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ABSTRACT: ABTS (2,2′-azinobis(3-ethylbenzothiazo-
line)-6-sulfonic acid) oxidation to form its radical cation
in the presence of H2O2 is frequently used as a test for
determining the peroxidase activity of enzyme mimics.
Detailed studies using salen-type Mn(III) complexes show
that photochemical processes involving H2O2, ABTS, and
the complex itself can lead to erroneous results. The
capability of the complexes to act as •OH scavengers can
be also relevant when the mechanism of their biological
activity is considered.

Control of H2O2 levels in biological systems by antioxidant
enzymes as catalases, peroxidases, and glutathione

peroxidases1 is critical to avoid oxidative stress, which causes
numerous diseases and aging.2 The diammonium salt of 2,2′-
azinobis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) is a
water-soluble trap for radical species commonly used for
peroxidase assays3 with both natural peroxidases4 and enzyme
mimetics.5 Peroxidase mimics may constitute an exogenous
source of peroxidases for living organisms to neutralize
overproduction of H2O2,

6 but they also attract interest in
industrial processes under environmentally friendly catalytic
methods.7 Hundreds of compounds have been evaluated by
the ABTS test since the 70s,8 including some reported by us.9

ABTS is colorless and reacts readily with H2O2 in the presence
of a catalyst to yield a green radical cation, ABTS•+, with
several absorption bands that can be used for quantitative
determinations.10 Although the stability of ABTS and ABTS•+

may vary depending on the reaction conditions,11 reproducible
results are usually obtained with this method, which allows
establishing and comparing the peroxidase-like activity of
artificial mimics.
Manganese complexes with salen, and related ligands

containing different spacers between the aromatic rings, are
ROS scavengers whose catalytic and pharmacological proper-
ties have been studied for over 20 years.6a,12 It is well-
established that they protect cells from oxidative damage in
animal models and lead to benefits in Alzheimer’s and
Parkinson’s diseases, stroke, motor neuron disease, multiple
sclerosis, and excitotoxic neural injury.13 To gain insight into
the kinetic and mechanistic details of the peroxidase-like
activity of salen-type Mn(III) complexes, we selected three

artificial mimics (1−3, Chart 1) that differ in their neutral or
ionic nature and in the spacers between the phenyl rings.

These compounds had been previously reported as peroxidase-
like catalysts on the basis of the results for the standard ABTS
peroxidase test.9 For comparative purposes, the well-known
EUK-134 complex (4), which acts as scavenger for hydrogen
peroxide, and has been tested against different oxidative
pathologies and commercialized as a potent antioxidant,6a,12,13c

was also included in the study.
During the course of the work we found that spectral

scanning experiments with solutions containing ABTS, H2O2,
and one of the complexes at concentrations typically used in
the ABTS test yield systematically different results depending
on the instrument used (see Table 1 and the SI). The
appearance of the bands typical of ABTS•+ is observed with
any of the instruments, but the experiments showed that those
bands initially increase and then decrease in a slower process.
Both the magnitude of the absorbance changes and the time
scale drastically depend on the instrument used, as illustrated
by the kinetic traces in Figure 1 at wavelengths corresponding
to maxima in the spectrum of ABTS•+. The time required to
achieve the maximum concentration of the radical is only 35 s
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Chart 1. Structure of Complexes 1−4
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with the stopped-flow (SF) instrument, which uses a
continuous source of white light, but it increases up to 21
min with the conventional spectrophotometer, which uses a
pulsed Xe lamp with a scanning monochromator that reduces
the amount of light reaching the sample. In addition, the
intensity of the ABTS•+ bands is higher with the SF
instrument. These observations clearly suggest that the striking
effect of the instrument used is caused by some photochemical
process, which was confirmed by the slower formation of
ABTS•+ in SF experiments using a 455 nm cut-on long pass
filter (Figure 1). Nevertheless, the amount of ABTS•+ formed
in the latter experiments is close to that achieved without the
filter despite the intensity of UV light being presumably smaller

than in the experiments with the conventional spectropho-
tometer. The observation of a maximum for the bands of
ABTS•+ is somewhat surprising because it is considered a
persistent radical, stable even in solutions containing dissolved
oxygen.14 The negligible effect of oxygen was confirmed in
experiments using oxygen-depleted solutions, which yielded
results similar to those in the presence of air, both in the
amount of ABTS•+ formed and the time course of its
absorption bands. Thus, the disappearance of ABTS•+ must
be caused by its disproportionation3a and/or its interaction
with other species, probably including H2O2 and/or the metal
complex. Actually, it has been reported that disproportionation
and overoxidation of ABTS•+ leads to the red azodication
ABTS2+ that decomposes yielding a complex mixture of
products.15 Those processes have been reported to require
several hours for completion, but the SF kinetic traces indicate
that they can occur in a much faster time scale, probably
because they are also photochemically activated.16 In any case,
the present results indicate that the peroxidase activity
estimated with this test depends on both the instrument
used and the time at which absorbance readings are taken,
which constitutes a serious limitation when the activity of
different compounds has to be compared.
For additional information, the behavior of the three

