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Fluorine is the most electronegative element in the periodic 
table. As a result, the carbon–fluorine bond has substantial 
electrostatic character, making it the most polarized carbon 
single-bond in organic chemistry. The strong dipole moment 
introduced by the C–F bond, the high bond strength, and 
the relatively small steric demand are widely exploited in 
agrochemical and pharmaceutical science to fine-tune the 
polarity, pKa-value, conformation, and metabolic stability  
of test compounds (1–4). Moreover, control of the relative 
orientation of several C–F bonds allows for the design  
of highly polar compounds that are applied in material sci-
ence for example as dielectric materials in liquid crystals  
(5, 6). In that regard, it has recently been demonstrated  
that achieving a cis-alignment-, in particular for 1,3-diaxial  
C–F bonds, is required for the synthesis of facially polarized 
fluorinated cycloalkanes (7–9), with all-cis-1,2,3,4,5,6-
hexafluorocyclohexane (1) being among the most polar or-
ganic molecules known (9). Syntheses of mono-fluorinated 
(substituted) cyclohexanes from unfunctionalized precursors 
(10–12) or with complete site-selectivity from alkylcarboxylic 
acids (13) have been reported recently. The trans-isomer is 
usually the major diastereomer, and is often obtained in low 
selectivity, as the fluorination proceeds via an alkyl radical 
intermediate. Selectively multifluorinated cycloalkanes, 
however, remained out of reach. The desired cis-selectivity 
can be obtained by nucleophilic substitution, for example 
via ring-opening of epoxides, substitution of leaving groups 
and deoxyfluorination, thus requiring the use of diastereose-
lectively pre-decorated substrates (Fig. 1, A and B). As a re-
sult, multisubstituted cyclohexanes require multistep 
sequences as exemplified by O’Hagan’s prominent 12-step 
synthesis of all-cis-1,2,3,4,5,6-hexafluorocyclohexane (Fig. 1B, 
1) (9). 

Based on our experience with stereoselective (het-
ero)arene hydrogenation using ruthenium-N-heterocyclic 
carbene (NHC) complexes (14–16), we envisioned that such 
multistep processes could be obviated by the design of a 
protocol for the catalytic hydrogenation of the inexpensive 
and readily available fluoroarenes, as hydrogenation of 
arenes is usually highly cis-selective (17, 18). However, all 
previously reported attempts to hydrogenate fluoroarenes 
were hampered by a competing hydrodefluorination path-
way (Figs. 1C and 2) (19–21). Hence, a synthetically useful 
protocol for the hydrogenation of fluorinated arenes re-
mained elusive. Several mechanistic pathways are known to 
lead to a net hydrodefluorination (Fig. 2) (22), and synthetic 
protocols for the selective substitution of fluorine with hy-
drogen following seminal work by Milstein have been de-
signed (23). 

Herein, we describe a protocol for the highly selective 
hydrogenation of a broad scope of (multi)fluorinated arenes 
and heteroarenes, offering convenient access to  
cis-diastereoselectively (multi)fluorinated building blocks, 
highly polar all-cis-(multi)fluorocycloalkanes, and fluorinat-
ed aliphatic heterocycles. Studies toward the chemo- (and 
enantio-) selective hydrogenation of simple fluorine-
substituted alkenes, have resulted in a limited number of 
successful examples employing ruthenium (24), rhodium 
(25), and iridium complexes (26). However, in contrast to 
the hydrogenation of alkenes, the hydrogenation of stabi-
lized arenes is dominated by heterogeneous catalysis (27). 
Hence, the hydrogenation of the relatively non-volatile tert-
butyl (4-fluorophenoxy)dimethyl silane (3a) was attempted 
with a variety of standard heterogeneous catalysts, known 
to be capable of arene hydrogenation (28). However, these 
reactions yielded multiple products, with the hydrodefluori-
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nated cycloalkane 6a as the major identified product (table 
S1). When employing a combination of rhodium with a 
strongly electron-donating cyclic alkyl amino carbene 
(CAAC) ligand (29), which was first reported for an arene 
hydrogenation reaction by X. Zheng (30), these decomposi-
tion pathways were significantly diminished, though the 
hydrodefluorinated cycloalkane 6a remained as the major 
product (52% yield, 1:2.1 ratio of hydrogenation vs hydro-
defluorination, table S2, entry 3) under the described condi-
tions. Exchange of the trifluoroethanol solvent with the less 
polar hexane resulted in a highly selective reaction (25:1) in 
which the desired product 7a was formed in 95% yield (ta-
ble S2, entry 10). The catalyst loading could be lowered to 
0.1 mol% with conserved complete conversion and improved 
selectivity (53:1) (table S3, entry 6). The hydrogenation reac-
tion proceeded smoothly at pressures as low as 10 bar, alt-
hough a decrease in selectivity (13:1) was observed (table S4, 
entry 1). 

