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A new kind of intermolecular indole C–H amidation reaction catalyzed by the most frequently used palladium catalyst has 
been developed. Sulfonyl azide was employed as an innovative nitrogen source and environmentally benign nitrogen was pro-
duced as the only byproduct. 
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1  Introduction 

Methods of C–N bond formation have attracted particular 
attention of organic chemists due to the fact that nitrogen- 
containing molecules are ubiquitous in pharmaceuticals, 
agricultural chemicals, natural products and synthetic mate-
rials [1]. Among them, Ullmann reaction [2] and Buchwald- 
Hartwig amination [3] have been extensively investigated as 
efficient strategies using readily available pre-functionalized 
haloarenes. In recent years, transition metal-catalyzed direct 
amination of C–H bonds has emerged as a powerful tool 
without the need for pre-functionalized arenes [4,5]. How-
ever, this process usually requires external oxidants to com-
plete the catalytic cycles [6]. Alternatively, electrophilic 
aminating agents [7], such as halogenated amines, have 
been successfully employed in C–H amination of arenes. 
However, generation of stoichiometric halogenated waste 
cannot be avoided. Recently, Chang’s group [8] has demon-
strated that sulfonyl azides could be used as novel ami-
dation agents with environment benign N2 as the sole by-
product in the absence of additional oxidants. After that, a 
surge of sulfonyl azide participated C–H amidation reac-

tions have appeared in literatures [9,10]. Typically, these 
reactions are catalyzed by Rh, Ru and Ir using various di-
recting groups. Palladium, the most frequently used     
transition-metal in C–H activation, has been absent from the 
feast.  

Indole and its derivatives are always hot topics because 
of their wide existence in biologically relevant compounds 
[11]. As a result, much effort has been made to synthesis of  
indole through either construction or decoration of the in-
dole cores [12]. The electron-rich character of indoles al-
lows them to undertake direct C–H bond functionalization 
resulting in the formation of carbon-carbon or carbon-  
heteroatom bonds at C2 or C3 position. Previously, we have 
reported palladium-catalyzed C–H functionalization of in-
doles followed by isocyanide insertion [13]. Considering the 
electronic similarity between carbene and nitrene, we envi-
sioned that C–H amidation of indoles with sulfonyl azide 
might take place using palladium catalyst (Scheme 1) [14]. 

2  Results and discussion 

To test our hypothesis, we initiated the study by investigat-
ing the reaction of 2-phenylindole 1a with p-methylbenzen- 
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esulfonyl azide (TsN3) 2a in the presence of Pd(TFA)2 in 
THF at 80 °C and found no desired product appeared (En-
try1, Table 1). Intriguingly, the target product 3a was gen-
erated in 32% yield by addition of PPh3 (Entry 2). Screen-
ing of solvents indicated that non-polar solvents were more 
suitable than polar ones and m-xylene was the optimal sol-
vent of choice (Entries 3–8). Other tested palladium salts 
including PdCl2, Pd(OAc)2, Pd(PPh3)2Cl2 and Pd(acac)2  

 

Scheme 1  Reaction between indole and carbene or nitrene. 

Table 1  Optimization of the reaction conditions a) 

 
Entry Pd Ligand Additive Solvent Yield (%) b)

1 Pd(TFA)2 – – THF nd 
2 Pd(TFA)2 PPh3 – THF 32 
3 Pd(TFA)2 PPh3 – Toluene 71 
4 Pd(TFA)2 PPh3 – DCE 68 
5 Pd(TFA)2 PPh3 – CH3CN trace 
6 Pd(TFA)2 PPh3 – DMF trace 
7 Pd(TFA)2 PPh3 – m-xylene 76 
8 Pd(TFA)2 PPh3 – mesitylene 73 
9 PdCl2 PPh3 – m-xylene nd 
10 Pd(OAc)2 PPh3 – m-xylene 14 
11 Pd(PPh3)2Cl2 PPh3 – m-xylene trace 
12 Pd(acac)2 PPh3 – m-xylene 14 
13 – PPh3 – m-xylene nd 
14 Pd(TFA)2 PCy3 – m-xylene nd 
15 Pd(TFA)2 dppm – m-xylene nd 
16 Pd(TFA)2 dppf – m-xylene nd 

17 c) Pd(TFA)2 TMEDA – m-xylene nd 
18 c) Pd(TFA)2 Phen – m-xylene nd 
19 c) Pd(TFA)2 L-proline – m-xylene nd 
20 d) Pd(TFA)2 PPh3 PivOH m-xylene 53 
21 e) Pd(TFA)2 PPh3 Na2CO3 m-xylene 24 
22 f) Pd(TFA)2 PPh3 H2O m-xylene 95 

