.2534(8)         -0.1703(7)           0.5327(9)         0.4928(14)         0.1341(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | 67(5)                 | 0.1867(9)   | -0.0488(4) | C(16)      | 0.1065(5)           | 0.4531(8)  | 0.1991(5)  |       |
| 0.4879(7)         0.3152(12)         0.0378(6)         C(18)         0.2117(5)         0.2546(9)         0.2312(5)           0.3718(8)         0.1215(12)         -0.0803(6)         C(19)         0.2312(5)         0.2719(8)         0.1627(5)           0.3718(8)         0.0220(13)         -0.1889(6)         C(20)         0.1589(4)         0.2512(8)         -0.0440(4)           0.3868(10)         -0.0356(14)         -0.1561(6)         C(21)         0.0137(4)         0.2020(8)         -0.1173(4)           0.4409(12)         -0.1652(6)         C(22)         0.0664(5)         0.2006(8)         -0.1701(4)           0.5152(10)         0.2364(15)         -0.1602(7)         C(23)         -0.0057(4)         0.1403(3)         -0.1701(4)           0.5152(10)         0.2364(15)         -0.0066(5)         C(24)         -0.0115(4)         0.1593(8)         -0.1701(4)           0.5152(10)         0.2364(15)         -0.0023(7)         C(25)         0.0548(5)         0.2334(8)         -0.0577(1)           0.5152(10)         0.2397(4)         0.1001(6)         C(25)         0.0548(5)         0.2334(8)         -0.0577(3)           0.5337(8)         0.4992(14)         0.1934(6)         C(24)         -0.0188(5)         0.5334(8)         -0.0237(3) <td>0.4879(7)         0.3152(12)         0.0378(6)         C(18)         0.2117(5)         0.2546(9)         0.2312(5)           0.3718(8)         0.1215(12)         -0.0803(6)         C(19)         0.2312(5)         0.2719(8)         0.1627(5)           0.3371(8)         0.022(13)         -0.1886(6)         C(21)         0.125(4)         0.2912(8)         -0.0440(4)           0.3368(10)         -0.0527(15)         -0.1761(6)         C(21)         0.125(4)         0.2173(8)         -0.0440(4)           0.4779(9)         -0.0535(14)         -0.1062(7)         C(22)         0.0664(5)         0.2006(8)         -0.1701(3)           0.5163(8)         0.0633(15)         -0.1062(7)         C(22)         0.0664(5)         0.2006(8)         -0.1501(4)           0.5152(10)         0.2364(15)         -0.0023(7)         C(23)         0.0664(5)         0.2006(8)         -0.1501(4)           0.5152(10)         0.2364(15)         -0.0023(7)         C(24)         -0.0115(4)         0.1393(8)         -0.0237(3)           0.5397(8)         0.4093(13)         0.1001(6)         C(25)         0.0548(5)         0.2334(8)         -0.0237(3)           0.5397(8)         0.4093(14)         0.1341(6)         C(27)         0.1221(5)         0.6244(7)         -</td> <td></td> <td>04(5)</td> <td>0.4832(9)</td> <td>0.1122(4)</td> <td>C(17)</td> <td>0.1494(6)</td> <td>0.3453(10)</td> <td>0.2494(4)</td> <td></td> | 0.4879(7)         0.3152(12)         0.0378(6)         C(18)         0.2117(5)         0.2546(9)         0.2312(5)           0.3718(8)         0.1215(12)         -0.0803(6)         C(19)         0.2312(5)         0.2719(8)         0.1627(5)           0.3371(8)         0.022(13)         -0.1886(6)         C(21)         0.125(4)         0.2912(8)         -0.0440(4)           0.3368(10)         -0.0527(15)         -0.1761(6)         C(21)         0.125(4)         0.2173(8)         -0.0440(4)           0.4779(9)         -0.0535(14)         -0.1062(7)         C(22)         0.0664(5)         0.2006(8)         -0.1701(3)           0.5163(8)         0.0633(15)         -0.1062(7)         C(22)         0.0664(5)         0.2006(8)         -0.1501(4)           0.5152(10)         0.2364(15)         -0.0023(7)         C(23)         0.0664(5)         0.2006(8)         -0.1501(4)           0.5152(10)         0.2364(15)         -0.0023(7)         C(24)         -0.0115(4)         0.1393(8)         -0.0237(3)           0.5397(8)         0.4093(13)         0.1001(6)         C(25)         0.0548(5)         0.2334(8)         -0.0237(3)           0.5397(8)         0.4093(14)         0.1341(6)         C(27)         0.1221(5)         0.6244(7)         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | 04(5)                 | 0.4832(9)   | 0.1122(4)  | C(17)      | 0.1494(6)           | 0.3453(10) | 0.2494(4)  |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3718(8)         0.1215(12)         -0.0803(6)         C(19)         0.2312(5)         0.2719(8)         0.1627(5)           0.3371(8)         0.0220(13)         -0.1389(6)         C(20)         0.1269(4)         0.2912(8)         -0.0440(4)           0.3868(10)         -0.0356(14)         -0.1761(6)         C(21)         0.0159(18)         -0.0173(4)         0.2050(8)         -0.1173(4)           0.5163(8)         -0.0037(15)         -0.1761(6)         C(21)         0.0664(5)         0.2009(8)         -0.1173(4)           0.5163(8)         0.0603(15)         -0.1060(5)         C(22)         0.0664(5)         0.2009(8)         -0.1173(4)           0.5152(10)         0.1409(12)         -0.1060(5)         C(22)         0.0664(5)         0.2009(8)         -0.1173(4)           0.5152(10)         0.2364(15)         -0.0023(7)         C(23)         0.0548(5)         0.2137(8)         -0.1173(1)           0.5397(8)         0.4928(14)         0.1001(6)         C(25)         0.0548(5)         0.2334(8)         -0.0577(3)           0.5397(8)         0.4928(14)         0.1924(6)         C(23)         0.1288(5)         0.5387(6)         0.0624(7)         -0.0053(4)           0.6311(10)         0.5899(14)         0.1924(6)         C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | (1)61                 | 0.3152(12)  | 0.0378(6)  | C(18)      | 0.2117(5)           | 0.2546(9)  | 0.2312(5)  |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3371(8)         0.0220(13)         -0.1389(6)         C(20)         0.1269(4)         0.2912(8)         -0.0440(4)           0.3868(10)         -0.0527(15)         -0.1761(6)         C(21)         0.1327(4)         0.2750(8)         -0.173(4)           0.4779(9)         -0.0557(15)         -0.1652(6)         C(22)         0.0664(5)         0.2009(8)         -0.1173(4)           0.5153(8)         -0.0603(15)         -0.1002(7)         C(23)         -0.0057(4)         0.1431(8)         -0.1501(4)           0.5152(10)         0.2364(15)         -0.0606(5)         C(24)         -0.0115(4)         0.1533(8)         -0.1507(4)           0.5397(8)         0.4993(13)         0.1001(6)         C(25)         0.0648(5)         0.2334(8)         -0.0273(3)           0.5397(8)         0.4928(14)         0.1001(6)         C(25)         0.0648(5)         0.5334(8)         -0.0273(3)           0.5397(8)         0.4928(14)         0.1924(6)         C(25)         0.1688(5)         0.5334(8)         -0.0053(4)           0.5312(10)         0.5888(20)         0.1284(6)         C(22)         0.1631(5)         0.6245(7)         -0.0693(4)           0.6224(11)         0.5088(20)         0.1793(7)         C(23)         0.1631(5)         0.7492(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | 18(8)                 | 0.1215(12)  | -0.0803(6) | C(19)      | 0.2312(5)           | 0.2719(8)  | 0.1627(5)  |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3868(10)         -0.0527(15)         -0.1761(6)         C(21)         0.1327(4)         0.2750(8)         -0.1173(4)           0.4779(9)         -0.0356(14)         -0.1562(6)         C(22)         0.0664(5)         0.2009(8)         -0.1703(3)           0.5163(8)         -0.0035(14)         -0.1562(6)         C(22)         -0.0057(4)         0.1431(8)         -0.1703(3)           0.4661(8)         0.1409(12)         -0.0606(5)         C(24)         -0.0115(4)         0.1593(8)         -0.1501(4)           0.5152(10)         0.2344(15)         -0.0606(5)         C(25)         0.0548(5)         0.2334(8)         -0.0767(4)           0.5152(10)         0.2492(14)         0.1001(6)         C(25)         0.1886(5)         0.5334(8)         -0.0053(4)           0.6312(10)         0.5899(14)         0.1924(6)         C(23)         0.1688(5)         0.5387(7)         -0.0693(4)           0.6224(11)         0.5899(14)         0.1924(6)         C(29)         0.1631(5)         0.6342(7)         -0.0991(3)           0.6224(11)         0.5899(14)         0.1924(6)         C(29)         0.1631(5)         0.7394(6)         -0.0991(3)           0.6224(11)         0.588(20)         0.1793(7)         0.12308(5)         0.1631(5)         0.6962(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | 71(8)                 | 0.0220(13)  | -0.1389(6) | C(20)      | 0.1269(4)           | 0.2912(8)  | -0.0440(4) | Ph(2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4779(9)         -0.0356(14)         -0.1562(6)         C(22)         0.0664(5)         0.2009(8)         -0.1703(3)           0.5163(8)         0.0603(15)         -0.1002(7)         C(23)         -0.0057(4)         0.1431(8)         -0.1501(4)           0.4661(8)         0.04601(15)         -0.0006(5)         C(24)         -0.0115(4)         0.1431(8)         -0.01501(4)           0.5152(10)         0.2364(15)         -0.0023(7)         C(25)         0.0548(5)         0.2334(8)         -0.0077(3)           0.5337(8)         0.4093(13)         0.1001(6)         C(25)         0.0548(5)         0.2334(8)         -0.0053(4)           0.4877(9)         0.4928(14)         0.1341(6)         C(27)         0.1588(5)         0.5063(4)         -0.0053(4)           0.6487(9)         0.4928(14)         0.1341(6)         C(28)         0.1688(4)         0.7707(9)         -0.0053(4)           0.6224(11)         0.5888(20)         0.1733(7)         C(39)         0.1631(5)         0.8796(6)         -0.0052(4)           0.6327(9)         0.6388(20)         0.1733(7)         C(31)         0.2442(4)         0.6962(9)         0.0355(3)           x         y         z         φ         φ         ψ         ψ           0.1765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | (8(10)                | -0.0527(15) | -0.1761(6) | C(21)      | 0.1327(4)           | 0.2750(8)  | -0.1173(4) |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5163(8)         0.0603(15)         -0.1002(7)         C(23)         -0.0057(4)         0.1431(8)         -0.1501(4)           0.4661(8)         0.1409(12)         -0.0666(5)         C(24)         -0.0115(4)         0.1593(8)         -0.0767(4)           0.5152(10)         0.2364(15)         -0.0666(5)         C(25)         0.0548(5)         0.2334(8)         -0.0757(4)           0.5397(8)         0.4093(13)         0.1001(6)         C(26)         0.1898(5)         0.537(6)         -0.0053(7)           0.4877(9)         0.4928(14)         0.1341(6)         C(27)         0.1231(5)         0.6445(7)         -0.0053(4)           0.65224(11)         0.5899(14)         0.1924(6)         C(28)         0.1088(4)         0.7707(9)         -0.0093(4)           0.6521(10)         0.5899(14)         0.1924(6)         C(29)         0.1088(4)         0.7707(9)         -0.0093(4)           0.6521(10)         0.5899(14)         0.1924(7)         0.1131(5)         0.2442(7)         0.0335(3)           0.6522(11)         0.588(20)         0.1793(7)         C(29)         0.1631(5)         0.6962(9)         0.0355(3)           x         y         z         φ         φ         φ         ψ           0.666(3)         0.712(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | (6)62                 | -0.0356(14) | -0.1562(6) | C(22)      | 0.0664(5)           | 0.2009(8)  | -0.1703(3) |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4661(8)         0.1409(12)         -0.0606(5)         C(24)         -0.0115(4)         0.1593(8)         -0.0767(4)           0.5152(10)         0.2364(15)         -0.0023(7)         C(25)         0.0548(5)         0.2334(8)         -0.0237(3)           0.5397(8)         0.4092(14)         0.1001(6)         C(26)         0.1898(5)         0.5872(6)         -0.0058(4)           0.4877(9)         0.4928(14)         0.1941(6)         C(27)         0.1221(5)         0.6245(7)         -0.0058(4)           0.5312(10)         0.5899(14)         0.1924(6)         C(28)         0.1088(4)         0.7707(9)         -0.0915(3)           0.6224(11)         0.5899(14)         0.1924(6)         C(28)         0.1631(5)         0.6245(7)         -0.0915(3)           0.6521(9)         0.5888(20)         0.1924(6)         C(28)         0.1631(5)         0.8434(7)         0.0913(3)           0.6521(9)         0.5088(20)         0.1793(7)         C(31)         0.2442(4)         0.6962(9)         0.0913(4)           0.6527(9)         0.4194(16)         0.1225(7)         C(31)         0.2442(4)         0.6962(9)         0.09355(3)           x         y         z         φ         φ         φ         ψ           0.666(3) <td></td> <td>63(8)</td> <td>0.0603(15)</td> <td>-0.1002(7)</td> <td>C(23)</td> <td>-0.0057(4)</td> <td>0.1431(8)</td> <td>-0.1501(4)</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | 63(8)                 | 0.0603(15)  | -0.1002(7) | C(23)      | -0.0057(4)          | 0.1431(8)  | -0.1501(4) |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5152(10)         0.2364(15)         -0.0023(7)         C(25)         0.0548(5)         0.2334(8)         -0.0237(3)           0.5397(8)         0.4093(13)         0.1001(6)         C(26)         0.1898(5)         0.5872(6)         -0.0058(4)           0.4877(9)         0.4928(14)         0.1341(6)         C(27)         0.1221(5)         0.6245(7)         -0.0693(4)           0.5312(10)         0.5899(14)         0.1924(6)         C(28)         0.1688(4)         0.7707(9)         -0.0935(1)           0.6224(11)         0.5888(20)         0.1924(6)         C(29)         0.1631(5)         0.8796(6)         -0.0915(3)           0.6327(9)         0.5088(20)         0.1793(7)         C(29)         0.1631(5)         0.8424(7)         0.0915(3)           0.6327(9)         0.4194(16)         0.1225(7)         C(31)         0.2442(4)         0.6962(9)         0.0133(4)           0.6327(9)         0.4194(16)         0.1225(7)         C(31)         0.2442(4)         0.6962(9)         0.0355(3)           x         y         z         φ         θ         ψ           x         y         2         0         0.6962(9)         0.1656(9)         0.0155(9)           0.0606(3)         0.2172(5)         -0.0970(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | 61(8)                 | 0.1409(12)  | -0.0606(5) | C(24)      | -0.0115(4)          | 0.1593(8)  | -0.0767(4) |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5397(8)         0.4093(13)         0.1001(6)         C(26)         0.1898(5)         0.5872(6)         -0.0058(4)           0.4877(9)         0.4928(14)         0.1341(6)         C(27)         0.1221(5)         0.6245(7)         -0.0693(4)           0.5312(10)         0.5899(14)         0.1924(6)         C(28)         0.1088(4)         0.7707(9)         -0.0915(3)           0.6224(11)         0.5899(14)         0.1228(7)         C(29)         0.1631(5)         0.8796(6)         -0.0915(3)           0.6721(9)         0.5088(20)         0.1793(7)         C(30)         0.2308(5)         0.8424(7)         0.0133(4)           0.6721(9)         0.6721(9)         0.4194(16)         0.1225(7)         C(31)         0.2442(4)         0.6962(9)         0.0133(4)           0.6327(9)         0.4194(16)         0.1225(7)         C(31)         0.2442(4)         0.6962(9)         0.0133(4)           x         y         z         φ         θ         ψ           x         y         z         φ         θ         ψ           0.1689(4)         0.2172(5)         -0.0970(3)         119.9(3)         0.1(2)         97.1(3)           0.1666(3)         0.7334(6)         -0.0280(3)         -0.0280(3)         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | 52(10)                | 0.2364(15)  | -0.0023(7) | C(25)      | 0.0548(5)           | 0.2334(8)  | -0.0237(3) |       |
| 0.4877(9)         0.4928(14)         0.1341(6)         C(27)         0.1221(5)         0.6245(7)           0.5312(10)         0.5899(14)         0.1924(6)         C(28)         0.1088(4)         0.7707(9)           0.6224(11)         0.5979(14)         0.2128(7)         C(29)         0.1631(5)         0.8796(6)           0.6721(9)         0.5088(20)         0.1793(7)         C(30)         0.2308(5)         0.8796(6)           0.6327(9)         0.6327(7)         0.1225(7)         C(31)         0.2442(4)         0.6962(9)           x         y         z         φ         θ           group parameters*)         0.3625(6)         0.1809(3)         0.1809(3)         0.19(3)           0.1689(4)         0.2172(5)         -0.0970(3)         119.9(3)         0.1(2)           0.1765(3)         0.7334(6)         -0.0280(3)         -8.4(3)         -1.3(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.4877(9)         0.4928(14)         0.1341(6)         C(27)         0.1221(5)         0.6245(7)           0.5312(10)         0.5899(14)         0.1924(6)         C(28)         0.1088(4)         0.7707(9)           0.6224(11)         0.5979(14)         0.2128(7)         C(29)         0.1631(5)         0.8796(6)           0.6721(9)         0.5088(20)         0.1793(7)         C(30)         0.2308(5)         0.8424(7)           0.6327(9)         0.6382(10)         0.1225(7)         C(31)         0.2442(4)         0.6962(9)           x         y         z         φ         θ           group parameters <sup>4</sup> 0.3625(6)         0.1809(3)         119.9(3)         0.9(3)           0.1689(4)         0.3625(6)         0.0970(3)         119.9(3)         0.1(2)           0.1765(3)         0.7334(6)         -0.0290(3)         -8.4(3)         -1.3(3)           0.1765(3)         0.7334(6)         -0.0280(3)         2.8.4(3)         -1.3(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | (8)                   | 0.4093(13)  | 0.1001(6)  | C(26)      | 0.1898(5)           | 0.5872(6)  | -0.0058(4) | Ph(3) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5312(10)         0.5899(14)         0.1924(6)         C(28)         0.1088(4)         0.7707(9)           0.6224(11)         0.5979(14)         0.2128(7)         C(29)         0.1631(5)         0.8796(6)           0.6721(9)         0.5088(20)         0.1793(7)         C(30)         0.2308(5)         0.8424(7)           0.6327(9)         0.6327(9)         0.11225(7)         C(31)         0.2442(4)         0.6962(9)           x         y         z         φ         θ           group parameters <sup>4</sup> 0.1809(3)         42.3(3)         0.9(3)           0.1689(4)         0.3625(6)         0.1809(3)         119.9(3)         0.1(2)           0.0666(3)         0.2172(5)         -0.0970(3)         -8.4(3)         -1.3(3)           0.1765(3)         0.7334(6)         -0.0280(3)         -8.4(3)         -1.3(3)           Determined by least-squares from the measured angular positions of 15 reflections, centered on an automatic diffractometer Syntex         -8.4(3)         -1.3(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | (6) 42                | 0.4928(14)  | 0.1341(6)  | C(27)      | 0.1221(5)           | 0.6245(7)  | -0.0693(4) |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.6224(11)         0.5979(14)         0.2128(7)         C(29)         0.1631(5)         0.8796(6)           0.6721(9)         0.5088(20)         0.1793(7)         C(30)         0.2308(5)         0.8424(7)           0.6327(9)         0.4194(16)         0.1225(7)         C(31)         0.2442(4)         0.6962(9)           x         y         z         φ         θ           group parameters <sup>c</sup> )         0.1689(4)         0.3625(6)         0.1809(3)         0.1990(3)         0.9(3)           0.0606(3)         0.2172(5)         -0.0970(3)         119.9(3)         0.1(2)         0.1(2)           0.1765(3)         0.7334(6)         -0.0280(3)         -8.4(3)         -1.3(3)         0.1(2)           Determined by least-squares from the measured angular positions of 15 reflections, centered on an automatic diffractometer Syntex         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | 12(10)                | 0.5899(14)  | 0.1924(6)  | C(28)      | 0.1088(4)           | 0.7707(9)  | -0.0915(3) |       |
| 0.6721(9)         0.5088(20)         0.1793(7)         C(30)         0.2308(5)         0.8424(7)           0.6327(9)         0.4194(16)         0.1225(7)         C(31)         0.2442(4)         0.6962(9)           x         y         z         φ         θ           group parameters <sup>c</sup> )         0.3625(6)         0.1809(3)         42.3(3)         0.9(3)           0.0606(3)         0.2172(5)         -0.0970(3)         -8.4(3)         -1.3(3)           0.1765(3)         0.7334(6)         -0.0280(3)         -8.4(3)         -1.3(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6721(9)         0.5088(20)         0.1793(7)         C(30)         0.2308(5)         0.8424(7)           0.6327(9)         0.4194(16)         0.1225(7)         C(31)         0.2442(4)         0.6962(9)           x         y         z         φ         θ           group parameters*)         0.1689(4)         0.3625(6)         0.1809(3)         42.3(3)         0.9(3)           0.0606(3)         0.2172(5)         -0.0970(3)         119.9(3)         -1.3(3)         0.1(2)           0.1765(3)         0.7334(6)         -0.0280(3)         -8.4(3)         -1.3(3)         0.1(2)           Determined by least-squares from the measured angular positions of 15 reflections, centered on an automatic diffractometer Syntex P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | 24(11)                | 0.5979(14)  | 0.2128(7)  | C(29)      | 0.1631(5)           | 0.8796(6)  | -0.0502(4) |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | x         y         z $\phi$ $\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | 21(9)                 | 0.5088(20)  | 0.1793(7)  | C(30)      | 0.2308(5)           | 0.8424(7)  | 0.0133(4)  |       |
| x         y         z $\phi$ $\theta$ $\psi$ group parameters*)         0.1689(4)         0.3625(6)         0.1809(3)         42.3(3)         0.9(3)           0.0606(3)         0.2172(5)         -0.0970(3)         119.9(3)         0.1(2)           0.1765(3)         0.7334(6)         -0.0280(3)         -8.4(3)         -1.3(3)         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | x         y         z         φ         θ         ψ           group parameters*         0.1689(4)         0.3625(6)         0.1809(3)         0.1809(3)         42.3(3)         0.9(3)           0.066(3)         0.2172(5)         -0.0970(3)         119.9(3)         0.1(2)         1           0.1765(3)         0.7334(6)         -0.0280(3)         -8.4(3)         -1.3(3)         1           Oetermined by least-squares from the measured angular positions of 15 reflections, centered on an automatic diffractometer Syntex P21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                   | 27(9)                 | 0.4194(16)  | 0.1225(7)  | C(31)      | 0.2442(4)           | 0.6962(9)  | 0.0355(3)  |       |
| group parameters*)     0.3625(6)     0.1809(3)     42.3(3)     0.9(3)       0.0606(3)     0.2172(5)     -0.0970(3)     119.9(3)     0.1(2)       0.1765(3)     0.7334(6)     -0.0280(3)     -8.4(3)     -1.3(3)     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | group parameters <sup>c</sup> )     0.3625(6)     0.1809(3)     42.3(3)     0.9(3)       0.0606(3)     0.2172(5)     -0.0970(3)     119.9(3)     0.1(2)       0.165(3)     0.7334(6)     -0.0280(3)     -8.4(3)     -1.3(3)       Determined by least-squares from the measured angular positions of 15 reflections, centered on an automatic diffractometer Syntex P2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                   |                       | у           | z          |            | ф                   | θ          | <i>m</i>   |       |
| 0.1689(4)     0.3625(6)     0.1809(3)     42.3(3)     0.9(3)       0.0606(3)     0.2172(5)     -0.0970(3)     119.9(3)     0.1(2)       0.1765(3)     0.7334(6)     -0.0280(3)     -8.4(3)     -1.3(3)     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1689(4) 0.3625(6) 0.1809(3) 42.3(3) 0.9(3) 0.9(3) 0.0606(3) 0.2172(5) -0.0970(3) -0.0970(3) -8.4(3) 0.1(2) -1.3(3) 0.1765(3) 0.7334(6) -0.0280(3) -8.4(3) -8.4(3) -1.3(3) 1.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gid group paran     | neters <sup>c</sup> ) |             |            |            |                     |            |            |       |
| 0.0606(3) 0.2172(5) -0.0970(3) 119.9(3) 0.1(2) 0.1765(3) 0.7334(6) -0.0280(3) -8.4(3) -1.3(3) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0606(3) 0.2172(5) -0.0970(3) 119.9(3) 0.1(2) -0.075(3) 0.1765(3) 0.7334(6) -0.0280(3) -0.0280(3) -8.4(3) -1.3(3) 1  Determined by least-squares from the measured angular positions of 15 reflections, centered on an automatic diffractometer Syntex P2 <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | 89(4)                 | 0.3625(6)   | 0.1809(3)  |            | 42.3(3)             | 0.9(3)     | 76.5(3)    |       |
| 0,1765(3) 0,7334(6) -0.0280(3) -8.4(3) -1.3(3) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1765(3) 0.7334(6) -0.0280(3) -8.4(3) -1.3(3) 1.00 Ottom the measured angular positions of 15 reflections, centered on an automatic diffractometer Syntex P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | 06(3)                 | 0.2172(5)   | -0.0970(3) |            | 119.9(3)            | 0.1(2)     | 97.1(3)    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a) Determined by least-squares from the measured angular positions of 15 reflections, centered on an automatic diffractometer Syntex P21.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | 65(3)                 | 0.7334(6)   | -0.0280(3) |            | -8.4(3)             | -1.3(3)    | 140.4(3)   |       |