Subsequently, the scope of the reaction was studied un-
der the optimized conditions. The ready availability of fluor-
inated arenes, either from commercial suppliers or in a 
single step following literature methods, allowed us to per-
form the reaction on a synthetically useful 1 mmol scale. 
Gram-scale reactions were carried out for three representa-
tive examples (Fig. 3B). The high selectivity made product 
isolation straightforward. Likewise, isolation of the major 
diastereomer by standard column chromatography or re-
crystallization was often possible, especially for multisubsti-
tuted products. In the case of less reactive, highly sterically 
hindered or electron-poor substrates, dilution, substitution 
of molecular sieves with silica gel, and an increase of the 
catalyst loading to 0.5 or 1 mol% improved the yields. The 
observed cis-selectivity could be confirmed by NOE (Nuclear 
Overhauser Effect) experiments (fig. S1). Furthermore, a 
molecular structure for all-cis-1,2,4,5-tetrafluorocyclohexane 
(8e) was determined by single crystal x-ray diffraction (fig. 
S2) and matched that of the previous report (7). Many useful 
functional groups were well-tolerated, including  
tert-butyl(dimethyl)silyl (TBS)-protected-(7a, b) and free 
(phenolic) alcohol (7p), pinacol boronic ester (7c–e),  
tert-butyloxycarbonyl (BOC)-protected amine (7f, g, j) and 
ester (7i), thus demonstrating that the fluorinated cycloal-
kanes could be further functionalized. Despite the simplicity 
and preparative versatility of these products, tert-butyl (cis-
4-fluorocyclohexyl)carbamate (7f) is the only member of the 
formerly mentioned cis-fluorocyclohexyl-building blocks 
that is known in the literature. Multifluorinated arenes 
bearing additional functional groups such as a pinacol bo-
ronic ester (7k) or a TBS-protected alcohol (7l–o) also un-
derwent the hydrogenation reaction. We envision that these 
readily accessible all-cis-(multi)fluorinated building blocks 
will be useful for the fine-tuning of pharmaceuticals and 

agrochemicals. In a similar fashion, TBS-protected diol 
products (7n, o) could be useful for the incorporation of 
fluorine into polymers. 

A series of all-cis-(multi)fluorinated cyclohexane deriva-
tives was also synthesized with this methodology.  
Three members of this family, namely all-cis-
tetrafluorocyclohexanes 8e, f and all-cis-1,2,3,4,5,6-
hexafluorocyclohexane (8h) have previously been synthe-
sized via nucleophilic substitution in 2, 8 and 12 steps re-
spectively (7–9). Our methodology gives access to these 
highly polar compounds, as well as to several previously 
unknown analogs, with complete diastereoselectivity in a 
single synthetic step. Convenient access to these all-cis-
multifluorinated cycloalkanes in larger quantities will allow 
further investigation into their unique properties in the fu-
ture. The highly diastereoselectively enriched all-cis-4,4'-
difluoro-1,1'-bi(cyclohexane) (8k) was also isolated in high 
yields; however it was found to contain a mixture of two 
stable conformers. 

To further explore the limits of the reaction, the scope 
was extended to aliphatic heterocycles (9a–d) including 
piperidine analog 9d. In addition, a fluorinated estrone de-
rivative could be hydrogenated smoothly with complete 
preservation of the easily reducible keto-group (Fig. 4) (31). 

Diastereoselectively fluorinated analogs to the promi-
nent ICy ligand (precursor, 10) and the commercial anti-
cancer drug lomustine (11), as well as the mucolytic agent 
bromhexine (12), were synthesized from tert-butyl (cis-4-
fluorocyclohexyl)carbamate (7f), which could be accessed as 
a single diastereomer following recrystallization. A depro-
tection of 7f with trifluoroacetic acid and formation of the 
ammonium chloride, followed by imidazolium synthesis, 
gave fluorinated ICy∙HBF4 NHC ligand precursor 10. The 
electron-withdrawing fluorine could influence the catalytic 
activity of an NHC-metal complex. Furthermore, incorpora-
tion of the NMR-active fluorine offers an opportunity for 
spectroscopic mechanistic investigations, analogous to the 
established use of 31P NMR analysis. The ammonium chlo-
ride could also be transferred to the lomustine analog 11 by 
condensation of the in-situ formed primary amine with an 
isocyanate and subsequent nitrosylation. After methylation, 
and analogous deprotection, the methylated crude ammoni-
um chloride could be condensed with in-situ formed benzyl 
chloride, derived from commercial 2-amino-3,5-
dibromobenzaldehyde, to yield the desired bromhexine ana-
log 12. In pharmaceuticals, the introduction of fluorine is 
recognized to often improve the bioavailability. Moreover, 
structural analogs to known liquid crystalline materials, in 
which our building blocks replace the previously employed 
polar head groups, were prepared from all-cis-tert-
butyldimethyl((3,4,5-trifluorocyclohexyl)oxy)silane (7l). Af-
ter recrystallization and deprotection, the diastereomerically 
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pure alcohol could be converted via N,N'-
dicyclohexylcarbodiimide (DCC)-mediated coupling to ester 
13, or via Mitsunobu etherification and subsequent Suzuki 
coupling with an in situ formed alkylborane to ether 14. 