reagents involved in the test (ABTS, H2O2, and the artificial
mimic) was tested separately and in pairs. Solutions of the
complexes 1−4 do not show detectable spectral changes when
subjected to the SF illumination conditions. However, the
photochemical generation of •OH and other radicals from
H2O2 (eq 1) is well-known,17 and the photochemical
generation of ABTS•+ from ABTS (eq 2) in aqueous solution
was reported more recently, although with a lower quantum
yield.14 Despite these reports, the possibility of interferences
from photochemical processes in the ABTS peroxidase test is
usually ignored. In our case, ABTS solutions only show the
formation and subsequent decay of small amounts of ABTS•+

when the SF instrument is used (Table 1). Solutions
containing ABTS and H2O2 yield higher concentrations of
ABTS•+, which can be explained by considering that the higher
quantum yield of H2O2 leads to rapid formation of •OH
radicals that react with ABTS (eq 3). In any case, the amount
of ABTS•+ formed in the experiments with ABTS, either alone
or with H2O2, is smaller than for solutions containing ABTS,
H2O2, and any of the complexes, thus suggesting participation
of the Mn species in the process. This suggestion was
confirmed in experiments using mixtures of ABTS and one of
the complexes, which showed yields intermediate between
those observed for ABTS alone and for solutions containing all
three reagents (Table 1).
Significant amounts of ABTS•+ are formed from binary

mixtures of ABTS and the Mn complexes even when the filter
is used, which can be interpreted by considering that the Mn
complex is photochemically activated (eq 4). Although the
high intensity of the ABTS•+ bands hinders an analysis of the
spectral changes corresponding to the Mn complex, it must be
pointed out that related Mn(III) complexes have been shown
to be photoactive, the greatest activity being observed in the
450−600 nm wavelength range.18 On the other hand, solutions
containing H2O2 and one of the complexes showed spectral
changes (Figure 2) that also indicate the occurrence of a
photochemical process that leads to disappearance of the
complex (Table 2). Again the amount of complex decomposed
and the time required for its disappearance are strongly

Table 1. ABTS•+ Yield Obtained under Different
Illumination Conditions for Solutions with Different
Compositions

ABTS•+ yielda

compoundsb UV−visc SFd 455 nm filtere

1 + ABTS + H2O2 0.06 0.68, 0.66f 0.64
2 + ABTS + H2O2 0.08 0.62 0.21
3 + ABTS + H2O2 0.04 0.68 0.56
4 + ABTS + H2O2 0.09 0.68 0.35
ABTS 0 0.10 0
ABTS + H2O2 0.05 0.33 0
ABTS + 1 0 0.58 0.02
ABTS + 2 0 0.35 0.06
ABTS + 3 0 0.26 0.07
ABTS + 4 0 0.38 0.14

aQuotient between the maximum concentration of ABTS•+ and the
initial concentration of ABTS. bSolvent, acetonitrile with 2.5% of
water; initial concentrations, [ABTS]0 = (1.6−4.8) × 10−5 M,
[complex]0 = 2.5 × 10−5 M, [H2O2]0 = 0.05 M. cConventional UV−
vis spectrophotometer. dStopped-flow instrument. eStopped-flow
instrument using a 455 nm cut-on long pass filter. fOxygen-depleted
solutions.

Figure 1. Kinetic traces at 400 (red) and 750 (blue) nm obtained for
the ABTS peroxidase test using compound 1 with a conventional
spectrophotometer (bottom, note the different scales of the main
figure and the inset) and with a stopped-flow instrument (top). The
blue dashed line corresponds to an SF experiment using a 455 nm cut-
on long pass filter. Solvent, acetonitrile with 2.5% of water;
temperature, 25.0 °C; initial concentrations, [ABTS]0 = 3.1 × 10−5

M, [complex]0 = 2.5 × 10−5 M, [H2O2]0 = 0.05 M.
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dependent on the illumination conditions, which suggests that
the complexes react with the photochemically generated •OH
radicals yielding a new (MnL)″ species (eq 1). Interestingly,
complex decomposition in the presence of H2O2 is reduced
with the 455 nm filter below the levels observed with the
conventional UV−vis instrument (Table 2), whereas the
ordering is reversed in the presence of ABTS, the use of the
filter leading to higher yields (Table 1). When taken together
the whole set of experimental observations indicate the
occurrence of a complex series of photochemically triggered
radical processes that involve all of the three species used in
the ABTS peroxidase test, i.e., ABTS, H2O2, and the Mn
mimics. As a consequence, the amount of ABTS•+ estimated is
largely affected by the illumination conditions and the time at
which absorbance readings are taken, thus introducing severe
limitations to the use of the test. At this time it is not possible
to determine the ABTS•+ yield resulting from non-photo-
chemical processes, but the effects of light and of the changes
of the absorbance with time can be minimized by avoiding
illumination at wavelengths shorter than 455 nm and by
measuring absorbance at different times. Although further
work is required to shed light on the details,19 and especially
the nature of the (MnL)′ and (MnL)″ species, the present
results indicate that formation of ABTS•+ does not necessarily
indicate that the Mn mimic has peroxidase activity but that
they can be involved in radical processes. In particular, the
capability of these complexes, including EUK-134, to act as
•OH scavengers must be considered when explaining the
mechanism of their biological activity.

hH O OH other radical species2 2 ν+ → +•
(1)

hABTS ABTSν+ → •+ (2)

ABTS OH ABTS OH+ → +• •+ − (3)

hMnL ABTS (MnL) ABTSν+ + → ′ + •+ (4)

MnL OH (MnL)+ → ″• (5)
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