Supporting Information for:

Site-selective Mono-titanation of Dialkynylpyridines and Its Application for Preparation of Highly Fluorescent π -Conjugated Oligomers

Yuuki Takayama*, Takeshi Hanazawa, Tomohiro Andou, Kenji Muraoka, Hiroyuki Ohtani, Mizuki Takahashi, and Fumie Sato*

Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan

Melting points were measured with Yanaco MP-J3 Micro Melting Point General. Apparatus. ¹H and ¹³C NMR spectra were taken on a Varian Gemini-2000 spectrometer at 300 and 75 MHz, respectively. CDCl₃ was used as the solvent. Chemical shifts are reported in parts per million shift (δ value) from Me₄Si (δ 0 ppm for ¹H) or based on the middle peak of the solvent (CDCl₃) (δ 77.00 ppm for ¹³C NMR) as an internal standard. Signal patterns are indicated as br, broad; s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Coupling constants (J) are given in hertz. Infrared (IR) spectra were recorded on a JASCO FT-IR 230 spectrometer and are reported in wave numbers (cm^{-1}) . UV/Vis spectra were obtained with HITACHI U-2000 Spectrophotometer. Fluorescence spectra were obtained with SPEX FLUOROMAX-2. Mass spectra (MS, EI, 70 eV) were measured on a Shimadzu QP-5000 GC mass spectrometer. MALDI-TOF-MS spectra were obtained using a Shimadzu MALDI-TOFMS AXIMA-CFR. 2,5-Dihydroxybenzoic acid (DHB) was used as matrix. Elemental analyses were performed on an Elementar Vario-EL. All reactions were carried out under an argon atmosphere, using flamedried glassware and were monitored by TLC (Merck, Kieselgel 60 F254); visualization was done with UV light (254 nm) / KMnO₄ or Vanillin.

Material. $Ti(O-i-Pr)_4$ was distilled and stored under argon. Isopropylmagnesium chloride was prepared in Et₂O as 1.30 - 2.25 M solution from isopropyl chloride and magnesium turnings by the usual procedure, titrated and stocked under an argon atmosphere. Dry solvent (Et₂O, THF, CH₂Cl₂) was purchased from Kanto Chemicals. Degassing of solvents and amines used for Pd-catalyzed coupling reactions was accomplished by vigorously bubbling argon for at least 1 h. Chemicals were purified or dried in a standard manner.

Preparation of Dialkynylpyridines 2.

2,3-Bis[(trimethylsilyl)ethynyl]pyridine (2a).

This compound was prepared according to the literature procedure.¹

2,4-Bis[(trimethylsilyl)ethynyl]pyridine (2b).

To a CH_2Cl_2 (27 mL) solution of 2,4-dihydroxypyridine (1.00 g, 9.00 mmol) were added Et_3N (4.60 mL, 33.0 mmol) and trifluoromethanesulfonic anhydride (3.57 mL, 21.2 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 12 h. After removal of the solvent, the residue was chromatographed on silica gel (Wakogel C-200, hexane – Et_2O) to give 2,4-bis(trifluoromethanesulfonyl)pyridine (2.60 g, 77%) as a yellow oil.

To a mixture of 2,4-bis(trifluoromethanesulfonyl)pyridine (1.70 g, 4.53 mmol), CuI (17.3 mg 0.0906 mmol), and Pd(PPh₃)₄ (52.2 mg 0.0452 mmol) in diisopropylamine (6.3 mL) was added (trimethylsilyl)acetylene (1.92 mL, 13.6 mmol) and the mixture was stirred for 12 h at 80 °C. Et₂O and a saturated solution of NH₄Cl were added to the mixture at 0 °C and the organic layer was separated, washed with brine, dried over MgSO₄, and concentrated *in vacuo* to give a crude. The crude was purified by column chromatography on silica gel (Wakogel C-200, hexane – Et₂O) to afford the title compound **2b** (0.893 g, 73%) as a brown oil. ¹H NMR δ 8.48 (br d, *J* = 4.8 Hz, 1H), 7.48 (br s, 1H), 7.20 (br d, *J* = 4.8 Hz, 1H), 0.24 (s, 9H), 0.23 (s, 9H); ¹³C NMR δ 149.70, 142.98, 131.43, 129.29, 124.78, 102.95, 101.13, 100.67, 95.50, -0.25, -0.28; IR (neat) 2960, 2160, 1585, 1532, 1461, 1380, 1251, 1163, 947, 863, 760 cm⁻¹; Anal. Calcd. for C₁₅H₂₁NSi₂: C, 66.36; H, 7.80; N, 5.16. Found: C, 66.04; H, 7.80; N, 5.57.

2,5-Bis[(trimethylsilyl)ethynyl]pyridine (2c).

This compound was prepared according to the literature procedure.²

2,6-Bis[(trimethylsilyl)ethynyl]pyridine (2d).

This compound was prepared according to the literature procedure.²

3,4-Bis[(trimethylsilyl)ethynyl]pyridine (2e).

To a mixture of 3-bromo-4-iodopyridine³ (1.68 g, 5.92 mmol), CuI (22.5 mg 0.118 mmol), Pd(PPh₃)₄ (68.4 mg 0.0592 mmol), and diisopropylamine (16.6 mL, 118 mmol) in THF (8 mL) was added (trimethylsilyl)acetylene (4.18 mL, 29.6 mmol) and the mixture was stirred for 3 days at 90 °C. Et₂O and a saturated solution of NH₄Cl were added to the mixture at 0 °C and the organic layer was separated, washed with brine, dried over MgSO₄, and concentrated *in vacuo* to give a crude. The crude was purified by column chromatography on silica gel (Wakogel C-200, hexane – Et₂O) to afford the title compound **2e** (1.06 g, 66%) as a brown oil. ¹H NMR δ 8.68 (d, *J* = 0.9 Hz, 1H), 8.44 (d, *J* = 5.1 Hz, 1H), 7.29 (dd, *J* = 5.1, 0.9 Hz, 1H), 0.29 (s, 18H); ¹³C NMR δ 152.65, 147.91, 133.01, 125.10, 121.71, 104.17, 102.04, 100.38, 99.94, -0.02, -0.16; IR (neat) 2961, 2900, 2161, 1575, 1476, 1400, 1251, 1191, 844, 760, 701 cm⁻¹; Anal. Calcd. for C₁₅H₂₁NSi₂: C, 66.36; H, 7.80. Found: C, 66.40; H, 7.62.

6-(1-Hexynyl)-2-[(trimethylsilyl)ethynyl]pyridine (2f).