We undertook preliminary mechanistic experiments to 
understand the observed increase in selectivity for the hy-
drogenated product compared to the hydrodefluorinated 
side products when moving from polar solvents, such as 
methanol (1:9) or trifluoroethanol (1:2) to less polar solvents 
such as dichloromethane (5:1) and eventually hexane (25:1) 
(table S2). Our results suggest that the observed defluorina-
tion in methanol and dichloromethane occur via different 
mechanistic pathways (see SM). The influence of different 
solvents on the catalyst, and consequently the mechanism of 
defluorination are the subject of ongoing mechanistic stud-
ies. 
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Fig. 1. Cis-selective synthesis of (multi)fluorinated cycloalkanes by arene hydrogenation. 
(A) Previously described methodologies for the preparation of fluorinated cycloalkanes. The 
cis-selective synthesis of fluorinated cycloalkanes requires diastereoselectively 
prefunctionalized substrates. (B) Synthetic route to the facially polarized all-cis-1,2,3,4,5,6-
hexafluorocyclohexane (1). (C) The competing hydrodefluorination side reactions that have 
previously precluded development of a protocol for hydrogenation of fluorinated arenes to 
fluorinated cycloalkanes. (D) The method reported herein to access stereodefined 
(multi)fluorinated building blocks and highly polar multifluorinated cycloalkanes. 
 

Fig. 2. Mechanistic pathways for the undesired hydrodefluorination 
side reaction. The hydrodefluorination reaction can take place via 
oxidative addition or nucleophilic aromatic substitution at the aryl halide 3, 
via β-Fluorine elimination from alkyl-metal complex 4 or via Lewis acid 
(LA) or Brønsted acid or base catalyzed HF-elimination from the alkyl 
halide product 7.  
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Fig. 3. Scope of the hydrogenation of fluorinated arenes. (A) Synthesis of fluorinated building blocks and 
all-cis-(multi)fluorinated cyclohexanes. Dipp, 2,6-diisopropylphenyl; BPin, pinacolboron; Me, methyl. All data 
are reported as isolated yields unless otherwise stated. For details concerning concentration and catalyst 
loading see SM;. Diastereomeric ratio (d.r.) values of the major isomer relative to all other isomers were 
determined by 19F NMR or GC analysis prior to purification. *The major isomer could be isolated by standard 
column chromatography using pentane/diethylether = 99:1. †The major isomer could be isolated via 
recrystallization in pentane/diethyl ether. ‡The d.r. values of crude and isolated product were identical. §The 
yield was determined by 19F NMR spectroscopy with hexafluorobenzene as internal standard. ||The yield was 
determined via GC-FID with mesitylene as internal standard.¶A 10:1 mixture of enol and alcohol was obtained. 
(B) Scale-up to gram scale. MS, molecular sieves. 
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 Fig. 4. Applications of the developed method for the hydrogenation of fluorinated arenes.  
(A) Synthesis of biologically relevant compounds. All data are reported as isolated yields unless 
otherwise stated. For details concerning concentration and catalyst loading see SM. d.r. values of 
the major isomer relative to all other isomers were determined by 19F NMR or GC analysis prior to 
purification. *The d.r. values of crude and isolated product were identical. (B) Use of fluorinated 
Boc-protected amine 7f as cis-fluorinated building block for the synthesis of ICy∙HBF4 derivative 10 
and fluorinated analogs 11, 12 of the commercial pharmaceuticals lomustine and bromhexine. 
ICy∙HBF4, 1,3-dicyclohexyl-imidazolium tetrafluoroborate. TFA, trifluoracetic acid (C) Use of 3,4,5-
trifluorinated TBS-protected cyclohexanol as building block for the synthesis of structural analogs 
13, 14 of known liquid crystalline materials. TBAF, tetra-n-butylammonium fluoride,  
THF, tetrahydrofuran, n-Pent, n-pentyl, DMAP, 4-dimethylaminopyridine, DIAD, diisopropyl 
azodicarboxylate, 9-BBN, 9-borabicylco(3.3.1)nonane, dppf, 1,1'-bis(diphenylphosphino)ferrocene, 
DMF, dimethylformamide. 
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