 23 f, g) Pd(TFA)2 PPh3 H2O m-xylene 95 
a) All reactions were carried out at 0.2 mmol scale, with Pd catalyst (5 

mol%), ligand (10 mol%), in solvent (1 mL), at 80 C, in air; b) isolated 
yield; c) 5 mol% ligand was used; d) 1.0 equiv. of PivOH was added; e) 1.0 
equiv. of Na2CO3 was added; f) 10 equiv. of H2O was added; g) in argon 
atmosphere. 

were obviously less effective than Pd(TFA)2 (Entries 9–12). 
Control experiments showed the palladium catalyst was 
required for the transformation (Entry 13). Only trace or 
even no product was detected by replacing PPh3 with other 
phosphine or nitrogen ligands (Entries 14–19). Both acid 
and base additives inhibited the reaction apparently (Entries 
20, 21). To our delight, the addition of 10 equivalent of wa-
ter increased the yield to 95% (Entry 22). In particular, ar-
gon atmosphere didn’t change the yield obviously, which 
suggested that no external oxidant was involved.  

With the optimized conditions in hand, we next explored 
the generality of this transformation using a variety of in-
doles with 2a (Scheme 2). Both electron-donating (CH3, 
OMe) (3b, 3c) and withdrawing (F, Cl) (3d, 3e) substituents 
on the indole core were compatible with the newly estab-
lished protocol. Indoles bearing different tolyl groups (3g, 
3h) at C2 position were amidated efficiently. The yield of 3f 
was relatively low probably due to steric hindrance. Sub-
strates with electron-withdrawing para-fluorophenyl group 
(3i), para-chlorophenyl group (3j), para-trifluoromethyl- 
phenyl (3k) and meta-methoxylcarbonylphenyl group (3l) at 
C2 position of indole afforded the corresponding products 
in good to excellent yields. Satisfyingly, we found that the 
amidation reaction of C2 cyclohexyl substituted substrate 
(3m) proceeded smoothly as well. However, C2 unsubsti-
tuted indole (3n) did not react under the developed condi-
tions and the starting material was completely recovered. 

The scope of different sulfonyl azides with 1a was inves-
tigated subsequently. Electron-donating and electron-with- 
drawing substituted arylsulfonyl azides reacted efficiently, 
generating the corresponding products (3o–3s) in good 
yields. To our delight, aliphatic sulfonyl azide also gave 
good yield of the desired product (3t). 

In order to evaluate the function of PPh3, we conducted 
the reaction under the identical conditions by omitting PPh3 
and found no product was detected (Scheme 3(a)). As the 
Staudinger reaction might take place between TsN3 and 
PPh3, reactions were operated by replacing PPh3 with 
OPPh3 (Scheme 3(b)) and TsNH2 (Scheme 3(c)) respec-
tively. No desired product was detected in both cases. Alt-
hough the true function was not clear at the present stage, 
these results indicated that PPh3 played a requisite role in 
the transformation. 

A possible mechanism was proposed on the basis of 
these experimental results and relative literatures (Scheme 
4). Ligand chelated Pd(II) species facilitates C–H bond ac-
tivation to give intermediate A. Coordination of azide to A 
leads to B, followed by the subsequent insertion of a sul-
fonamido moiety into the C–Pd bond through concerted 
migratory insertion driven by releasing of N2 to genernate 
intermediate C. Stepwise intrenoid path involving Pd(IV) 
species is also possible. Protonolysis of C delivers the final 
product 3 and dissociates Pd(II) for the next catalytic cycle. 
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Scheme 2  Scope of the catalytic intermolecular C–H amidation. Condi-
tions: 1 (0.2 mmol), sulfonyl azide 2 (0.3 mmol), Pd(TFA)2 (5 mol%), PPh3 
(10 mol%), H2O (10 equiv.), in m-Xylene (1 mL), 80 C, 5 h, isolated yield 
of 3; a) 8 h. 

 

Scheme 3  Evaluation of the function played by PPh3. 

 

Scheme 4  Proposed reaction mechanism of the intermolecular indole 
C–H amidation reaction. 

3  Conclusions 

In summary, we have developed a new kind of intermolec-
ular indole C–H amidation reaction. The reaction, which is 
catalyzed by the most frequently used palladium catalyst, is 
different from the published reactions [14] using sulfonyl 
azides as amidating reagents. Sulfonyl azide was employed 
as an innovative nitrogen source and environmentally be-
nign nitrogen was produced as the only byproduct. 
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