This was prepared according to the following scheme. 6-Bromo-2-iodopyridine was synthesized from 2,6-dibromopyridine by the procedure according to the literature.^{4a} ¹H and ¹³C spectra of 6-bromo-2-iodopridine thus synthesized were identical with the literature.^{4b}

To a mixture of 6-bromo-2-iodopyridine (1.16 g, 4.09 mmol), CuI (31.1 mg, 0.163 mmol), and $Pd(PPh_3)_2Cl_2$ (57.4 mg 0.0817 mmol) in triethylamine (14 mL) was added (trimethylsilyl)acetylene (0.635 mL, 4.49 mmol) at 0 °C and the mixture was stirred for 6 h at room temperature. After filtration, the filtrate was concentrated in vacuo to give a crude. The crude was purified by column chromatography on silica gel (Wakogel C-200, hexane - Et₂O) to afford 6- ^{1}H (trimethylsilyl)ethynyl-2-bromopyridine (0.698)67%). spectrum of 6g, (trimethylsilyl)ethynyl-2-bromopyridine thus obtained was identical with the literature.⁵

To a stirred solution of 6-(trimethylsilyl)ethynyl-2-bromopyridine (0.812 g, 3.19 mmol), CuI (24.3 mg, 0.128 mmol), and Pd(PPh₃)₂Cl₂ (44.8 mg 0.0639 mmol) in triethylamine (11 mL) was added 1-hexyne (0.734 mL, 6.39 mmol), and the resulting mixture was stirred for 12 h at room temperature. The mixture was filtered and concentrated *in vacuo* to give a crude. The crude was purified by column chromatography on silica gel (Wakogel C-200, hexane – Et₂O) to afford the pure title compound **2f** (0.634 g, 78%) as a brown oil. . ¹H NMR δ 7.54 (dd, *J* = 7.8, 7.8 Hz, 1H), 7.32 (dd, *J* = 7.8, 0.9 Hz, 1H), 7.27 (dd, *J* = 7.8, 0.9 Hz, 1H), 2.40 (t, *J* = 6.9 Hz, 2H), 1.62-1.53 (m, 2H), 1.50-1.38 (m, 2H), 0.91 (t, *J* = 7.2 Hz, 3H), 0.23 (s, 9H); ¹³C NMR δ 144.34, 143.24, 136.22, 126.20, 125.91, 103.35, 94.92, 91.67, 79.97, 30.21, 21.92, 18.90, 13.34, -0.492; IR (neat) 2959, 2930, 2870, 2230, 2162, 1560, 1442, 1250, 1216, 847, 810, 761 cm⁻¹; Anal. Calcd. for C₁₆H₂₁NSi: C, 75.23; H, 8.29. Found: C, 75.52; H, 8.39.

5-(1-Hexynyl)-2-[(trimethylsilyl)ethynyl]pyridine (2g).

To a mixture of 5-bromo-2-[(trimethylsilyl)ethynyl]pyridine⁶ (1.00 g, 3.93 mmol), CuI (30.0 mg 0.157 mmol), and Pd(PPh₃)₂Cl₂ (55.2 mg 0.0787 mmol) in triethylamine (16 mL) and CH₂Cl₂ (3 mL) was added 1-hexyne (0.678 mL, 5.90 mmol) and the mixture was stirred for 1 day at room temperature. Et₂O and H₂O were added to the mixture at 0 °C and the organic layer was separated, washed with brine, dried over MgSO₄, and concentrated *in vacuo* to give a crude. The crude was purified by column chromatography on silica gel (Wakogel C-200, hexane – Et₂O) to afford the title compound **2g** (0.783 g, 78%) as an orange oil. ¹H NMR δ 8.55 (dd, *J* = 2.1, 0.9 Hz, 1H), 7.60 (dd, *J* = 8.1, 2.1 Hz, 1H), 7.36 (dd, *J* = 8.1, 0.9 Hz, 1H), 2.43 (t, *J* = 6.9 Hz, 2H), 1.65-1.55 (m, 2H), 1.54-1.42 (m, 2H), 0.95 (t, *J* = 7.2 Hz, 3H), 0.26 (s, 9H); ¹³C NMR δ 152.50, 140.93, 138.45, 126.49, 120.60, 103.50, 96.27, 96.06, 77.27, 30.42, 21.88, 19.09, 13.44, -0.484; IR (neat) 2959, 2933, 2870, 2230, 2164, 1540, 1466, 1363, 1250, 867, 760, 699 cm⁻¹; Anal. Calcd. for C₁₆H₂₁NSi: C, 75.23; H, 8.29. Found: C, 75.55; H, 8.56.

4-(1-Hexynyl)-3-[(trimethylsilyl)ethynyl]pyridine (2h).

Diisopropylamine (11 mL) was added to a mixture of 3-bromo-4-iodopyridine³ (1.08 g, 3.80 mmol), Pd(PPh₃)₄ (44.0 mg, 0.0380 mmol), and CuI (14.5 mg, 0.0761 mmol) and then 1-hexyne (0.656 mL, 5.71 mmol) was added to the mixture. The reaction was stirred for 12 h at ambient temperature. The mixture was filtered and concentrated *in vacuo* to give a crude. The crude was purified by column chromatography on silica gel (Wakogel C-200, hexane – AcOEt) to 3-bromo-4-(1-hexynyl)pyridine (0.658 g, 73%) as a brown oil.

To a stirred solution of to 3-bromo-4-(1-hexynyl)pyridine (0.629 g, 2.64 mmol), CuI (16.9 mg, 0.0886 mmol), and Pd(PPh₃)₄ (51.2 mg 0.0443 mmol) in diisopropylamine (6.2 mL) was added (trimethylsilyl)acetylene (0.940 mL, 6.65 mmol), and the resulting mixture was warmed up to 90 °C and stirred for 2 days at this temperature. The mixture was filtered and concentrated *in vacuo* to give a crude. The crude was purified by column chromatography on silica gel (Wakogel C-200, hexane – AcOEt) to afford the title compound **2h** (0.372 g, 55%) as a brown oil. ¹H NMR 8 8.63 (d, *J* = 0.9 Hz, 1H), 8.38 (d, *J* = 5.1 Hz, 1H), 7.20 (dd, *J* = 5.1, 0.9 Hz, 1H), 2.47 (t, *J* = 6.9 Hz, 2H), 1.66-1.55 (m, 2H), 1.54-1.43 (m, 2H), 0.94 (t, *J* = 7.2 Hz, 3H), 0.26 (s, 9H); ¹³C NMR 8 152.81, 148.16, 134.50, 125.18, 121.82, 101.45, 100.56, 100.36, 77.36, 30.36, 21.87, 19.24, 13.44, -0.333; IR (neat) 2959, 2933, 2870, 2230, 2160, 1577, 1478, 1400, 1250, 844, 759 cm⁻¹; Anal. Calcd. for C₁₆H₂₁NSi: C, 75.23; H, 8.29. Found: C, 75.49; H, 8.20.

General Procedure for Regioselective Mono-titanation of Dialkynylpyridines 2 in Table. (Z)-2-[2-(trimethylsilyl)ethenyl]-3-[(trimethylsilyl)ethynyl]pyridine (3a).

To a stirred solution of 2,3-bis[(trimethylsilyl)ethynyl]pyridine (**2a**) (6.00 g, 22.1 mmol) and Ti(O-*i*-Pr)₄ (6.52 mL, 22.1 mmol) in 220 mL of Et₂O was added a 2.25 M solution of *i*-PrMgCl in Et₂O (21.6 mL, 48.6 mmol) at -78 °C under argon to give a yellow homogeneous solution. The solution was warmed up to -50 °C over 30 min, during which period its color turned brown. After the solution was stirred at -50 °C for 2 h, H₂O (22 mL) was added at 0 °C. After addition of NaF and Celite, the resulting mixture was filtered through a pad of Celite and concentrated *in vacuo* to give a crude, which was purified by column chromatography (hexane) on silica gel (Wakogel C-200, hexane - Et₂O) to afford the title compound **3a** (5.05 g, 84%) as a yellow solid. M.p. = 33-34 °C; ¹H NMR δ 8.45 (dd, *J* = 4.8, 1.5 Hz, 1H), 7.72 (d, *J* = 14.1 Hz, 1H), 7.69 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.08 (dd, *J* = 7.8, 4.8 Hz, 1H), 6.20 (d, *J* = 14.1 Hz, 1H) 0.27 (s, 9H), 0.17 (s, 9H); ¹³C NMR δ 156.80, 147.02, 141.16, 140.30, 139.77, 121.24, 118.32, 101.73, 101.25, 0.79, 0.01; IR (neat) 2957, 2898, 2157, 1547, 1420, 1250, 1164, 1096, 841 cm⁻¹; Anal. Calcd. for C₁₅H₂₃NSi₂: C, 65.87; H, 8.48. Found: C, 65.62; H, 8.25.