Table 3. 1H-NMR. Parametersa) in CDCl3

| L                                                                             | [Pt(1)L   | ]                                         |                                         |                   | [Pt(2)L]            | ··                                        |              |
|-------------------------------------------------------------------------------|-----------|-------------------------------------------|-----------------------------------------|-------------------|---------------------|-------------------------------------------|--------------|
|                                                                               | δ(H-C(7)) | <sup>3</sup> J( <sup>195</sup> Pt,H~C(7)) | <sup>2</sup> J( <sup>15</sup> N,H–C(7)) | 4J(P,H-C(7))      | δ(H-C(7))           | <sup>3</sup> J( <sup>195</sup> Pt,H-C(7)) | 4J(P,H-C(7)) |
| P(OEt) <sub>3</sub>                                                           | 8.18      | 44.4                                      | 2.2                                     | 21.6              | 8.86 <sup>b</sup> ) | 44.4                                      | 21.1         |
| PBu <sup>n</sup> <sub>3</sub>                                                 | 8.21      | 45.5                                      | 2.4                                     | 13.7              | 8.94°)              | 45.2                                      | 13.9         |
| $P(pCH_3C_6H_4)_3$                                                            | 8.14      | 52.0                                      | 1.7                                     | 14.8              | 8.94 <sup>d</sup> ) | 53.2                                      | 14.7         |
| C≡N(cyclohexyl)                                                               | 8.06      | 54.0                                      | 1.4                                     |                   | 8.76                | 53.6                                      |              |
| AsBu <sub>3</sub>                                                             | 8.21      | 62.0                                      | 2.2                                     |                   | 8.94 <sup>e</sup> ) | 61.2                                      |              |
| $As(pCH_3C_6H_4)_3$                                                           | 8.21      | 70.0                                      | 2.2                                     |                   | 8.93f)              | 69.8                                      |              |
| DMSO                                                                          | 8.00      | 70.0                                      |                                         |                   | 8.45                | 69.3                                      |              |
| Piperidine                                                                    | 7.91      | 71.0                                      | 1.6                                     |                   | 8.45                | 71.3                                      |              |
| Pyridine                                                                      | 7.96      | 74.0                                      | 1.6                                     |                   | 8.62                | 73.1                                      |              |
| <sup>15</sup> NH <sub>2</sub> (CH <sub>2</sub> ) <sub>5</sub> CH <sub>3</sub> | 7.63      | 70.0                                      |                                         | NHEt <sub>2</sub> | 8.71                | 72.9                                      |              |
| SbPh <sub>3</sub>                                                             | 8.32      |                                           | 2.2                                     | -                 | 9.0                 |                                           |              |

a) Chemical shifts are in ppm, coupling constants in Hz.

f) Data are for AsPh<sub>3</sub>.

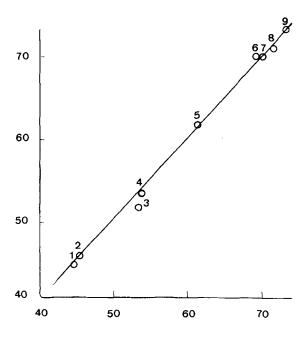



Fig. 1. Plot of  ${}^3J(^{195}Pt, H-C(7))$  in [Pt(1)L] vs.  ${}^3J(^{195}Pt, H-C(7))$  in [Pt(2)L] L=1) P(OCH<sub>2</sub>CH<sub>3</sub>)<sub>3</sub>, 2) PBu $_3^n$ , 3) PPh<sub>3</sub>, 4) C $\equiv$ N(cyclohexyl), 5) AsEl<sub>3</sub>, 6) DMSO, 7) AsPh<sub>3</sub>, 8) Piperidine and 9) Pyridine. For 3 and 7 the complexes had P(p-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>)<sub>3</sub> and As(p-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>)<sub>3</sub> with 1. Values are in Hz.

b)  $\delta^{31}P = 80.5$ ,  ${}^{1}J({}^{195}Pt, {}^{31}P) = 5941$  Hz.

c)  $\delta^{31}P = 0.1$ ,  ${}^{1}J({}^{195}Pt, {}^{31}P) = 3.739 \text{ Hz.}$ 

d) Data are for PPh<sub>3</sub>;  $\delta^{31}P = 10.6$ ;  $J(^{195}Pt,^{31}P) = 3918$  Hz.

e) Data are for AsEt<sub>3</sub>.

