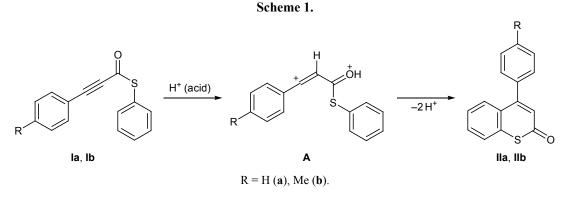
SHORT COMMUNICATIONS

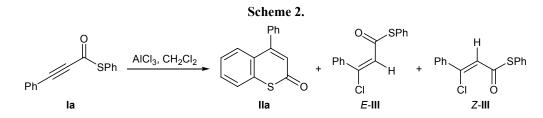
Intramolecular Cyclization of S-Phenyl 3-Arylpropynethioates by the Action of Brønsted and Lewis Acids

D. S. Ryabukhin, A. V. Vasil'ev, and E. V. Grinenko

St. Petersburg State Academy of Forestry Engineering, Institutskii per. 5, St. Petersburg, 194021 Russia e-mail: aleksvasil@mail.ru

Received December 22, 2010


DOI: 10.1134/S1070428011040282


Intramolecular cyclization of N₃-diarylpropynamides or phenyl 3-arylpropynoates in various acidic systems is used for the synthesis of quinoline [1] or coumarin derivatives [2]. The present communication reports on the transformations of S-phenyl 3-arylpropynethioates Ia and Ib by the action of Brønsted (H₂SO₄, HSO₃F, CF₃SO₃H) or Lewis acids (AlCl₃, AlBr₃), leading to the corresponding 4-aryl-2H-thiochromen-2-ones IIa and IIb through electrophilic intermediates A (Scheme 1). The reaction conditions and yields are given in table. S-Phenyl 3-phenylpropynethioate (Ia) in sulfuric acid at 20°C was converted in 5 h into 4-phenyl-2H-thiochromen-2-one (IIa) in 96% yield (run no. 1). The transformations of compounds Ia and Ib in stronger acids (HSO₃F, CF₃SO₃H) required a shorter time (1 h at 0–20°C), the yield being fairly high (84-90%; run nos. 3, 4, 8). In HSO₃F at -75°C (reaction time 0.25 h) thiocoumarins IIa and **IIb** were formed in poor yield, and the conversion of initial compounds Ia and Ib was not complete (run nos. 2, 7), in contrast to analogous transformations of phenyl 3-arylpropynoates [2]. Such Lewis acid as AlBr₃ also promoted intramolecular cyclization of Ia

to thiocoumarin **Ha** (run no. 5), but the yield of **Ha** was lower (60%) than in the reactions catalyzed by Brønsted acids.

The transformation of propynethioate Ia in the presence of AlCl₃ gave not only cyclization product IIa but also isomeric *S*-phenyl 3-chloro-3-phenylprop-2-enethioates *E*-III and *Z*-III (run no. 6). The latter are formed via abstraction of chloride ion from associated AlCl₃ species by strong electrophile A (Scheme 2). It should be noted that no analogous bromine-containing products were detected in the reaction with AlBr₃ (run no. 5).

The product mixture obtained in run no. 6 could not be separated by preparative chromatography on silica gel, and it was analyzed by gas chromatography–mass spectrometry and ¹H NMR. Theoretical calculation (ChemDraw Ultra 10.0) of the chemical shifts of vinyl protons in isomers *E*-**III** and *Z*-**III** gave a larger value for the *Z* isomer (δ_{calc} 6.80 ppm against 6.42 ppm for the *E* isomer). Therefore, the isomer characterized by larger experimental chemical shift of the vinyl proton (δ_{exp} 6.88 ppm) was assigned *Z* configuration, and that with δ_{exp} 6.68 ppm, *E* configuration.

Thiocoumarins constitute a poorly explored class of organic compounds, and their syntheses by other methods were reported in a few publications [3–8].