(Z)-2-[2-(trimethylsilyl)ethenyl]-4-[(trimethylsilyl)ethynyl]pyridine (3b).

2,4-Bis[(trimethylsilyl)ethynyl]pyridine (**2b**) (0.137 g, 0.505 mmol) was mono-titanated with $Ti(O-i-Pr)_4$ (0.149 mL, 0.505 mmol) and a 1.61 M solution of *i*-PrMgCl in Et₂O (0.690 mL, 1.11 mmol) in Et₂O (5 mL) as described in the general procedure. Column chromatography (Wakogel C-200, hexane - Et₂O) afforded the title compound **3b** (0.110 g, 80%) as a pale yellow

oil. ¹H NMR δ 8.49 (dd, J = 4.8, 0.6 Hz, 1H), 7.22-7.20 (m, 1H), 7.16 (d, J = 14.4 Hz, 1H), 7.14 (dd, J = 4.8, 1.5 Hz, 1H), 6.08 (d, J = 14.4 Hz, 1H), 0.26 (s, 9H), 0.16 (s, 9H); ¹³C NMR δ 156.07, 148.20, 143.00, 139.01, 131.19, 125.54, 123.83, 102.22, 99.16, 0.69, -0.14; IR (neat) 2957, 2159, 1577, 1251, 933, 838, 759 cm⁻¹; Anal. Calcd. for C₁₅H₂₃NSi₂: C, 65.87; H, 8.48; N, 5.12. Found: C, 65.93; H, 8.79; N, 4.70.

(Z)-2-[2-(Trimethylsilyl)ethenyl]-5-[(trimethylsilyl)ethynyl]pyridine (3c).

2,5-Bis[(trimethylsilyl)ethynyl]pyridine (**2c**) (4.00 g, 14.7 mmol) was mono-titanated with Ti(O-*i*-Pr)₄ (4.35 mL, 14.7 mmol) and a 1.55 M solution of *i*-PrMgCl in Et₂O (20.9 mL, 32.4 mmol) in Et₂O (160 mL) as described in the general procedure. Column chromatography (Wakogel C-200, hexane - AcOEt) afforded the title compound **3c** (3.56 g, 88%) as a pale yellow oil. ¹H NMR δ 8.63 (d, *J* = 2.1 Hz, 1H), 7.67 (dd, *J* = 8.1, 2.1 Hz, 1H), 7.17 (d, *J* = 14.4 Hz, 1H), 7.11 (d, *J* = 8.1 Hz, 1H), 6.11 (d, *J* = 14.4 Hz, 1H), 0.28 (s, 9H), 0.19 (s, 9H); ¹³C NMR δ 154.99, 151.33, 142.94, 139.85, 138.91, 122.62, 118.22, 102.11, 98.24, 0.56, -0.14; IR (neat) 2957, 2159, 1586, 1539, 1475, 1363, 1251, 1024; 839 cm⁻¹; Anal. Calcd. for C₁₅H₂₃NSi₂: C, 65.87; H, 8.48. Found: C, 65.88; H, 8.84. If the reaction was terminated by an addition of D₂O instead of H₂O, (*Z*)-2-[1,2-Bis(deuterio)-2-(trimethylsilyl)ethenyl]-5-[(trimethylsilyl)ethynyl]pyridine was obtained. The peaks at δ 7.17 ppm (alkenyl-H) and 6.11 ppm (alkenyl-H) of **3c** disappeared to show 99% deuterium incorporation in both peaks.

(Z)-2-[2-(trimethylsilyl)ethenyl]-6-[(trimethylsilyl)ethynyl]pyridine (3d).

2,6-Bis[(trimethylsilyl)ethynyl]pyridine (**2d**) (0.137 g, 0.505 mmol) was mono-titanated with Ti(O-*i*-Pr)₄ (0.164 mL, 0.555 mmol) and a 1.95 M solution of *i*-PrMgCl in Et₂O (0.626 mL, 1.22 mmol) in Et₂O (5 mL) as described in the general procedure. Column chromatography (Wakogel C-200, hexane – Et₂O) afforded the title compound **3d** (0.124 g, 90%). ¹H NMR δ 7.55 (dd, *J* = 7.8, 7.8 Hz, 1H), 7.25 (dd, *J* = 7.8, 0.9 Hz, 1H), 7.16 (d, *J* = 14.1 Hz, 1H), 7.09 (dd, *J* = 7.8, 0.9 Hz, 1H), 6.10 (d, *J* = 14.1 Hz, 1H), 0.28 (s, 9H), 0.23 (s, 9H); ¹³C NMR δ 156.02, 142.64, 141.69, 139.57, 136.16, 124.86, 122.59, 103.83, 94.40, 0.54, -0.17; IR (neat) 2957, 2157, 1557, 1443, 1251, 1196, 1151, 1084, 970, 841, 760 cm⁻¹; Anal. Calcd. for C₁₅H₂₃NSi₂: C, 65.87; H, 8.48. Found: C, 66.19; H, 8.22.

(Z)-4-[2-(trimethylsilyl)ethenyl]-3-[(trimethylsilyl)ethynyl]pyridine (3e).

3,4-Bis[(trimethylsilyl)ethynyl]pyridine (**2e**) (0.137 g, 0.505 mmol) was mono-titanated with Ti(O-*i*-Pr)₄ (0.298 mL, 1.01 mmol) and a 1.61 M solution of *i*-PrMgCl in Et₂O (1.38 mL, 2.22 mmol) in Et₂O (5 mL) as described in the general procedure. Column chromatography (Wakogel C-200, hexane – Et₂O) afforded the title compound **3e** (0.109 g, 79%) as a brown oil. ¹H NMR δ 8.63 (s, 1H), 8.44 (d, *J* = 5.1 Hz, 1H), 7.39 (d, *J* = 15.3 Hz, 1H), 7.18 (d, *J* = 5.1 Hz, 1H), 6.10 (d, *J* = 15.3, 1H), 0.25 (s, 9H), 0.036 (s, 9H); ¹³C NMR δ 153.09, 149.53, 148.18, 142.34, 137.79, 122.20, 119.23, 102.74, 100.29, -0.17, -0.28; IR (neat) 2959, 2158, 1579, 1402, 1251, 1191, 1052, 844, 761 cm⁻¹; Anal. Calcd. for C₁₅H₂₃NSi₂: C, 65.87; H, 8.48. Found: C, 66.09; H, 8.47.

(Z)-6-(1-Hexenyl)-2-[(trimethylsilyl)ethynyl]pyridine (3f).