There is no immediately obvious correlation between  $\delta(H-C(7))$  and  ${}^{3}J({}^{195}Pt, {}^{1}H-C(7))^{2})$ .

The <sup>1</sup>H-NMR. spectrum of the complex [Pt(2)(NHEt<sub>2</sub>)] in the aliphatic region is somewhat unusual in that the absorption is extremely complicated at 90 MHz and not at all suggestive of the A-part of a simple  $A_2X_3$  spin system (we exclude <sup>195</sup>Pt in this description). The spectrum at 360 MHz is still complex, but interpretable. At this magnetic field the methylene protons on each of the CH<sub>2</sub>'s are obviously inequivalent and are best written as: CH<sub>A</sub>H<sub>B</sub>. Since the NH and CH<sub>3</sub> protons couple to each of the H<sub>A</sub>- and H<sub>B</sub>-protons, the spin system, at 90 MHz, is ABMX<sub>3</sub> and consequently less recognizable. The chemical shifts for the protons H<sub>A</sub> and H<sub>B</sub> are: (360 MHz)  $\delta$  3.38 and 3.02, whereas the NH and CH<sub>3</sub> protons appear at  $\delta$  3.83 and 1.53, respectively. Irradiation (360 MHz) at the frequence of H<sub>A</sub> collapses the deceptively simple CH<sub>3</sub> resonance into a doublet as does irradiation at H<sub>B</sub>. Further support for the idea that the protons are non-equivalent (and not the two CH<sub>2</sub>CH<sub>3</sub> groups) comes from the <sup>13</sup>C-NMR.-spectrum which shows equivalent CH<sub>2</sub> and CH<sub>3</sub> groups.

The appearance of non-equivalent methylene protons suggests that rotation around the C, N bond (see *Scheme*) may be relatively slow on the NMR. time scale.

b)  $^{13}C\text{-NMR}$ . Results. A complete set of  $^{13}C\text{-NMR}$ . data for the more soluble [Pt(1)L] complexes and some few data for [Pt(2)L] are shown in Table 4. As in the proton spectra, the signals are split by coupling to  $^{195}\text{Pt}$  and, when present,  $^{15}\text{N}$ . The following points are worth noting: (i) The chemical shifts of the C-atoms adjacent to nitrogen are more sensitive to L than those adjacent to oxygen (trans influence>cis influence); (ii)  $[^2J(^{195}\text{Pt},C_a)+^3J(^{195}\text{Pt},C_a)]$  varies markedly (21.3 to 0 Hz) as a function of L; (iii)  $[^2J(^{195}\text{Pt},C_\beta)+^3J(^{195}\text{Pt},C_\beta)]$ , although much larger in magnitude, varies only from 58 to 68 Hz (the dependence of  $J(^{195}\text{Pt},C_a)$  on L is opposite to that of  $J(^{195}\text{Pt},C_\beta)$ ); (iv) The aromatic C-resonances are relatively insensitive to L.

Point (i) draws attention to the well established [1] empiricism concerning the relative magnitudes of *trans* and *cis* effects; however, we note that the total range for both C(7) and  $C_a$  is small, 5 ppm or less, so that  $\delta^{13}C$  may not prove to be the NMR. parameter of choice when the C-atom under study is remote from the metal. The small change in the imine carbon, C(7), is noteworthy if one remembers that  $\Delta\delta^{15}N$  is ~45 ppm [4]. Moreover, this 5 ppm range for C(7) and  $C_{\beta}$  is only slightly

<sup>&</sup>lt;sup>2</sup>) There is only a qualitative relationship between  ${}^{1}J({}^{195}Pt, {}^{15}N)$  and  ${}^{3}J({}^{195}Pt, H-C(7))$ .

| 0-Pt-0<br>715<br>6-C H |
|------------------------|
| 0 6                    |
| 0 × 4                  |

Table 4, 13C-NMR. Parameters for the Complexes<sup>a</sup>)

|                                                    |                            |             |            | indiana and in | <b>-</b> (                 | )<br>)                     |                            | ,                             |                                                                   |
|----------------------------------------------------|----------------------------|-------------|------------|----------------|----------------------------|----------------------------|----------------------------|-------------------------------|-------------------------------------------------------------------|
| 1                                                  | δ C(1)                     | δ C(2)      | δ C(3)     | δ C(4)         | δ C(5)                     | δ C(6)                     | δ C(7)                     |                               |                                                                   |
|                                                    | J(Pt, C(1))<br>3J(N, C(1)) | J(Pt, C(2)) | J(Pt,C(3)) |                | J(Pt, C(5))<br>3J(N, C(5)) | J(Pt, C(6))<br>2J(N, C(6)) | J(Pt, C(7))<br>1J(N, C(7)) | $J(Pt, C_a)$<br>$^2J(N, C_a)$ | $J(\text{Pt}, \text{C}_{eta})$<br>$^1J(\text{N}, \text{C}_{eta})$ |
| PBuŋ                                               | 163.4                      | 122.4       | 133.1      | 115.1          | 133.7                      | 121.8                      | 154.2                      | 73.1                          | 63.4 b)                                                           |
|                                                    | 0                          | ;           | 0.11       |                | 2.9                        | o.<br>-c)                  | 0.41                       | (p-                           | 5.1                                                               |
| P(OEt) <sub>3</sub>                                | 163.3                      | 122.1       | 133.9      | 115.6          | 133.9                      | 121.Źe)                    | 156.3                      | 72.9                          | 63.3                                                              |
|                                                    | 25.7                       | 45.6        | 13.2       |                | 0                          | n.o.                       | 15.4                       | 20.6                          | 60.3                                                              |
| $P(pCH_1C_6H_4)_1$                                 | 163.5                      | 122.4       | 133.2      | 115.28)        | 133.4                      | 121.6                      | 154.5                      | 73.0h)                        | 63.7                                                              |
| ,                                                  | 22.0                       | 44.1        | 13.2       |                | 0                          | n.o.                       | 13.2                       | 8.61                          | 59.4                                                              |
|                                                    | 8.1                        |             |            |                | 1.3                        | 1                          | n.o.                       | ı                             | 4.4                                                               |
| AsBug                                              | 163.1                      | 122.2       | 133.0      | 115.2          | 133.6                      | 121.6                      | 152.9                      | 73.2                          | 63.8 k)                                                           |
|                                                    | 22.1                       | 41.9        | 12.5       |                | ວິເ                        | n.o.                       | 14.7                       | 17.6                          | 62.5                                                              |
| As(nCH,C,H,),                                      | 16.2 9                     | 122 3       | 133.7      | 115.3          | 7.7<br>133 A               | 1714                       | 153.3                      | 73.3                          | 4.4<br>4.7                                                        |
| 6/4-19~6.1.                                        | n.o.                       | 41.2        | n.o.       |                | 0                          | n.o.                       | 16.2                       | 13.2                          | 0.89                                                              |
| {                                                  | 0                          |             |            |                | n.o.                       | 0                          | 13.2                       | !<br>!                        | 4.4                                                               |
|                                                    | 162.8                      | 121.9       | 134.3      | 116.1          | 133.9                      | 121.0                      | 156.0                      | 72.3                          | 64.4 m)                                                           |
| )                                                  | n.o.                       | 44.1        | 8.11       |                | 0                          | n.o.                       | 15.4                       | 11.0                          | 65.4                                                              |
| !                                                  | <u></u>                    |             |            |                | 2.9                        | 0                          | 14.0                       | 0                             | 4.4                                                               |
| DMSO                                               | 163.0                      | 122.0       | 134.6      | 116.4          | 133.9                      | 121.0                      | 156.2                      | 71.9                          | 65.4 <sup>n</sup> )                                               |
|                                                    | 20.6                       | 43.4        | 8.11       |                | 0                          | п.о.                       | 14.0                       | n.o.                          | 66.2                                                              |
| DMSO                                               | 162.2                      | 121.5       | 134.2      | 115.8          | 134.6                      | n.o.                       | 157.3                      | 71.6                          | 65.1                                                              |
|                                                    | n.o.                       | 41.2        | 11.8       |                | 0                          |                            | 13.2                       | 0                             | 66.2                                                              |
|                                                    | 1.4                        |             |            |                | 2.9                        |                            | 14.0                       |                               | 4.4                                                               |
| $SbPh_3$                                           | 162.7                      | 122.5       | 134.5      | 115.8          | 133.8                      | 121.0                      | 153.0                      | 73.9                          | (d C.2)                                                           |
|                                                    | п.о.                       | п.о.        | п.о.       |                | n.c.<br>7 q                |                            | 13.3                       | 12.7                          | n.o.                                                              |
| Piperidine                                         | 162.4                      | 121.9       | 132.6      | 115.7          | 133.1                      | 122.8                      | 151.7                      | 71.7                          | 4.7<br>66.7 q)                                                    |
| •                                                  | 17.6                       | 45.6        | 12.5       |                | 0                          | n.o.                       | 12.9                       | 0                             | 66.2                                                              |
| ;                                                  | 0                          |             |            |                | 2.9                        | 1.5                        | 14.7                       |                               | 4.4                                                               |
| Pyridine                                           | 162.7                      | 122.0       | 133.1      | 116.0          | 133.2                      | 122.6                      | 153.0                      | 71.5                          | (1 (1)                                                            |
|                                                    | n.o.<br>1.5                | 42.7        | 11.8       |                | 0<br>2.9                   | n.o.<br>1.5                | 15.7                       | 0                             | 6.9                                                               |
| $^{15}\mathrm{NH}_2(\mathrm{CH}_2)_5\mathrm{CH}_3$ | 162.0                      | 121.3       | 132.5      | 115.4          | 133.3                      | 123.0                      | 151.1                      | 71.4                          | 66.2 s)                                                           |
|                                                    | 16.8<br>1.5                | 44.1        | 12.1       |                | 0                          | n.o.                       | 11.8                       | 0                             | 61.0                                                              |
|                                                    | !                          |             |            |                | :                          | 2.4                        |                            |                               | :                                                                 |