Initial S-phenyl 3-arylpropynethioates Ia and Ib were prepared according to the procedure described in [9] by reaction of benzenethiol with 3-phenylpropynoic and 3-(4-methylphenyl)propynoic acids, respectively, in methylene chloride in the presence of N,N'-dicyclohexylcarbodiimide and a catalytic amount of pyridine.

S-Phenyl 3-phenylpropynethioate (**Ia**). Yield 47%, mp 58–60°C [10]. IR spectrum, v, cm⁻¹: 2185 (C=C), 1690 (C=O). ¹H NMR spectrum, δ , ppm: 7.36 t (2H, H_{arom}, *J* = 7.6 Hz), 7.44–7.47 m (6H, H_{arom}), 7.52– 7.55 m (2H, H_{arom}).

S-Phenyl 3-(4-methylphenyl)propynethioate (**Ib**). Yield 45%, mp 108–110°C. ¹H NMR spectrum, δ , ppm: 2.37 s (3H, Me), 7.16 d (2H, H_{arom}, *J* = 13.9 Hz), 7.34 d (2H, H_{arom}, *J* = 13.9 Hz), 7.45–7.47 m (3H, H_{arom}), 7.52–7.55 m (2H, H_{arom}). Found, %: C 76.11; H 4.83. C₁₆H₁₂OS. Calculated, %: C 76.16; H 4.79.

4-Aryl-2H-thiochromen-2-ones IIa and IIb (general procedure). a. A solution of 0.2 mmol of compound Ia or Ib in 2 ml of the corresponding Brønsted acid (H_2SO_4 , HSO_3F , or CF_3SO_3H) was stirred for 0.25–5 h at –75 to 20°C (see table; run nos. 1–4, 7, 8).

b. A solution of 30 mg (0.13 mmol) of compound **Ia** and 280 mg (0.63 mmol) of AlBr₃ in 5 ml of CH_2Cl_2 was stirred for 2 h at 20°C (see table, run no. 5).

The reaction mixture obtained as described above in *a* or *b* was poured into 30 ml of ice water and extracted with chloroform (3×50 ml). The extracts were combined, washed with water, a saturated solution of sodium hydrogen carbonate, and water again, and dried over Na₂SO₄, the solvent was distilled off under reduced pressure (water-jet pump), and the residue was subjected to chromatographic separation on silica gel using hexane–ethyl acetate as eluent. The yields are given in table.

4-Phenyl-2*H***-thiochromen-2-one (IIa).** Oily substance; published data: mp 100°C [3], 98°C [4]. ¹H NMR spectrum, δ , ppm: 6.53 s (1H, 3-CH), 7.24–7.29 m (1H, H_{arom}), 7.37–7.38 m (2H, H_{arom}), 7.45–7.53 m (6H, H_{arom}). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 124.76, 126.21, 126.27, 126.83, 128.60, 128.89, 129.74, 130.58, 137.84, 138.30, 155.46, 184.52. Mass spectrum, *m/z* (*I*_{rel}, %): 238 (19) [*M*]⁺, 210 (100), 165 (25).

4-(4-Methylphenyl)-2*H***-thiochromen-2-one (IIb).** Oily substance. ¹H NMR spectrum, δ , ppm: 2.44 s (3H, Me), 6.52 s (1H, 3-H), 7.23-7.30 m (5H, H_{arom}), 7.46 t (1H, H_{arom}, J = 7.6 Hz), 7.51 d (1H, H_{arom}, J = 7.7 Hz), 7.57 d (1H, H_{arom}, J = 8.4 Hz). Mass spectrum, m/z ($I_{\rm rel}$, %): 252 (12) [M]⁺, 224 (100), 208 (8). Found, %: C 76.21; H 4.76. C₁₆H₁₂OS. Calculated, %: C 76.16; H 4.79. M 252.06.