6-(1-Hexynyl)-2-[(trimethylsilyl)ethynyl]pyridine (2f) (58.6 mg, 0.229 mmol) was monotitanated with Ti(O-i-Pr)₄ (0.135 mL, 0.459 mmol) and a 1.89 M solution of i-PrMgCl in Et₂O (0.534 mL, 1.01 mmol) in Et₂O (3 mL) as described in the general procedure. After being stirred at -50 °C for 1 h, this reaction was terminated and column chromatography (Wakogel C-200, hexane – Et₂O) afforded the title compound **3f** (41.4 mg, 70%) as a pale yellow oil and the siteisomer, 2-(1-hexynyl)-6-[(trimethylsilyl)ethenyl]pyridine, (9.50 mg, 16%) as a pale yellow oil. **3f**: ¹H NMR δ 7.56 (dd, J = 7.8, 7.8 Hz, 1H), 7.26 (d, J = 7.8 Hz, 1H), 7.17 (d, J = 7.8 Hz, 1H), 6.43 (d, J = 11.7 Hz, 1H), 5.88 (dt J = 11.7, 7.5 Hz, 1H), 2.47 (dt, J = 7.5, 7.5 Hz, 2H), 1.50-1.30 (m, 4H), 0.88 (t, J = 7.1 Hz, 3H), 0.25 (s, 9H); ¹³C NMR δ 157.12, 142.62, 137.81, 135.95, 128.43, 124.87, 123.05, 104.11, 93.98, 31.61, 28.35, 22.24, 13.74, -0.44; IR (neat) 2959, 2927, 2858, 2158, 1641, 1561, 1447, 1405, 1251, 846, 760, 732 cm⁻¹; Anal. Calcd. for C₁₆H₂₃NSi: N, 5.44. Found: N, 5.48. The site-isomer, 2-(1-hexynyl)-6-[(trimethylsilyl)ethenyl]pyridine: ¹H NMR δ 7.53 (dd, *J* = 7.8, 7.8 Hz, 1H), 7.18, (d, *J* = 7.8 Hz, 1H), 7.16 (d, *J* = 14.4 Hz, 1H), 7.05 (d, J = 7.8 Hz, 1H), 6.06 (d, J = 14.4 Hz, 1H), 2.44 (t, J = 6.9 Hz, 2H), 1.65-1.48 (m, 4H), 0.95 (d, J = 1.44 Hz, 1H), 2.44 (t, J = 6.9 Hz, 2H), 1.65-1.48 (m, 4H), 0.95 (d, J = 1.44 Hz, 1H), 2.44 (t, J = 6.9 Hz, 2H), 1.65-1.48 (m, 4H), 0.95 (d, J = 1.44 Hz, 1H), 2.44 (t, J = 6.9 Hz, 2H), 1.65-1.48 (m, 4H), 0.95 (d, J = 1.44 Hz, 1H), 2.44 (t, J = 6.9 Hz, 2H), 1.65-1.48 (m, 4H), 0.95 (d, J = 1.44 Hz, 1H), 2.44 (t, J = 6.9 Hz, 2H), 1.65-1.48 (m, 4H), 0.95 (d, J = 1.44 Hz, 1H), 2.44 (t, J = 6.9 Hz, 2H), 1.65-1.48 (m, 4H), 0.95 (d, J = 1.44 Hz, 1H), 2.44 (t, J = 6.9 Hz, 2H), 1.65-1.48 (m, 4H), 0.95 (d, J = 1.44 Hz, 1H), 2.44 (t, J = 6.9 Hz, 2H), 1.65-1.48 (m, 4H), 0.95 (d, J = 1.44 Hz, 1H), 2.44 (t, J = 6.9 Hz, 2H), 1.65-1.48 (m, 4H), 0.95 (d, J = 1.44 Hz, 1H), 2.44 (t, J = 6.9 Hz, 2H), 1.65-1.48 (m, 4H), 0.95 (d, J = 1.44 Hz, 1H), 2.44 (t, J = 6.9 Hz, 2H), 1.65-1.48 (m, 4H), 0.95 (d, J = 1.44 Hz, 1H), 2.44 (t, J = 6.9 Hz, 2H), 1.65-1.48 (m, 4H), 0.95 (d, J = 1.44 Hz, 1H), 2.44 (t, J = 6.9 Hz, 2H), 1.65-1.48 (m, 4H), 0.95 (d, J = 1.44 Hz, 1H), 2.44 (t, J = 6.9 Hz, 2H), 1.65-1.48 (m, 4H), 0.95 (d, J = 1.44 Hz, 1H), 2.44 (t, J = 6.9 Hz, 2H), 1.65-1.48 (m, 4H), 0.95 (d, J = 1.44 Hz, 1H), 2.44 (t, J = 6.9 Hz, 2H), 1.65-1.48 (m, 4H), 0.95 (d, J = 1.44 Hz, 1H), 1.65-1.48 (m, 4H), 1.65-1.48 (m, 7.2 Hz, 3H), 0.21 (s, 9H). ¹³C NMR δ 156.27, 143.30, 143.03, 139.21, 136.24, 124.98, 122.01, 90.76, 80,39, 30.46, 21.83, 18.81, 13.44, 0.29; IR (neat) 2957, 2871, 2230, 1564, 1445, 1414, 1241, 1088, 842, 745, 655 cm⁻¹.

(Z)-5-(1-Hexynyl)-2-[(trimethylsilyl)ethenyl]pyridine (3g).

5-(1-Hexynyl)-2-[(trimethylsilyl)ethynyl]pyridine (**2g**) (0.103 g, 0.403 mmol) was monotitanated with $Ti(O-i-Pr)_4$ (0.119 mL, 0.403 mmol) and a 1.62 M solution of *i*-PrMgCl in Et₂O (0.548 mL, 0.887 mmol) in Et₂O (4 mL) as described in the general procedure. Column chromatography (Wakogel C-200, hexane – Et₂O) afforded the title compound **3g** (0.0771 g, 74%) as a pale yellow oil. ¹H NMR δ 8.57 (d, J = 1.8 Hz, 1H), 7.59 (dd, J = 8.1, 1.8 Hz, 1H), 7.17 (d, J = 14.4 Hz, 1H), 7.08 (d, J = 8.1 Hz, 1H), 6.07 (d J = 14.4 Hz, 1H), 2.43 (t, J = 6.9 Hz, 2H), 1.64-1.42 (m, 4H), 0.96 (t, J = 7.2 Hz, 3H), 0.16 (s, 9H); ¹³C NMR δ 154.42, 151.12, 143.28, 138.99, 138.60, 122.74, 119.27, 94.20, 77.81, 30.59, 21.90, 19.09, 13.50, 0.42; IR (neat) 2957, 2870, 2230, 1588, 1534, 1483, 1364, 1240, 1212, 847, 765, 664 cm⁻¹; Anal. Calcd. for C₁₆H₂₃NSi: C, 74.65; H, 9.00. Found: C, 74.37; H, 9.01.

(Z)-4-(1-Hexenyl)-3-[(trimethylsilyl)ethenyl]pyridine (3h).

4-(1-Hexynyl)-3-[(trimethylsilyl)ethynyl]pyridine (**2h**) (58.7 mg, 0.230 mmol) was monotitanated with Ti(O-*i*-Pr)₄ (0.136 mL, 0.460 mmol) and a 1.89 M solution of *i*-PrMgCl in Et₂O (0.535 mL, 1.01 mmol) in Et₂O (3 mL) as described in the general procedure. Column chromatography (Wakogel C-200, hexane – Et₂O) afforded the title compound **3h** (49.3 mg, 83%) as a yellow oil. ¹H NMR δ 8.65 (s, 1H), 8.43 (d, *J* = 5.1 Hz, 1H), 7.19 (d, *J* = 5.1 Hz, 1H), 6.56 (d, *J* = 12.0 Hz, 1H), 5.91 (dt *J* = 12.0, 7.5 Hz, 1H), 2.25 (dt, *J* = 7.5, 7.5 Hz, 2H), 1.50-1.28 (m, 4H), 0.87 (t, *J* = 6.9 Hz, 3H), 0.24 (s, 9H); ¹³C NMR δ 153.41, 148.20, 147.08, 137.87, 125.15, 122.64, 119.44, 102.25, 100.59, 31.59, 28.57, 22.18, 13.72, -0.30; IR (neat) 3017, 2959, 2928, 2861, 2157, 1581, 1472, 1401, 1250, 843, 761, 658 cm⁻¹; Anal. Calcd. for C₁₆H₂₃NSi: C, 74.65; H, 9.00. Found: C, 74.58; H, 8.76.