| - L                                                                                                                                          | L<br>C≡N(cyclohexyl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hexyl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | δ C(1) <sup>(1)</sup><br>162.1<br>30.2 | δ C(6)<br>120.4<br>78.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | δ C(7)<br>145.6                                                                              | δ C <sub>a</sub><br>167.7<br>15.5                                                                                                                | δ C <sub>a</sub><br>167.7<br>15.5                                                                                              | δ C <sub>β</sub><br>137.4<br>54.8                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| ا<br>ا<br>ا - ئ                                                                                                                              | P(OEt) <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 162.4<br>29.4<br>161.8                 | 120.6<br>61.0<br>121.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 145.5<br>n.o.<br>142.2                                                                       | 168<br>23<br>167                                                                                                                                 | 168.4<br>21.5<br>167.9                                                                                                         | 136.8 <sup>u</sup> )<br>55<br>139.9 <sup>v</sup> )                                        |
|                                                                                                                                              | NHEt <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.1<br>162.0<br>19.6                  | 46<br>122.3<br>n.o.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n.o.<br>142.1<br>n.o.                                                                        | n.o.<br>168.5<br>n.o.                                                                                                                            | 3.5                                                                                                                            | 53<br>139.8 <sup>w</sup> )<br>54.9                                                        |
| Chemical shifts are in ppn<br>for CDCl <sub>3</sub> solutions unless<br>P(CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> )3 | Chemical shifts are in ppm (TMS), coupling constants in Hz. Data are for CDCl <sub>3</sub> solutions unless otherwise specified. n.o. = not observed.  P(CH <sub>2</sub> C <sub>3</sub> H <sub>2</sub> C <sub>3</sub> H <sub>2</sub> C <sub>3</sub> H <sub>3</sub> )  C <sub>a</sub> C <sub>b</sub> C <sub>y</sub> C <sub>b</sub> C <sub>a</sub> C <sub>b</sub> C <sub>y</sub> C <sub>b</sub> C <sub>b</sub> C <sub>y</sub> C <sub>b</sub> C <sub>a</sub> C <sub>b</sub> C <sub>y</sub> C <sub>b</sub> C <sub>a</sub> C <sub>b</sub> C <sub>y</sub> C <sub>b</sub> C <sub>b</sub> C <sub>y</sub> C <sub>b</sub> C <sub>a</sub> C <sub>b</sub> C <sub>b</sub> C <sub>a</sub> C <sub>b</sub> C <sub>y</sub> C <sub>b</sub> C <sub>a</sub> C <sub>b</sub> C <sub>b</sub> C <sub>a</sub> C <sub>b</sub> C <sub>b</sub> C <sub>a</sub> C <sub>b</sub> C <sub>b</sub> C <sub>b</sub> C <sub>b</sub> C <sub>b</sub> C <sub>a</sub> C <sub>b</sub> | nstants in Hz. Data ar<br>n.o. = not observed.<br>$C_a C_b C_y C_b$<br>21.2 25.6 24.3 13.8<br>33.8 1.5 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (u (o (o                               | $C=N-\frac{\beta}{C}$ In DMSO-d <sub>6</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                              | $\frac{\delta C(1)}{\text{n.b.}}$ $\frac{\delta C_a(\text{DMSC})}{2J(\text{Pt}, C_a)}$                                                           | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                           | C <sub>7</sub> & C <sub>8</sub> 3.1 24.6                                                  |
| $J(P,C(6)); J(N,C(6)) = \{$<br>$J(P,C(1)); J(N,C(1)) = \{$<br>I(P,C(6)) = 1.5  Hz.<br>I(P,C(6)) = 1.5  Hz.<br>I(P,C(6)) = 1.5  Hz.           | Hz}.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $C_a$ $C_b$ | (r) (r) (r)                            | Sb-(1/0) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ±                                                                                            | i+1J(Pt, Cj)                                                                                                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                           | 129.1 130.2 $\delta C_{a'} \delta C_{\beta'} \delta C_{\gamma'}$ 51.8 26.6 23.6 19.1 32.4 |
| i. i. (P,C(4)) = 2.2 Hz. i. (P,C <sub>a</sub> ) = 4.6 Hz. $\begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$                                     | i+1J(Pi,Cj) i C(l) δCj 126.5 i-1J(P,Cj) 60.3 i+1J(Pi,Cj) 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(3) C(4)<br>3 128.8 140.6<br>3 10.3<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        | $(A)_{3} = \frac{149.6 (17)^{3}}{149.6 (124.9 137.9)}$ $(A)_{1} = \frac{149.6 (124.9 137.9)}{149.6 (124.9 137.9)}$ $(A)_{1} = \frac{149.6 (124.9 137.9)}{149.6 (124.9 137.9)}$ $(A)_{2} = \frac{149.6 (124.9 137.9)}{149.6 (124.9 137.9)}$ $(A)_{3} = \frac{149.6 (124.9 137.9)}{149.6 (124.9 137.9)}$ $(A)_{4} = \frac{149.6 (124.9 137.9)}{149.6 (124.9 137.9)}$ $(A)_{5} = \frac{149.6 (124.9 137.9)}{149.6 (124.9 137.9)}$ $(A)_{7} = \frac{149.6 (124.9 137.9)}{$ | (2, 4)(Pt, C(3))<br>$(2CH_2CH_3CH_3CH_3)$<br>$(4, Pt, C_\beta) = 32$ .<br>remaining eigened. | $= 5.1 \text{ Hz.}$ $\frac{\delta C_a}{\delta C_g} \frac{\delta C_g}{\delta C_g}$ $45.8 \text{ 31.4}$ $4 \text{ Hz. } ^{1}J(N, C_g)$ ght aromati | 5.1 Hz.<br>$\delta C_a \delta C_y \delta C_b \delta C_c \delta C_g$ 45.8 31.4 26.3 31.4 22.5 14.0 Hz, $^{1}J(N,C_p) = 2.2$ Hz. | $\frac{137.9}{137.9}$ $\frac{C_c}{2.5}$ $\frac{\delta}{14.0}$ $\frac{c}{13}$ can be       |
| As $(C_{H_2}C_{H_2}C_{H_2}C_{H_3})_3$ As $\left(\left(\frac{2}{4}\right)^3\right)^3$                                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | $\begin{array}{l} \delta = C_a = 6.2.,  {}^{\prime}J(P,C_a) = 1.3  \text{Hz},  {}^{\prime}J(P,C_a) = 10  \text{Hz};  \delta = 16.3, \\ 3J(P,C_\beta) = 6.6  \text{Hz}. \\ \delta = 242.5,  {}^{\prime}J(Pt,C_a) = 20.6  \text{Hz};  \delta = 26.7,  {}^{\prime}J(Pt,C_\beta) = 30.9  \text{Hz}; \\ \delta = 27.6,  \delta = 23.6. \\ \delta = 23.6. \\ \delta = 49.5,  {}^{\prime}J(Pt,C_a) = 19.1  \text{Hz};  \delta \in C_\beta = 14.4,  {}^{\prime}J(Pt,C_\beta) = 12.5  \text{Hz}. \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $C_a$ = 1.5 Hz,<br>$C_a$ = 20.6 Hz;<br>$C_a$ = 19.1 Hz; $\delta$                             | $S_{\beta}(P_{\alpha}, C_{\alpha}) = S_{\beta}(P_{\alpha}, C_{\alpha}) = S_{\beta}(P_{\alpha}, P_{\alpha})$ $C_{\beta} = 14.4, 3J$               | = 10 Hz; $\delta$<br>7, $^3J(\text{Pt}, \text{C}_\beta)$ =<br>$^(\text{Pt}, \text{C}_\beta)$ = 12.:                            | $C_{\beta} = 16.3$ , = 30.9 Hz; Hz.                                                       |

larger than the 2.6 ppm difference found for the first C-atom in the hexyl amine complexes *trans*-[PtCl<sub>2</sub>(NH<sub>2</sub>(CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>)L] [3] and the 3.9 ppm change found for the C-atom adjacent to nitrogen in the *trans*-[PtCl<sub>2</sub>(piperidine)L] derivatives (see below).

Points (ii) and (iii) suggest the possibility that the two- and three-bond couplings may have opposite sign and/or a large configurational dependence; indeed Sarneski et al. [13] have found that these couplings do have opposite signs in ethylenediamine complexes of platinum (II).

Point (iv) confirms that sites removed from the metal are less likely to provide useful information related to the *trans* influence of L.

We have previously reported  $^{13}$ C-chemical shifts and  $^{n}J(^{195}$ Pt, $^{13}$ C) coupling constants for platinum(II) complexes of tertiary phosphines [14] and arsines [15] and therefore considered whether these data could be used to help evaluate the *trans* influence of the *Schiff*'s base imine nitrogen.