S-Phenyl (E/Z)-3-chloro-3-phenylprop-2-enethioates (III) were formed together with compound

Run no.	Initial compound no.	Reaction conditions	Product (yield, %)
1	Ia	H ₂ SO ₄ , 20°C, 5 h	IIa (96)
2	Ia	HSO ₃ F, -75°C, 0.25 h	Ia (80), IIa (14)
3	Ia	HSO ₃ F, 0°C, 1 h	IIa (90)
4	Ia	CF ₃ SO ₃ H, 20°C, 1 h	IIa (84)
5	Ia	AlBr ₃ , CH ₂ Cl ₂ , 20°C, 2 h	IIa (60)
6	Ia	AlCl ₃ , CH ₂ Cl ₂ , 20°C, 2 h	IIa (41), E-III (20), Z-III (38)
7	Ib	HSO ₃ F, -75°C, 0.25 h	Ib (70), IIb (22)
8	Ib	CF ₃ SO ₃ H, 20°C, 1 h	IIb (86)

Transformations of S-phenyl 3-arylpropynethioates Ia and Ib in various acid systems

Ha in the reaction of 50 mg (0.2 mmol) of compound **Ia** with 134 mg (1 mmol) of AlCl₃ in 5 ml of methylene chloride in 2 h at 20°C (method *b*, run no. 6). Oily material. ¹H NMR spectrum, δ , ppm (isomer mixture): 6.68 s (1H, =CH, *Z*), 6.88 s (1H, =CH, *E*), 7.23–7.71 m (10H, H_{arom}). Mass spectrum, *m/z* (*I*_{rel}, %) (GC– MS data): *E*-**III**: 274 (10) [*M*]⁺, 165 (100), 137 (12), 102 (18); *Z*-**III**: 274 (8) [*M*]⁺, 165 (100), 137 (10), 102 (15).

The ¹H and ¹³C NMR spectra were recorded on a Bruker AM-500 spectrometer at 500 and 125 MHz, respectively, using CDCl₃ as solvent. The chemical shifts were measured relative to the residual proton and carbon signals of the solvent (CHCl₃, δ 7.25 ppm; CDCl₃, δ_C 77.0 ppm). The mass spectra were obtained on an MKh-1321 instrument. The IR spectra were recorded from solutions in chloroform on an FSM-1201 spectrometer. GC–MS analysis was performed on an Agilent G 2570A MSD/6850s GC instrument (HP-5MS capillary column, 3 m×0.25 mm, film thickness 0.25 µm). The elemental compositions were determined on an EuroVector EA-300 analyzer.

REFERENCES

- Ryabukhin, D.S. and Vasil'ev, A.V., *Russ. J. Org. Chem.*, 2008, vol. 44, p. 1849.
- Ryabukhin, D.S., Fukin, G.K., Cherkasov, A.V., and Vasil'ev, A.V., *Russ. J. Org. Chem.*, 2009, vol. 45, p. 1252.
- Ruwet, A. and Renson, M., Bull. Soc. Chim. Belg., 1969, vol. 78, p. 449.
- 4. Tilak, B.D. and Panse, G.T., *Indian J. Chem.*, 1969, vol. 7, p. 315.
- 5. Natarajan, M., Manimaran, T., and Ramakrishnan, V.T., Indian J. Chem., Sect. B, 1984, vol. 23, p. 529.
- 6. Natarajan, M. and Ramakrishnan, V.T., *Indian J. Chem., Sect. B*, 1984, vol. 23, p. 720.
- 7. Nakazumi, H., Kitaguchi, T., Ueyama, T., and Kitao, T., *Synthesis*, 1984, p. 518.
- 8. Deprets, S. and Kirsch, G., *Heterocycl. Commun.*, 2001, vol. 7, p. 421.
- Neises, B. and Steglich, W., Angew. Chem., Int. Ed. Engl., 1978, vol. 17, p. 522.
- 10. Yokoyama, T., Chem. Pharm. Bull., 1964, vol. 12, p. 683.