Synthesis of Conjugated Oligomers in Scheme 1.

(E)-2-(2-Bromoethenyl)-5-[(trimethylsilyl)ethynyl]pyridine (4).

To a stirred solution of (*Z*)-2-[2-(trimethylsilyl)ethenyl]-5-[(trimethylsilyl)ethynyl]pyridine (**3c**) (6.75 g, 24.7 mmol) in CH₂Cl₂ (50 mL), cooled to -78 °C, was added slowly a solution of Br₂ (1.58 mL, 30.8 mmol) in CH₂Cl₂ (15 mL). To the resulting orange / red solution were added MeOH (250 mL) and Na₂SO₃ (12.3 g), and the resulting mixture was stirred until it became light yellow. While still at -78 °C, the reaction mixture was poured into 10% Na₂SO₃ solution, and shaken until all color had disappeared. After separation, the aqueous layer was extracted thoroughly with pentane, and the combined organic extracts dried. The solution was concentrated *in vacuo* to give the crude of 2-[1,2-di(bromo)ethyl]-5-[(trimethylsilyl)ethynyl]pyridine, which was used immediately.

The crude was dissolved in MeOH (250 mL) and THF (60 mL), and treated with MeONa (2.00 g, 37.0 mmol) at 0 °C. The resulting mixture was stirred at this temperature for 1 h, and then at ambient temperature for 2 h. It was then partitioned between pentane and H_2O , and the

aqueous layer was extracted thoroughly with pentane. The combined organic extracts were dried and concentrated *in vacuo* to give acrude. The crude was purified by column chromatography on silica gel (Wakogel C-200, hexane – AcOEt) to afford (*E*)-2-(2-Bromoethenyl)-5-ethynylpyridine (3.49 g, 68% overall yield from 3c).

To a stirred solution of (*E*)-2-(2-Bromoethenyl)-5-ethynylpyridine (1.51 g, 7.26 mmol) in THF (24 mL) was added NaN[SiMe₃]₂ (9.44 mL, 1.00 mol/L in THF, 9.44 mmol) at -78 °C. After being stirred for 1 h, Me₃SiCl (1.38 mL, 10.9 mmol) was added to the reaction mixture. And then the mixture was warmed up to room temperature and stirred for 12 h. The reaction was terminated by an addition of H₂O. The resulting mixture was extracted with Et₂O, washed with brine, dried over MgSO₄, and concentrated *in vacuo* to give a crude. The crude was purified by column chromatography on silica gel (Wakogel C-200, hexane – Et₂O) to afford the title compound **4** (1.74 g, 86%) as a yellow oil. ¹H NMR δ 8.59 (dd, *J* = 2.4, 0.6 Hz, 1H), 7.68 (dd, *J* = 8.1, 2.4 Hz, 1H), 7.41 (d, *J* = 13.8, Hz, 1H), 7.11 (d, *J* = 13.8 Hz, 1H), 7.09 (dd, *J* = 8.1, 0.6 Hz, 1H), 0.26 (s, 9H); ¹³C NMR δ 152.75, 152.52, 139.44, 135.94, 120.77, 119.08, 113.98, 101.54, 99.07, 0.23; IR (neat) 2959, 2159, 1473, 1250, 1163, 1023, 936, 843 cm⁻¹; Anal. Calcd. for C₁₂H₁₄BrNSi: C, 51.43; H, 5.04; N, 5.00. Found: C, 51.48; H, 5.05. N, 5.06.

(E)-2-(1-Tetradecen-3-yn-1-yl)-5-[(trimethylsilyl)ethynyl]pyridine (Monomer 5).

To a mixture of **4** (1.07 g, 3.80 mmol), Pd(PPh₃)₂Cl₂ (53.4 mg, 0.0761 mmol), CuI (29.0 mg, 0.152 mmol), and triethylamine (4.98 mL, 35.7 mmol) in THF (40 mL) was added 1-dodecyne (1.05 mL, 4.94 mmol) at 0 °C and the reaction mixture was stirred at this temperature for 30 min. Et₂O and water were added to the mixture and the organic layer was separated, washed with brine, dried over MgSO₄, and concentrated *in vacuo* to give a crude. The crude was purified by column chromatography on silica gel (Wakogel C-200, hexane – Et₂O) to afford the title compound **5** (1.24 g, 90%) as a brown oil. ¹H NMR δ 8.58 (d, *J* = 1.8 Hz, 1H), 7.64 (dd, *J* = 8.1, 1.8 Hz, 1H), 7.12 (d, *J* = 8.1 Hz, 1H), 6.84 (d, *J* = 15.6 Hz, 1H), 6.72 (dt, *J* = 15.6, 2.1 Hz, 1H), 2.37 (dt, *J* = 2.1, 6.9 Hz, 2H), 1.61-1.51 (m, 2H), 1.46-1.34 (m, 2H), 1.33-1.22 (m, 12H), 0.88 (t, *J* = 6.9 Hz, 3H), 0.25 (s, 9H); ¹³C NMR δ 153.54, 152.52, 139.16, 138.18, 120.79, 118.84, 114.75, 101.90, 98.81, 96.50, 79.69, 31.89, 29.56, 29.51, 29.30, 29.13, 28.89, 28.65, 22.66, 19.79, 14.08, -0.18; IR (neat) 2926, 2855, 2210, 2158, 1615, 1582, 1471, 1371, 1250, 955, 863, 760 cm⁻¹. UV/Vis (CHCl₃) λ_{abs} (ε) [nm] = 294 (21 500), 325 (37 100); MS (EI) *m*/*z* (relative intensity), 365 (30.7, M⁺), 252 (100), 226 (61.9); Anal. Calcd for C₂₄H₃₅NSi: C, 78.84; H, 9.65. Found: C, 78.64; H, 9.62.

Dimer (6).

To a stirred solution of the monomer **5** (1.14 g, 3.13 mmol) in THF (10 mL) was added TBAF (3.13 mL, 1.0 mol/L in THF, 3.13 mmol) and the mixture was stirred for 1 h at 0 °C. The reaction mixture was extracted with Et_2O , dried over MgSO₄, and concentrated *in vacuo* to give a crude of the desilylated monomer. The terminal acetylene derivative was used for the next step without further purification.

