136 Communications SYNTHESIS

A Convenient, One-Step Synthesis of Methyl 2,4-Dimethyl-5-oxo-5*H*-[1]benzopyrano[3,4-c]pyridine-1-carboxylates

C. N. O'CALLAGHAN

Medical Research Council of Ireland Laboratories, Chemistry Building, Trinity College, Dublin 2, Ireland

The reaction of o-hydroxybenzaldehydes with methyl 3-aminocrotonate in acetic acid at room temperature yields methyl 2,4-dimethyl-5-oxo-5H-[1]benzopyrano[3,4-c]pyridine-1-carboxylates, in 22–42% yield.

The preparation and biological properties of coumarins with 3:4-fused ring systems have recently been reviewed¹; various methods are available for the preparation of benzopyrano[3,4-c]pyridine-5-ones²⁻⁷, and the potential of compounds of this type as synthetic intermediates has recently been demonstrated⁸. Few ester derivatives of the system are known, however, although their biological significance has been recognized⁹.

Ethyl 2,4-dimethyl-9-nitro-5-oxo-5H-[1]benzopyrano[3,4-c]pyridine-1-carboxylate has been prepared by a multi-step synthesis involving hydrolysis of the appropriate nitrile⁹, but this method was not applicable to non-nitrated compounds. Two other ethyl esters were obtained in 7–10% yields as byproducts from the reaction of ethyl acetoacetate with substituted o-hydroxybenzaldehydes in the presence of ammonium acetate¹⁰; the suggested synthesis of these compounds from 3-acetylcoumarin derivatives with methyl 3-aminocrotonate is not feasible, however, the 3-acetylcoumarin being recovered unchanged.

A simple, convenient synthesis of methyl 2,4-dimethyl-5-oxo-5H-[1]benzopyrano[3,4-c]pyridine-1-carboxylates (3) is provided by the reaction of o-hydroxybenzaldehydes (1) with methyl 3-aminocrotonate (2) in a 1:2 molar ratio, in acetic acid. Reaction conditions are mild, and any traces of minor contaminants are readily removable by recrystallization.

Methyl 2,4-Dimethyl-5-oxo-5*H*-[1]benzopyrano[3,4-*c*]pyridine-1-carboxylates (3); General Procedure:

The o-hydroxybenzaldehyde 1 (10 mmol) and methyl 3-aminocrotonate (2; 20 mmol) in glacial acetic acid (10 ml) are stirred at 50 °C for 3 min and then stored at room temperature for 7 days. The resultant crystalline precipitate is collected by filtration, washed with ethanol, and recrystallised.

Received: May 6, 1985

¹ Darbarwan, M., Sundaramurthy, V. Synthesis 1982, 337.

² Khan, H. J., Petrow, V., Rewald, E. L., Sturgeon, B. J. Chem. Soc. 1949, 2128.

³ Sakurai, A., Motumura, Y., Midorikawa, H. J. Org. Chem. 1972, 37, 1523.

⁴ Samour, A., Alkady, M. Indian J. Chem. 1974, 12, 51.

⁵ O'Callaghan, C.N. Proc. R. Ir. Acad. Sect B 1977, 77, 533.

6 O'Callaghan, C.N. J. Chem. Soc. Perkin Trans. 1 1981, 2273.

O'Callaghan, C.N., Conalty, M.L. Proc. R. Ir. Acad. Sect. B 1983, 83, 241.

⁸ Rosenberg, S.H., Rapoport, H. J. Org. Chem. 1984, 49, 56.

⁹ Courts, A., Petrow, V. J. Chem. Soc. **1952**, 334.

¹⁰ Sakurai, A., Midorikawa, H. J. Chem. Soc. Perkin Trans. 1, 1975, 2025.

Table. Methyl 2,4-Dimethyl-5-oxo-5 *H*-[1]benzopyrano[3,4-c]pyridine-1-carboxylates prepared

Prod- uct	X	Yield ^a [%]	m.p. [°C] (solvent)	Molecular Formula ^b	I.R. (Nujol) v[cm ⁻¹]	1 H-N.M.R. (DMSO-d ₆ /TMS _{int}) δ [ppm]
3a	Н	22	151–153° (methanol)	C ₁₆ H ₁₃ NO ₄ (283.3)	1733, 1720°, 1610, 1597	2.59 (s, 3 H, CH ₃); 2.66 (s, 3 H, CH ₃); 3.98 (s, 3 H, OCH ₃); 7.30–7.81 (m, 3 H _{arom}); 8.48 (dd, 1 H _{arom})
3b	7-OCH ₃	39	216–218° (ethanol)	$C_{17}H_{15}NO_5$ (313.3)	1732, 1723°, 1610, 1597	2.59 (s, 3 H, CH ₃); 2.66 (s, 3 H, CH ₃); 3.93 (3,3 H, OCH ₃); 3.97 (s, 3 H, OCH ₃); 7.31–7.37 (m, 2 H _{arom}); 7.93–8.21 (m, 1 H _{arom})
3c	8-OCH ₃	34	174–176° (ethanol)	C ₁₇ H ₁₅ NO ₅ (313.3)	1735, 1721°, 1625, 1597	2.58 (s, 3 H, CH ₃); 2.66 (s, 3 H, CH ₃); 3.88 (s, 3 H, OCH ₃); 3.98 (s, 3 H, OCH ₃); 7.21–7.36 (m, 2 H _{arom}); 8.25–8.42 (m, 1 H _{arom})
3d	9-OCH ₃	26	193–195° (ethanol)	C ₁₇ H ₁₅ NO ₅ (313.3)	1730, 1720°, 1611	2.62 (s, 3 H, CH ₃); 2.69 (s, 3 H, CH ₃); 3.88 (s, 3 H, OCH ₃); 3.98 (s, 3 H, OCH ₃); 7.10–7.36 (m, 2 H _{arom}); 7.86–7.96 (m, 1 H _{arom})
3e	7-OC ₂ H ₅	32	186–188° (ethanol)	C ₁₈ H ₁₇ NO ₅ (327.3)	1735, 1722°, 1612 (w), 1594 (w)	1.39 (t, 3 H, CH ₃); 2.57 (s, 3 H, CH ₃); 2.67 (s, 3 H, CH ₃); 3.96 (s, 3 H, OCH ₃); 4.19 (q, 2 H, OCH ₂ CH ₃); 7.14–7.39 (m, 2 H _{arom}); 7.92–8.13 (m, 1 H _{arom})
3f	9-C1	42	205-206° (benzene)	C ₁₆ H ₁₆ ClNO ₄ (317.7)	1740, 1724°, 1614 (w), 1594	2.61 (s, 3 H, CH ₃); 2.68 (s, 3 H, CH ₃); 3.97 (s, 3 H, OCH ₃); 7.31–7.70 (m, 2 H _{arom}); 8.38 (d, 1 H _{arom})

^a Optimised yield.

The microanalyses were in satisfactory agreement with the calculated values: C ± 0.2, H ± 0.19, N ± 0.27; microanalyses were obtained by May & Baker Ltd. (Dagenham), England.

The lactone and ester bands were only partially resolved.