In Table 5 we show some  $^{13}$ C-data for the sets of complexes: trans-[PtCl<sub>2</sub>(PBu<sub>3</sub><sup>n</sup>)L], trans-[PtCl<sub>2</sub>(NH<sub>2</sub>(CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>)L] and trans-[PtCl<sub>2</sub>(piperidine)L]. These data confirm that  $\delta$   $^{13}$ C is not a sensitive indicator for differences in M-L bonding, but do reveal marked differences (30–50%) in both  $^{2}J(^{195}$ Pt,  $^{13}$ C) and  $^{3}J(^{195}$ Pt,  $^{13}$ C), as a function of L. For the PBu<sub>3</sub><sup>n</sup> compounds, the two- and three-bond coupling constants place the Schiff's base nitrogen with piperidine and p-toluidine, as ligands with a relatively small trans influence. Similar conclusions are reached when the a and  $\beta$  C-atoms of the nitrogen ligands NH<sub>2</sub>(CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub> and piperidine are used as probes. There is, therefore, nothing especially noteworthy in the trans influence of our sp<sup>2</sup> nitrogen donor.

|                                                                              | <i>'</i>                | ,                                               | ,                                    | O                                         |
|------------------------------------------------------------------------------|-------------------------|-------------------------------------------------|--------------------------------------|-------------------------------------------|
| L                                                                            | $\delta$ C <sub>a</sub> | $^{1}J(^{195}\mathrm{Pt},\mathrm{C}_{a})$       | $\delta C_{\beta}$                   | $^2J(^{195}\mathrm{Pt},\mathrm{C}_\beta)$ |
| trans-[PtCl <sub>2</sub> (PBu <sub>3</sub> <sup>n</sup> )L]                  | $P(C_a-C_{\beta}-$      | CH <sub>2</sub> -CH <sub>3</sub> ) <sub>3</sub> |                                      |                                           |
| PBu <sup>n</sup>                                                             | 20.6                    | 22.7                                            | 26.1                                 | 15.3                                      |
| $P(pCH_3C_6H_4)_3$                                                           | 20.7                    | 25                                              | 26.1                                 | 16.8                                      |
| Piperidine                                                                   | 21.5                    | 36.4                                            | 25.6                                 | 19.5                                      |
| p-Toluidine                                                                  | 21.8                    | 32                                              | 25.8                                 | 21.2                                      |
| $[Pt(1)(PBu_3^n)]$                                                           | 21.2                    | 29.4                                            | 25.6                                 | 20.6                                      |
| -                                                                            |                         | $\stackrel{\alpha}{\sim}$ $\beta$               |                                      |                                           |
| trans-[PtCl <sub>2</sub> (piperidine)L]                                      |                         | HN ~                                            |                                      |                                           |
| PBug                                                                         | 48.9                    | 6.6                                             | 27.3                                 | 24.6                                      |
| AsBu <sub>3</sub>                                                            | 49.9                    | n.o.                                            | 27.3                                 | 30.9                                      |
| Piperidine                                                                   | 52.8                    | 13.2                                            | 27.3                                 | 33.8                                      |
| [Pt(1)(piperidine)]                                                          | 51.6                    | 19.1                                            | 26.3                                 | 32.4                                      |
| trans-[PtCl <sub>2</sub> (NH <sub>2</sub> (CH <sub>2</sub> ) <sub>5</sub> CH | I <sub>3</sub> )L]      | $H_2N-C_q-C_{g}-$                               | ·CH <sub>2</sub> -CH <sub>2</sub> -C | H <sub>3</sub>                            |
| PBuş                                                                         | 44.0                    | n.o.                                            | 31.5                                 | 21.3                                      |
| AsBu <sub>3</sub>                                                            | 44.5                    | 8.8                                             | 31.4                                 | 26.4                                      |
| NH <sub>2</sub> (CH <sub>2</sub> ) <sub>5</sub> CH <sub>3</sub>              | 46.7                    | 14.7                                            | 31.1                                 | 31.6                                      |
| $[Pt(1)(NH_2(CH_2)_5CH_3)]$                                                  | 45.8                    | 7.0                                             | 31.4                                 | 32.4                                      |

Table 5. 13 C-NMR. Data<sup>a</sup>) as a Measure of the trans Influence of the Schiff's Base Nitrogen

a) Chemical shifts are in ppm (TMS) coupling constants in Hz ( $\pm$ 1). Data are for CDCl<sub>3</sub> solutions at room temperature.  $C_a$  and  $C_\beta$  refer to the a and  $\beta$  C-atoms of the Ligand L.

c) X-ray Results. Given the > 30% change in  ${}^3J({}^{195}\text{Pt}, \text{H}_7)$  as a function of L there seemed little doubt that the electronic characteristics of the metal-nitrogen bonds were different. Since there was sufficient precedence, e.g. the case of Pt-P bonds [16], we expected that the solid state structures of our complexes would reflect these differences and therefore undertook an X-ray diffraction study of several of our compounds.

Crystals of the complexes [Pt(2)(NHEt<sub>2</sub>)] (I) and [Pt(2)(PPh<sub>3</sub>)] (II) consist of discrete molecules (see Fig. 2) separated by normal van der Waals contacts. Bond

Table 6. Bond lengths (Å) and valence angles (°) in the molecules I and II (standard deviations are given in parentheses)

|                | I         | II           |                   | I         | II        |
|----------------|-----------|--------------|-------------------|-----------|-----------|
| Bond lengths   |           |              | O(1)-Pt-N         | 99.9(5)   | 94.8(4)   |
| Pt-P           | _         | 2.248(3)     | O(2)-Pt-N         | 80.7(5)   | 82.4(4)   |
| Pt-O(1)        | 1.992(10) | 1.964(9)     | Pt-P-C(14)        | - ` '     | 113.5(4)  |
| Pt-O(2)        | 2.002(10) | 2.005(9)     | Pt-P-C(20)        | -         | 117.3(3)  |
| Pt-N           | 2.017(12) | 2.064(12)    | Pt-P-C(26)        | -         | 110.8(3)  |
| Pt-N(1)        | 2.076(10) | <u>-</u> ` ´ | C(14)-P-C(20)     | _         | 105.5(4)  |
| O(1)-C(1)      | 1.346(18) | 1.312(13)    | C(14)-P-C(26)     | -         | 104.7(4)  |
| O(2)-C(9)      | 1.354(15) | 1.322(17)    | C(20)-P-C(26)     | _         | 104.0(4)  |
| C(6)-C(1)      | 1.395(19) | 1.435(19)    | Pt-N(1)-C(14)     | 116.4(8)  | -         |
| C(1)-C(2)      | 1.445(23) | 1.403(18)    | Pt-N(1)-C(16)     | 111.3(8)  | _         |
| C(2)-C(3)      | 1.378(24) | 1.358(17)    | C(14)-N(1)-C(16)  | 110.7(12) | _         |
| C(3)-C(4)      | 1.387(23) | 1.385(22)    | Pt-O(1)-C(1)      | 118.1(8)  | 122.5(8)  |
| C(4)-C(5)      | 1.334(26) | 1.362(20)    | Pt-O(2)-C(9)      | 114.0(9)  | 113.5(7)  |
| C(5)-C(6)      | 1.413(23) | 1.421(16)    | Pt-N-C(7)         | 117.8(11) | 122.8(12) |
| C(6)-C(7)      | 1.469(24) | 1.433(20)    | Pt-N-C(8)         | 114.4(10) | 109.2(7)  |
| C(7)-N         | 1.194(23) | 1.193(17)    | C(7)-N-C(8)       | 127.2(19) | 128.0(14) |
| N-C(8)         | 1.455(19) | 1.486(18)    | C(7)-C(6)-C(1)    | 125.8(15) | 124.7(11) |
| C(8) - C(9)    | 1.399(21) | 1.388(16)    | C(7)-C(6)-C(5)    | 115.2(13) | 116.2(12) |
| C(9)-C(10)     | 1.366(22) | 1.416(20)    | C(5)-C(6)-C(1)    | 118.9(15) | 119.2(11  |
| C(10) - C(11)  | 1.365(19) | 1.380(25)    | O(1)-C(1)-C(6)    | 126.7(14) | 126.4(11) |
| C(11)-C(12)    | 1.401(24) | 1.396(20)    | O(1)-C(1)-C(2)    | 115.1(12) | 118.1(12  |
| C(12)-C(13)    | 1.386(24) | 1.342(22)    | C(6)-C(1)-C(2)    | 118.2(14) | 115.5(10  |
| C(13)-C(8)     | 1.367(18) | 1.407(21)    | C(1)-C(2)-C(3)    | 119.9(13) | 124.0(13  |
| P-C(14)        | _         | 1.816(7)     | C(2)-C(3)-C(4)    | 120.3(16) | 120.4(13  |
| P-C(20)        | _         | 1.829(9)     | C(3)-C(4)-C(5)    | 120.5(15) | 118.9(11  |
| P-C(26)        | _         | 1.841(7)     | C(4)-C(5)-C(6)    | 122.1(14) | 122.0(12  |
| N(1)-C(14)     | 1.464(17) | _            | C(6)-C(7)-N       | 131.0(15) | 128.4(15  |
| N(1)-C(16)     | 1.526(20) | _            | N-C(8)-C(9)       | 110.8(11) | 113.7(12  |
| C(14)-C(15)    | 1.503(24) | _            | N-C(8)-C(13)      | 127.9(14) | 124.5(10) |
| C(16)-C(17)    | 1.492(24) |              | C(9)-C(8)-C(13)   | 121.3(14) | 121.7(12) |
| - ( ) - (- )   |           |              | O(2)-C(9)-C(8)    | 120.0(13) | 121.1(12) |
| Valence angles |           |              | O(2)-C(9)-C(10)   | 119.7(13) | 121.1(11) |
| P-Pt-O(1)      | _         | 91.5(2)      | C(8)-C(9)-C(10)   | 120.3(12) | 117.8(13  |
| P-Pt-O(2)      | ****      | 91.5(3)      | C(9)-C(10)-C(11)  | 118.8(14) | 119.2(12) |
| PPt-N          | _         | 172.4(3)     | C(10)-C(11)-C(12) | 121.5(15) | 121.7(14) |
| N(1)-Pt-O(1)   | 86.7(4)   |              | C(11)-C(12)-C(13) | 119.5(13) | 119.7(15) |
| N(1)-Pt-O(2)   | 92.7(4)   | _            | C(12)-C(13)-C(8)  | 118.6(14) | 119.2(12  |
| N(1)-Pt-N      | 173.1(5)  | _            | N(1)-C(14)-C(15)  | 111.6(13) |           |
| O(1)-Pt-O(2)   | 179.2(3)  | 176.1(4)     | N(1)-C(16)-C(17)  | 112.8(15) |           |

lengths and valence angles are given in *Table 7*. In both complexes platinum has the expected square-planar coordination with three coordination sites occupied by the dianionic tridentate ligand 2, the fourth by Et<sub>2</sub>NH in I and Ph<sub>3</sub>P in II. In both compounds, the largest deviations from the regular square-planar coordination concern the angles O(1)-Pt-N and O(2)-Pt-N, which are internal to a six- and five-membered rings respectively.