To a mixture of 4 (1.05 g 3.75 mmol), Pd(PPh₃)₄ (72.2 mg, 0.0625 mmol), and CuI (23.8 mg, 0.125 mmol) in degassed *i*-Pr₂NH (1.97 mL, 14.1 mmol) was added a solution of the desilylated monomer in degassed THF (16 mL). The reaction mixture was stirred at room temperature for 1 h and extracted with Et₂O, washed with brine, dried over MgSO₄ and concentrated in vacuo to afford a crude product, which was chromatographed on silica gel (Wakogel C-200, hexane - Et₂O) to yield the dimer 6 (1.20 g, 78% overall yield from the monomer 5) as a yellow solid. M.p. = 125-126 °C; ¹H NMR δ 8.63 (d, J = 2.1 Hz, 1H) 8.62 (d, J = 2.4 Hz, 1H), 7.68 (dd, J = 7.8, 2.4 Hz, 1H), 7.67 (dd, J = 8.1, 2.1 Hz, 1H), 7.18 (d, J = 7.8 Hz, 1H), 7.16 (d, J = 8.1 Hz, 1H), 7.05 (d, J = 15.9 Hz, 1H), 6.98 (d, J = 15.9 Hz, 1H), 6.86 (d, J = 15.9 Hz, 1H), 6.75 (dt, J = 15.9, 2.1 Hz, 1H), 2.38 (dt, J = 2.1, 6.9 Hz, 2H), 1.62-1.51 (m, 2H), 1.48-1.22 (m, 14H), 0.88 (t, J = 6.9 Hz, 3H), 0.26 (s, 9H); ¹³C NMR δ 153.53, 152.76, 152.67, 152.22, 140.00, 139.30, 138.80, 138.17, 121.59, 121.06, 119.45, 118.87, 114.79, 113.07, 101.72, 99.41, 96.69, 92.60, 91.48, 79.72, 31.88, 29.56, 29.51, 29.30, 29.13, 28.90, 28.64, 22.67, 19.80, 14.10, -0.20; IR (KBr) 2922, 2852, 2188, 2154, 1575, 1469, 1369, 1250, 954, 858, 758 cm⁻¹; UV/Vis (CHCl₃) λ_{abs} (ϵ) [nm] = 256 (15 700), 294 (17 600), 367 (66 300), 389 (51 100); MALDI-TOF-MS (DHB) 492.9 (Calcd for C₃₃H₄₀N₂Si: 492.3); Anal. Calcd for C₃₃H₄₀N₂Si: C, 80.43; H, 8.18; N, 5.68. Found: C, 80.54; H, 8.11; N, 5.98.

Trimer (7).

The dimer **6** (1.10 g, 2.23 mmol) was desilylated with TBAF (2.23 mL, 1.0 mol/L in THF, 2.23 mmol) and the resulting terminal acetylene was cross-coupled with vinyl bromide **4** (0.751 g, 2.68 mmol) in degassed CHCl₃ (22 mL) in the presence of Pd(PPh₃)₄ (77.4 mg, 0.0670 mmol), CuI (25.5 mg, 0.134 mmol), and degassed *i*-Pr₂NH (2.03 mL, 14.5 mmol) for 1 h as described in the procedure for synthesis of **6**. The reaction was extracted with CHCl₃ and recrystallization from CHCl₃ - hexane afforded the trimer **7** (1.00 g, 73% overall yield from the dimer **6**) as a yellow solid. M.p. = >220 °C (decoloration from yellow to brown); ¹H NMR δ 8.68-8.64 (m, 1H), 8.64-8.61 (m, 2H), 7.71 (dd, *J* = 7.8, 2.1 Hz, 1H), 7.70 (dd, *J* = 7.8, 2.4 Hz, 1H), 7.68 (dd, *J* = 7.8, 2.1 Hz, 1H), 7.26-7.17 (m, 2H), 7.17 (d, *J* = 7.8 Hz, 1H), 7.073 (d, *J* = 15.9 Hz, 1H), 7.070 (d, *J* = 15.9 Hz, 1H), 7.0

7.00 (d, J = 15.9 Hz, 1H), 6.99 (d, J = 15.9 Hz, 1H), 6.87 (d, J = 15.9 Hz, 1H), 6.75 (dt, J = 15.9, 2.1 Hz, 1H), 2.39 (dt, J = 2.1, 6.6 Hz, 2H), 1.63-1.51 (m, 2H), 1.47-1.22 (m, 14H), 0.88 (t, J = 7.2 Hz, 3H), 0.27 (s, 9H); ¹³C NMR δ 153.70, 152.94, 152.83 (x2), 152.52, 152.36, 140.33, 140.11, 139.43, 139.03, 138.93, 138.28, 121.89, 121.71, 121.13, 119.60 (x2), 118.96, 114.90, 113.20, 113.06, 101.75, 99.55, 96.75, 93.10, 92.71, 91.65, 91.37, 79.74, 31.81, 29.48, 29.43, 29.22, 29.05, 28.82, 28.56, 22.57, 19.72, 13.98, -0.33; IR (KBr) 2922, 2852, 2203, 2152, 1572, 1468, 1367, 1250, 956, 855, 757 cm⁻¹. UV/Vis (CHCl₃) λ_{abs} (ϵ) [nm] = 282 (22 200), 391 (86 400); MALDI-TOF-MS (DHB) 619.8 (Calcd for C₄₂H₄₅N₃Si: 619.3); Anal. Calcd for C₄₂H₄₅N₃Si: C, 81.37; H, 7.32. Found: C, 81.46; H, 7.32.

Tetramer (8).

The trimer **7** (100 mg, 0.161 mmol) was desilylated with TBAF (0.161 mL, 1.0 mol/L in THF, 0.161 mmol) and the resulting terminal acetylene was cross-coupled with vinyl bromide **4** (54.2 mg g, 0.194 mmol) in degassed CHCl₃ (40 mL) in the presence of Pd(PPh₃)₄ (37.3 mg, 0.0323 mmol), CuI (12.3 mg, 0.0645 mmol), and degassed *i*-Pr₂NH (0.147 mL, 1.05 mmol) for 1 h as described in the procedure for synthesis of **6**. The reaction was extracted with CHCl₃ and column chromatography on silica gel (Wakogel C-200, hexane – CHCl₃) and the following recrystallization from CHCl₃ - hexane afforded the tetramer **8** (62.2 mg, 52% overall yield from the trimer **7**) as a yellow solid. M.p. = >250 °C (decoloration from yellow to brown); ¹H NMR δ 8.70-8.66 (m, 2H), 8.65-8.60 (m, 2H), 7.76-7.64 (m, 4H), 7.26-7.20 (m, 3H), 7.17 (d, *J* = 7.8 Hz, 1H), 7.12-6.98 (m, 5H), 7.00 (d, *J* = 15.9 Hz, 1H), 6.87 (d, *J* = 15.3 Hz, 1H), 6.82-6.72 (m, 1H), 2.44-2.34 (m, 2H), 1.62-1.46 (m, 2H), 1.36-1.18 (m, 14H), 0.88 (t, *J* = 6.9 Hz, 3H), 0.27 (s, 9H); IR (KBr) 2923, 2852, 2190, 2153, 1570, 1543, 1468, 1368, 1251, 957, 859 cm⁻¹. UV/Vis (CHCl₃) λ_{abs} (ϵ) [nm] =285 (24 600), 329 (35 300), 398 (108 700); MALDI-TOF-MS (DHB) 747.2 (Calcd for C₅₁H₅₀N₄Si: 746.4); Anal. Calcd for C₅₁H₅₀N₄Si: N, 7.50. Found: N, 7.57. Solubility was too low to measure the ¹³C NMR spectrum.

Determination of the Structure of 3a-c and 3e.

The structures of **3a-c** and **3e** were confirmed in comparison with the corresponding authentic sample prepared according to the following schemes. The yields are not necessarily optimized.

For 3a

3-[(Trifluoromethane)sulfonyl]oxy-2-[(trimethylsilyl)ethynyl]pyridine.

To 3-acetoxy-2-[(trimethylsilyl)ethynyl]pyridine⁷ (1.29 g, 5.53 mmol) in Et₂O (18 mL) was added DIBAL-H (14.0 mL, 0.95 mol/L in hexane, 13.3 mmol) at -78 °C and warmed up to 0 °C over 2 h and then the reaction mixture was stirred for 30 min at this temperature. After H₂O (1.5 mL) was cautiously added to the mixture, NaF (1.7 g) and Celite (1.4 g) were successively added to the resulting mixture. The mixture was filtered through Celite pad, and then the filtrate was evaporated to give a crude, which was recrystallized from Et₂O – hexane to afford 3-hydroxy-2-[(trimethylsilyl)ethynyl]pyridine (0.558 g, 53%). ¹H spectrum of this product was identical with the literature.⁸

To a stirred solution of 3-hydroxy-2-[(trimethylsilyl)ethynyl]pyridine (0.549 g, 2.87 mmol) and Et₃N (0.880 mL, 6.31 mmol) in CH₂Cl₂ (9 mL) was added trifluoromethanesulfonic anhydride (0.579 mL, 3.44 mmol) at 0 °C and the reaction mixture was stirred for 8 h at room temperature. H₂O was added to the mixture at 0 °C and the organic layer was separated, washed with brine, dried over MgSO₄, and concentrated *in vacuo* to give a crude. The crude was purified by column chromatography on silica gel (Wakogel C-200, hexane – AcOEt) to afford the title compound (0.499 g, 54%). ¹H NMR δ 8.54 (dd, *J* = 4.5, 1.2 Hz, 1H), 7.59 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.32 (dd, *J* = 8.4, 4.5 Hz, 1H), 0.25 (s, 9H); ¹³C NMR δ 149.30, 147.92, 137.33, 129.31, 124.03, 118.64 (q, *J*_{CF} = 319.3 Hz), 104.27, 96.94, -0.90.

3-[(Trifluoromethane)sulfonyl]oxy-2-[(trimethylsilyl)ethenyl]pyridine.

To a stirred solution of 3-[(Trifluoromethane)sulfonyl]oxy-2-[(trimethylsilyl)ethynyl]pyridine (0.513 g, 1.59 mmol) and Ti(O-*i*-Pr)₄ (0.702 mL, 2.38 mmol) in 16 mL of Et₂O was added a 1.38 M solution of *i*-PrMgCl in Et₂O (3.45 mL, 4.76 mmol) at -78 °C. The solution was warmed up to -50 °C over 30 min and stirred at this temperature for 2 h. The reaction was terminated by an addition of H₂O (2.4 mL). After addition of NaF and Celite, the resulting mixture was filtered through a pad of Celite and concentrated *in vacuo* to give a crude, which was purified by column chromatography on silica gel (Wakogel C-200, hexane - Et₂O) to afford the title compound (0.434 g, 84%). ¹H NMR δ 8.55 (dd, J = 4.2, 1.2 Hz, 1H), 7.59 (dd, J = 8.1, 1.2 Hz, 1H), 7.43 (d, J = 14.7 Hz, 1H), 7.26 (dd, J = 8.1, 4.2 Hz, 1H), 6.35 (d, J = 14.7 Hz, 1H), 0.16 (s, 9H); ¹³C NMR δ 149.07, 147.66, 144.28, 143.67, 135.11, 129.23, 123.31, 118.51 (q, $J_{C-F} = 318.4$ Hz), 0.30.

(Z)-2-[2-(trimethylsilyl)ethenyl]-3-[(trimethylsilyl)ethynyl]pyridine (3a).

To a mixture of 3-[(Trifluoromethane)sulfonyl]oxy-2-[(trimethylsilyl)ethenyl]pyridine (0.349 g, 1.07 mmol), CuI (25.7 mg 0.135 mmol), and Pd(PPh₃)₄ (78.0 mg 0.0675 mmol) in diisopropylamine (1.8 mL) was added (trimethylsilyl)acetylene (0.420 mL, 2.97 mmol) and the mixture was stirred for 3 day at 80 °C. Et₂O and H₂O were added to the mixture and the organic layer was separated, washed with brine, dried over MgSO₄, and concentrated *in vacuo* to give a crude. The crude was purified by column chromatography on silica gel (Wakogel C-200, hexane – Et₂O) to afford the title compound **3a** (0.278 g, 95%). Physical properties of the authentic sample thus synthesized were identical with those of **3a** obtained by the mono-titanation of **2a**.

For 3b

2-Chloro-4-(2,2-dibromoethenyl)pyridine.

To a solution of CBr₄ (13.1 g, 39.4 mmol) in CH₂Cl₂ (41 mL) was added a CH₂Cl₂ (30 mL) solution of PPh₃ (20.7 g, 78.8 mmol) at 0 °C. After being stirred for 5 min, a solution of 2-chloro-4-pyridinecarboxaldehyde⁹ (1.86 g, 13.1 mmol) in CH₂Cl₂ (30 mL) was introduced to the mixture and the resulting mixture was stirred for 20 min at room temperature. H₂O was added to the mixture at 0 °C and the organic layer was separated with CH₂Cl₂, washed with brine, dried over MgSO₄, and concentrated *in vacuo* to give a crude. The crude was purified by column chromatography on silica gel (Wakogel C-200, hexane – AcOEt) to afford the title compound (0.948 g, 24%). ¹H NMR δ 8.40 (dd, *J* = 5.1, 0.6 Hz, 1H), 7.47 (ddd, *J* = 1.5, 0.75, 0.6 Hz, 1H), 7.39 (dd, J = 0.75, 0.6 Hz, 1H), 7.36 (ddd, J = 5.1, 1.5, 0.6 Hz, 1H); ¹³C NMR δ 152.12, 150.03, 145.58, 133.34, 123.01, 121.26, 95.88.

2-Chloro-4-[(trimethylsilyl)ethynyl]pyridine.

To a stirred solution of 2-Chloro-4-(2,2-dibromoethenyl)pyridine (0.726 g, 2.44 mmol) in THF (8 mL) was added *n*-BuLi (3.22 mL, 1.59 mol/L in hexane, 5.12 mmol) at -78 °C After stirring for 30 min, chlorotrimethylsilane (0.465 mL, 3.66 mmol) was added. After stirring at -78 °C for 1 h, the reaction mixture was warmed up to room temperature and stirred for 30 min. The reaction was terminated by an addition of H₂O. The organic layer was separated and the aqueous layer was extracted with Et₂O. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated to give a crude, which was chromatographed on silica gel (Wakogel C-200, hexane – AcOEt) to afford the title compound (0.261 g, 51%). ¹H NMR δ 8.32 (dd, *J* = 5.1, 0.9 Hz, 1H), 7.35 (dd, *J* = 1.2, 0.9 Hz, 1H), 7.21 (dd, *J* = 5.1, 1.2 Hz, 1H), 0.25 (s, 9H); ¹³C NMR δ 151.76, 149.63, 134.14, 126.45, 124.49, 101.87, 100.55, -0.59.

2-Chloro-4-[(trimethylsilyl)ethenyl]pyridine.

To a stirred solution 2-Chloro-4-[(trimethylsilyl)ethynyl]pyridine (0.233 g, 1.11 mmol) and Ti(O-*i*-Pr)₄ (0.492 mL, 1.67 mmol) in 11 mL of Et₂O was added a 1.30 M solution of *i*-PrMgCl in Et₂O (2.56 mL, 3.33 mmol) at -78 °C. The solution was warmed up to -50 °C over 30 min and stirred at this temperature for 2 h. The reaction was terminated by an addition of H₂O (1.7 mL). After addition of NaF and celite, the resulting mixture was filtered through a pad of Celite and concentrated *in vacuo* to give a crude, which was purified by column chromatography on silica gel (Wakogel C-200, hexane - AcOEt) to afford the title compound (0.0461 g, 20%). ¹H NMR δ 8.32 (dd, *J* = 5.1, 0.6 Hz, 1H), 7.20 (dd, *J* = 1.5, 0.6 Hz, 1H), 7.18 (d, *J* = 15.0 Hz, 1H), 7.08 (dd, *J* = 5.1, 1.5 Hz, 1H), 6.11 (d, *J* = 15.0 Hz, 1H), 0.077 (s, 9H); ¹³C NMR δ 151.62, 150.81, 149.40, 142.16, 139.22, 123.30, 121.64, -0.17.