The two Pt-N bonds in I are significantly different. The Pt-N(1) bond length [2.076(10)Å] is similar to other Pt(II)-N bonds involving sp³-hybridized N-atoms [17]. Pt-N [2.017(12)Å] is shorter, in accordance with the usual difference (~0.05 Å) observed between the atomic radii of sp³ and sp²-hybridized N-atoms [18]. A value of 1.973(7)Å for Pt-N has been observed in the cation trans-[PtCl(HNNC<sub>6</sub>H<sub>4</sub>F) (PEt<sub>3</sub>)<sub>2</sub>]<sup>+</sup> [19]. In II the Pt-N bond [2.064(12)Å] is longer than the corresponding one in I, and its length approximates that of Pt-N(1). The Pt-O(1) bond in II [1.964(9)Å] is slightly shorter than the other three Pt-O bonds in the two compounds, which average 2.000(9)Å. Values ranging between 2.0 and 2.3 Å have been observed for Pt-O distances [20-22]. The Pt-P bond in II [2.248(3)Å] is towards the low end of the range found for other Pt(II) complexes [23-25]. Apart from the ethyl and phenyl groups, the two molecules are almost planar and the Pt(2) moieties are very similar. The lengths of the Pt-N bonds [2.017(12)Å in I, 2.064(12)Å in II] provide the most relevant difference between these complexes. This change reflects the higher trans

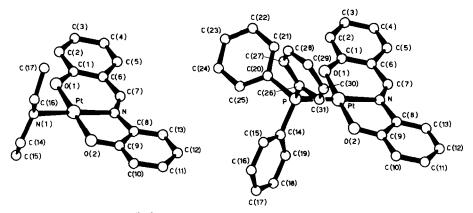



Fig.2. The molecular structures of I (left) and II

Thermal parameters of I

|       | b <sub>11</sub> | b <sub>12</sub> | b <sub>13</sub> | b <sub>22</sub> | b <sub>23</sub> | b <sub>33</sub> |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| PT    | 0.0070(0)       | -0.0017(1)      | 0.0029(0)       | 0.0113(1)       | -0.0011(1)      | 0.0041(0)       |
| O(1)  | 0.0100(10)      | -0.0003(21)     | 0.0048(13)      | 0.0142(13)      | 0.0004(15)      | 0.0044(6)       |
| O(2)  | 0.0068(9)       | 0.0008(17)      | 0.0049(11)      | 0.0119(12)      | 0.0045(14)      | 0.0051(6)       |
| N     | 0.0112(14)      | 0.0015(29)      | 0.0067(17)      | 0.0166(18)      | -0.0073(20)     | 0.0042(7)       |
| N(1)  | 0.0087(12)      | -0.0070(23)     | 0.0067(15)      | 0.0134(16)      | -0.0003(18)     | 0.0043(7)       |
| C(1)  | 0.0095(15)      | 0.0026(30)      | 0.0030(20)      | 0.0104(19)      | -0.0062(23)     | 0.0057(10)      |
| C(2)  | 0.0133(18)      | 0.0073(34)      | 0.0017(21)      | 0.0125(20)      | -0.0004(23)     | 0.0041(9)       |
| C(3)  | 0.0082(16)      | 0.0085(37)      | -0.0050(22)     | 0.0207(28)      | -0.0052(30)     | 0.0059(11)      |
| C(4)  | 0.0079(15)      | 0.0019(41)      | -0.0013(21)     | 0.0213(32)      | -0.0032(37)     | 0.0092(13)      |
| C(5)  | 0.0091(16)      | 0.0008(35)      | -0.0005(23)     | 0.0171(25)      | -0.0009(29)     | 0.0070(12)      |
| C(6)  | 0.0114(17)      | 0.0098(33)      | 0.0017(20)      | 0.0137(21)      | -0.0023(22)     | 0.0039(8)       |
| C(7)  | 0.0108(18)      | 0.0142(39)      | 0.0032(24)      | 0.0192(26)      | -0.0124(30)     | 0.0071(13)      |
| C(8)  | 0.0079(15)      | 0.0068(27)      | 0.0018(18)      | 0.0095(16)      | -0.0000(20)     | 0.0034(7)       |
| C(9)  | 0.0075(15)      | 0.0011(27)      | 0.0047(19)      | 0.0099(18)      | -0.0015(20)     | 0.0044(8)       |
| C(10) | 0.0062(14)      | 0.0014(27)      | 0.0010(18)      | 0.0120(19)      | 0.0024(22)      | 0.0049(9)       |
| C(11) | 0.0112(17)      | 0.0072(34)      | -0.0003(22)     | 0.0138(23)      | 0.0033(24)      | 0.0051(10)      |
| C(12) | 0.0129(18)      | 0.0014(33)      | 0.0061(23)      | 0.0118(20)      | 0.0010(25)      | 0.0062(11)      |
| C(13) | 0.0070(14)      | 0.0001(28)      | 0.0018(19)      | 0.0120(20)      | -0.0011(24)     | 0.0057(10)      |
| C(14) | 0.0083(15)      | -0.0015(32)     | 0.0046(20)      | 0.0185(24)      | 0.0051(27)      | 0.0060(10)      |
| C(15) | 0.0129(17)      | -0.0018(38)     | 0.0098(22)      | 0.0187(26)      | -0.0043(32)     | 0.0074(11)      |
| C(16) | 0.0152(21)      | -0.0064(34)     | 0.0020(23)      | 0.0129(21)      | -0.0018(23)     | 0.0037(8)       |
| C(17) | 0.0221(26)      | -0.0036(43)     | 0.0085(29)      | 0.0147(24)      | -0.0027(29)     | 0.0065(12)      |

 $T = \exp[-(b_{11}h^2 + b_{22}k^2 + b_{33}l^2 + b_{12}hk + b_{13}hl + b_{23}kl)].$ 

Thermal parameters of II

|       | b <sub>11</sub> | b <sub>12</sub> | b <sub>13</sub> | b <sub>22</sub> | b <sub>23</sub> | b <sub>33</sub> |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Pt    | 0.0035(0)       | 0.0041(1)       | 0.0025(0)       | 0.0117(1)       | 0.0028(1)       | 0.0030(0)       |
| P     | 0.0036(2)       | 0.0019(5)       | 0.0021(2)       | 0.0088(5)       | 0.0006(4)       | 0.0025(1)       |
| O(1)  | 0.0041(4)       | 0.0055(16)      | 0.0055(7)       | 0.0173(16)      | 0.0046(14)      | 0.0049(4)       |
| O(2)  | 0.0045(5)       | 0.0051(16)      | 0.0007(7)       | 0.0148(14)      | -0.0002(12)     | 0.0038(3)       |
| N     | 0.0076(8)       | 0.0092(24)      | 0.0051(11)      | 0.0169(22)      | 0.0081(19)      | 0.0045(5)       |
| C(1)  | 0.0047(8)       | 0.0003(21)      | 0.0014(10)      | 0.0109(23)      | 0.0017(16)      | 0.0024(5)       |
| C(2)  | \$4(8)          | 0.0037(22)      | 0.0014(11)      | 0.0123(21)      | -0.0040(18)     | 0.0034(5)       |
| C(3)  | 0.0067(10)      | 0.0026(27)      | 0.0022(12)      | 0.0152(24)      | -0.0001(19)     | 0.0030(5)       |
| C(4)  | 0.0060(9)       | 0.0044(25)      | 0.0047(12)      | 0.0144(23)      | 0.0017(19)      | 0.0029(5)       |
| C(5)  | 0.0031(7)       | 0.0038(23)      | 0.0025(11)      | 0.0184(26)      | 0.0070(21)      | 0.0041(6)       |
| C(6)  | 0.0051(7)       | -0.0006(22)     | 0.0000(9)       | 0.0081(19)      | 0.0010(16)      | 0.0019(4)       |
| C(7)  | 0.0088(11)      | 0.0052(28)      | 0.0044(12)      | 0.0163(25)      | 0.0074(20)      | 0.0028(5)       |
| C(8)  | 0.0044(8)       | -0.0034(21)     | -0.0017(11)     | 0.0106(20)      | 0.0019(16)      | 0.0025(5)       |
| C(9)  | 0.0053(8)       | 0.0029(24)      | 0.0010(11)      | 0.0115(21)      | 0.0040(17)      | 0.0025(5)       |
| C(10) | 0.0085(11)      | -0.0005(28)     | 0.0001(13)      | 0.0154(24)      | -0.0027(18)     | 0.0022(5)       |
| C(11) | 0.0099(12)      | -0.0092(30)     | -0.0017(14)     | 0.0150(25)      | 0.0034(18)      | 0.0025(5)       |
| C(12) | 0.0052(10)      | -0.0106(33)     | -0.0007(12)     | 0.0344(40)      | 0.0058(26)      | 0.0031(6)       |
| C(13) | 0.0048(9)       | 0.0025(27)      | 0.0011(11)      | 0.0258(30)      | 0.0082(20)      | 0.0024(5)       |

Rigid-group atoms

B(A<sup>2</sup>) C(14)-C(19) 5.5(1) C(20)-C(25) 4.0(1) C(26)-C(31) 4.2(1)

 $T = \exp[-(b_{11}h^2 + b_{22}k^2 + b_{33}l^2 + b_{12}hk + b_{13}hl + b_{23}kl)].$ 

| I                   |           | II              |           |
|---------------------|-----------|-----------------|-----------|
| O(1)-Pt-N(1)-C(14)  | 119.5(10) | O(1)-Pt-P-C(14) | 123.7(4)  |
| O(1)-Pt-N(1)-C(16)  | -112.4(9) | O(1)-Pt-P-C(20) | 0.1(4)    |
| Pt-N(1)-C(14)-C(15) | -58.6(15) | O(1)-Pt-P-C(26) | -118.9(4) |
| Pt-N(1)-C(16)-C(17) | 58.5(14)  | , , , , , ,     | · /       |

Table 7. Torsion angles defining the arrangements of Et2NH in I and Ph3P in II

influence of Ph<sub>3</sub>P with respect to Et<sub>2</sub>NH and suggests that the Pt-N bond has more p-character in II than in I. A difference of  $\sim 0.05$  Å as a function of the *trans* ligand is quite reasonable and indeed values in excess of 0.10 Å are known to occur for Pt-Cl [26] and Pt-P [27] separations. Further, the Pt-N-C(7) and Pt-N-C(8) angles in I[117.8(11) and 114.4(10)°] differ significantly from the corresponding angles in II[122.8(12) and 109.2(7)°]. This may also be a consequence of the longer Pt-N bond in II.