4-(Trimethylsilyl)ethenyl-2-[(trimethylsilyl)ethynyl]pyridine.

To a mixture of 2-Chloro-4-[(trimethylsilyl)ethenyl]pyridine (43.8 mg, 0.207 mmol), CuI (15.8 mg 0.0827 mmol), and Pd(PPh₃)₂Cl₂ (29.0 mg 0.0414 mmol) in triethylamine (1 mL) was added (trimethylsilyl)acetylene (87.7 μ L, 0.621 mmol) and the mixture was stirred for 3 days at 110 °C The reaction mixture was filtered and the filtrate was concentrated *in vacuo* to give a crude. The crude was purified by column chromatography on silica gel (Wakogel C-200, hexane – AcOEt) to afford the title compound (6.40 mg, 11%) which is the site-isomer of **3b** obtained by the mono-titanation of **2b**. ¹H NMR δ 8.50 (dd, *J* = 5.1, 0.9 Hz, 1H), 7.33 (dd, *J* = 1.5, 0.9 Hz, 1H), 7.19 (d, *J* = 15.3 Hz, 1H), 7.10 (dd, *J* = 5.1, 1.5 Hz, 1H), 6.07 (d, *J* = 15.3 Hz, 1H), 0.27 (s,

9H), 0.067 (s, 9H); ¹³C NMR δ 149.76, 147.98, 143.00, 142.90, 138.37, 126.63, 122.14, 103.73, 94.83, -0.11, -0.44; IR (neat) 2960, 2901, 2162, 1583, 1538, 1463, 1389, 1251, 844, 763, 657 cm⁻¹.

For 3c

(Z)-2-[2-(trimethylsilyl)ethenyl]-5-[(trimethylsilyl)ethynyl]pyridine (3c).

To a stirred solution 5-bromo-2-[(trimethylsilyl)ethynyl]pyridine⁶ (0.298 g, 1.17 mmol) and Ti(O-*i*-Pr)₄ (0.415 mL, 1.41 mmol) in 10 mL of Et₂O was added a 1.61 M solution of *i*-PrMgCl in Et₂O (1.75 mL, 2.81 mmol) at -78 °C. The solution was warmed up to -50 °C over 30 min and stirred at this temperature for 2 h. The reaction was terminated by an addition of H₂O (1.4 mL). After addition of NaF and Celite, the resulting mixture was filtered through a pad of Celite and concentrated *in vacuo* to give a crude, which was purified by column chromatography on silica gel (Wakogel C-200, hexane - Et₂O) to afford 5-bromo-2-[(trimethylsilyl)ethenyl]pyridine (0.222 g, 74%).

To a mixture of 5-bromo-2-[(trimethylsilyl)ethenyl]pyridine (0.206 g, 0.804 mmol), CuI (30.6 mg 0.161 mmol), and Pd(PPh₃)₂Cl₂ (56.4 mg 0.0804 mmol) in triethylamine (3.2 mL) and CH₂Cl₂ (0.6 mL) was added (trimethylsilyl)acetylene (0.170 mL, 1.21 mmol) and the mixture was stirred for 6 h at room temperature. Et₂O and H₂O were added to the mixture and the organic layer was separated, washed with brine, dried over MgSO₄, and concentrated *in vacuo* to give a crude. The crude was purified by column chromatography on silica gel (Wakogel C-200, hexane – Et₂O) to afford the title compound **3c** (0.180 g, 82%). Physical properties of the authentic sample thus synthesized were identical with those of **3c** obtained by the mono-titanation of **2c**.

For 3e

3-Bromo-4-[(trimethylsilyl)ethenyl]pyridine.

To a stirred solution 3-bromo-4-[(trimethylsilyl)ethynyl]pyridine³ (0.670 g, 2.64 mmol) and Ti(O-*i*-Pr)₄ (1.01 mL, 3.43 mmol) in 26 mL of Et₂O was added a 1.30 M solution of *i*-PrMgCl in Et₂O (5.27 mL, 6.85 mmol) at -78 °C. The solution was warmed up to -50 °C over 30 min and stirred at this temperature for 2 h. The reaction was terminated by an addition of H₂O (3.4 mL). After addition of NaF and Celite, the resulting mixture was filtered through a pad of Celite and concentrated *in vacuo* to give a crude, which was purified by column chromatography on silica gel (Wakogel C-200, hexane - Et₂O) to afford the title compound (0.452 g, 67%). ¹H NMR δ 8.68 (s, 1H), 8.45 (d, *J* = 5.1 Hz, 1H), 7.182 (d, *J* = 14.7 Hz, 1H), 7.181 (d, *J* = 5.1 Hz, 1H), 6.11 (d, *J* = 14.7 Hz, 1H), -0.014 (s, 9H); ¹³C NMR δ 151.72, 148.22, 147.88, 142.87, 137.90, 124.61, 121.57, -0.28.

(Z)-4-[2-(trimethylsilyl)ethenyl]-3-[(trimethylsilyl)ethynyl]pyridine (3e).

To a mixture of 3-bromo-4-[(trimethylsilyl)ethenyl]pyridine (0.422 g, 1.65 mmol), CuI (21.9 mg 0.115 mmol), and Pd(PPh₃)₂Cl₂ (40.3 mg 0.0574 mmol) in triethylamine (7.7 mL) was added (trimethylsilane)acetylene (0.406 mL, 2.87 mmol) and the mixture was stirred for 3 days at 110 °C. The reaction mixture was filtered and the filtrate was concentrated *in vacuo* to give a crude. The crude was purified by column chromatography on silica gel (Wakogel C-200, hexane – AcOEt) to afford the title compound **3e** (0.371 g, 82%). Physical properties of the authentic sample thus synthesized were identical with those of **3e** obtained by the mono-titanation of **2e**.

Figure 1. Electronic Absorption Spectra of 5-8.

Figure 2. Fluorescence spectra of 5-8.

References

- (1) Kim, C.-S.; Russell, K. C. J. Org. Chem. 1998, 63, 8229-8234.
- (2) Bunten, K. A.; Kakkar, A. K. *Macromolecules* **1996**, *29*, 2885-2893.
- (3) Baxter, P. N. W. Chem. Eur. J. 2003, 9, 2531-2541.
- (4) (a) Trécourt, F.; Breton, G.; Bonnet, V.; Mongin, F.; Marsais, F.; Quéguiner, G. *Tetrahedron Lett.* 1999, 40, 4339-4342. (b) Holmes, B. T.; Pennington, W.; Hanks, T. W. *Molecules* 2002, 7, 447-455.
- (5) Dana, B. H.; Robinson, B. H.; Simpson, J. J. Organomet. Chem. 2002, 648, 251-269.
- (6) Tilly, J. W.; Zawoiski, S. J. Org. Chem. **1988**, 53, 386-390.
- (7) Lindström, S.; Ripa, L.; Hallberg, A. Org. Lett. 2000, 2, 2291-2293.
- (8) Park, S. K.; Baek, D. J. J. Photochem. Photobiol. A: Chem. 2003, 157, 15-22.
- (9) Frey, L. F.; Marcantonio, K.: Frantz, D. E.; Murry, J. A.; Tillyer, R. D.; Grabowski, E. J. J.;
 Rieder, P. J. *Tetrahedron Lett.* 2001, 42, 6815-6818.