Comparing the structure of the coordinated *Schiff*'s base in the present compounds with the structures of other compounds containing the Ph-CH=N-Ph system [28-32], one finds: (a) a shortening, by 0.05-0.1 Å, of the C=N double bond; (b) an enlargement, by about  $10^{\circ}$ , of the C-C=N and C=N-C angles. These differences may be due to variations in the electronic structure of the C=N double bond, as a consequence of the coordination at the metal atom followed by the closure of two rings. The arrangements of  $Et_2NH$  in I and  $Ph_3P$  in II are defined by the torsion angles given in *Table 7*.

- d) IR. Results. In the hope of finding a change in v (C=N) we have measured some IR. spectra of our complexes. In the region 1520–1620 cm<sup>-1</sup> there are four intense bands, any one of which might be v (C=N). These appear at  $\approx 1605$ , 1600, 1580–1590 and 1520–1530 cm<sup>-1</sup>. The width of the band at  $\approx 1605$  cm<sup>-1</sup>, by comparison with that of the free ligand, suggests that this may be the sought after signal; in any case, all of these bands are almost ( $\pm 5$  cm<sup>-1</sup>) independent of L<sup>3</sup>). Thus, as with the  $^{13}$ C(7) chemical shift and C=N bond length data there is no evidence for a large change in the electronic structures within the carbon skeleton from the IR. data.
- **4. Discussion.** The complexes [Pt(1)L] and [Pt(2)L] fulfill the required conditions for a classical *trans* influence study. The *cis* ligands can be held constant and the *trans* ligand can be varied such that complexes containing a variety of L donor atoms can be prepared. Further, these are favorable molecules in that several physical methods can be readily applied, thereby providing a more complete picture of their ground state structures. The <sup>1</sup>H-NMR. data, through the values <sup>3</sup>J(<sup>195</sup>Pt, H), show that the *trans* ligand, L, significantly affects the other side of the molecule. The available <sup>15</sup>N-data [4] specifically reveal a large effect at the chelate N-atom and the <sup>13</sup>C studies suggest that there is only a small change due to L as one moves away from the *Schiff*'s base N-atom. This latter point is a negative, but useful, observation. In the event of a major  $d\pi$ -p $\pi$  metal-imine back-bonding interaction

We have fewer data for the complexes [Pt(1)L] since these were more often oils. The comparison was made only for measurements made on KBr pellets.

one might expect  $\delta^{-13}C(7)$  to change markedly<sup>4</sup>). This negative effect at C(7) is supported by the IR. and X-ray solid-state work in which no noteworthy change in either  $\nu(C=N)$  or the C=N bond length is found, however, a large change in Pt-N bond length is observed, in agreement with  ${}^3J({}^{195}Pt, {}^1H)$  and  ${}^1J({}^{195}Pt, {}^{15}N)$  [4]. These results speak for a localized change in the Pt-N bond which propagates itself primarily through the Pt-N  $\sigma$ -bond. Following previous suggestions [19] it seems likely that there is a change at platinum, as a function of L, which reveals itself in the NMR. data as larger (or smaller) s-coefficients in that part of the molecular orbital involving Pt-N overlap, and therefore a larger (or smaller) coupling constant. This same redistribution produces a change in the Pt-N bond length but only a secondary effect at remote sites. Our conclusion with regard to the NMR. data is in agreement with recent calculations by *Shustorovich* [34], and there is now general theoretical support [35] for the importance of  $\sigma$  bonding in determining the *trans* influence of a ligand.

Assuming a minimal  $\pi$  bond and the relative importance of the  $\sigma$  component in the Pt-N bond, the linear correlation found [4] between  ${}^1J({}^{195}\text{Pt},{}^{15}\text{N})$  in [Pt(1)L] and the same parameter in trans-[PtCl<sub>2</sub>( ${}^{15}\text{NH}_2(\text{CH}_2)_5\text{CH}_3$ )L] is now readily understandable. Neither of the nitrogen ligands markedly interferes with Pt-L ligand  $\pi$  bonding and therefore the interaction of L with Pt is similar in both cases. It is not possible, or even reasonable, to completely exclude platinum-imine  $\pi$  back bonding; such bonding can be constant, zero or only slightly dependent on L, but there is no compelling evidence in its favor. It would be interesting to have both solution- and solid state data for some  $R-C\equiv^{15}\text{N}$  complexes for comparison with the existing sp<sup>3</sup> and sp<sup>2</sup> nitrogen studies.

Thanks are due Prof. L. M. Venanzi for helpful discussion and the ETH Zürich for support (H. M.).

## REFERENCES

- [1] T.G. Appleton, H.C. Clark & L.E. Manzer, Coord. Chem. Rev. 10, 335 (1973).
- [2] E. M. Shustorovich, M. A. Poraikoshits & Yu. A. Buslaev, Coord. Chem. Rev. 17, 1 (1975).
- [3] H. Motschi, P. S. Pregosin & L. M. Venanzi, Helv. 62, 667 (1979).
- [4] H. Motschi & P. S. Pregosin, Inorg. Chim. Acta 40, 141 (1980).
- [5] F. Bachechi, L. Zambonelli & G. Marcotrigiano, J. Cryst. Mol. Struct. 7, 11 (1977).
- [6] L.E. McCandlish, G.H. Stout & L.C. Andrews, Acta Crystallogr. A31, 245 (1975).
- [7] International Tables for X-ray Crystallography, vol. IV, Tables 2.2B and 3.3.1. Kynoch Press, Birmingham England 1974.
- [8] R. Carruthers & R. Spagna, Ital. Crystallogr. Assoc., 7th Meet. Abstracts, 65 (1975).
- [9] S. Cerrini & R. Spagna, 4th Europ. Crystallogr. Meet. Abstracts, 7 (1977).
- [10] J. R. Hall & G. A. Swile, J. Organomet. Chem. 161, 121 (1978).
- [11] B. E. Reichert & B. O. West, J. Organomet. Chem. 54, 391 (1973).
- [12] K.S. Murray, B.E. Reichert & B.O. West, J. Organomet. Chem. 63, 461 (1973).
- [13] J.E. Sarneski, L.E. Erickson & C.N. Reilly, J. Magn. Res. 37, 155 (1980).
- [14] P.S. Pregosin & R. Kunz, Helv. 58, 423 (1975).
- [15] G. Balimann & P.S. Pregosin, Helv. 58, 1913 (1975).
- [16] G.G. Mather, A. Pidcock & G.J.N. Rapsey, J. Chem. Soc. Dalton, 1973, 2095.
- [17] F.R. Hartley, 'The Chemistry of Platinum and Palladium', Wiley, New York, Appendix II.

<sup>4)</sup> There is also no significant change in  ${}^{1}J({}^{15}N, {}^{13}C)$ .

- [18] R.G. Little & J.A. Ibers, J. Am. Chem. Soc. 96, 4440 (1974).
- [19] S.D. Ittel & J.A. Ibers, J. Am. Chem. Soc. 96, 4804 (1974).
- [20] P. T. Cheng, C.D. Cook, S. C. Nyburg & K. Y. Wan, Can. J. Chem. 49, 3772 (1971).
- [21] R. Schlodder, J.A. Ibers, M. Lenarda & M. Graziani, J. Am. Chem. Soc. 96, 6893 (1974).
- [22] A. Chakravorty, Coord. Chem. Rev. 13, 33 (1974).
- [23] C.G. Biefeld, H.A. Eick & R.H. Grubbs, Inorg. Chem. 12, 2166 (1973).
- [24] R. F. Speaniak & N. C. Payne, Inorg. Chem. 13, 797 (1974).
- [25] S. Krogsrud, L. Toniolo, U. Croatto & J.A. Ibers, J. Am. Chem. Soc. 99, 5277 (1977).
- [26] C.J. Cardin, D.J. Dardin, M.F. Lappert & K. W. Muir, J. Chem. Soc. Dalton 1978, 46.
- [27] A.N. Caldwell, L.M. Muir & K.W. Muir, J. Chem. Soc. Dalton 1977, 2265.
- [28] J. Bregman, L. Leiserowitz & G. M. Schmidt, J. Chem. Soc. 1964, 2068.
- [29] J. Bregman, L. Leiserowitz & K. Osaki, J. Chem. Soc. 1964, 2086.
- [30] H. B. Bürgi & J. Dunitz, Helv. 53, 1747 (1970).
- [31] J. Bernstein, J. Chem. Soc. Perkin II, 1972, 946.
- [32] H. Nakai, M. Shiro, K. Ezumi, S. Sakata & T. Kubota, Acta Crystallogr. B32, 1827 (1976).
- [33] A. Pidcock, R. E. Richards & L. M. Venanzi, J. Chem. Soc. 1966, 1707.
- [34] E. Shustorovich, Inorg. Chem. 18, 1039 (1979).
- [35] J. K. Burdett, Inorg. Chem. 16, 3013 (1977); D. R. Armstrong, R. Fortune & P. G. Perkins, Inorg. Chim. Acta 9, 9 (1974); D. R. Armstrong, R. Fortune, P. G. Perkins, R. J. Dickinson & R. V. Parish, Inorg. Chim. Acta, 17, 73 (1976); S. S. Zumdahl & R. S. Drago, J. Am. Chem. Soc. 90, 6669 (1968).