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A Switchable Open/closed Polyaromatic Macrocycle and its 
Reversible Binding of Long Hydrophilic Molecules 
Kohei Kurihara,[a] Kohei Yazaki,[b] Munetaka Akita,[a] and Michito Yoshizawa*[a] 
 

Abstract: In spite of wide-ranging previous studies on synthetic 
macrocycles, installation of open-close functions into the frameworks 
remains a knotty challenge. Here we present a new polyaromatic 
macrocycle capable of switching between open and closed forms in 
response to external stimuli, base and acid. The macrocycle, 
prepared in three steps, has a well-defined hydrophobic cavity with 
dimensions of ~1 nm, surrounded by four pH-responsive acridinium 
panels. The open and closed structures are definitely confirmed by 
X-ray single-crystal analysis. The cylindrical cavity can bind long 
hydrophilic molecules up to 2.7 nm in neutral water as well as 
release the bound guests through the open-to-closed structural 
change by simple addition of base, in a reversible fashion. 

Reversible open-close motions triggered by external stimuli or 
forces are one of the most basic functions in our lives. 
Incorporation of such mechanical motions into synthetic 
molecular rings, tubes, and cages is highly promising for the 
development of functional nanoscale containers and machines.[1-

3] There has been intensive study of covalent macrocyclic 
compounds, such as cyclodextrins, cyclophanes, cucurbiturils, 
and pillararenes, possessing definite cavities capable of binding 
wide-ranging organic molecules.[4] In addition, the electrostatic 
properties of the host frameworks can be occasionally changed 
by the addition of acids/bases or by oxidation/reduction 
reactions. Nevertheless, open-close switching of the cylindrical 
cavities by external stimuli (e.g., heat, light, and pH) has been 
rarely achieved owing to their rigid constitutions.[5] Open-ended 
macrocyclic and tubular structures are expected to bind various 
guest molecules, even when the lengths are longer than that of 
the host cavities, in contrast to capsular and cage-like hosts with 
isolated cavities.[6] Therefore, installation of open-close functions 
into covalent macrocyclic hosts will open up their applications in 
stimuli-responsive molecular sensors and separators for, for 
example, long and complex biomolecules.  

Here we report a new polyaromatic macrocycle switchable 
between open and closed states, reversibly (Figure 1a), in 
response to external stimuli, base and acid. Macrocycle 1 
designed herein is composed of four pH-responsive acridinium 
panels connected alternately by meta-phenylene and meta-
biphenyl spacers (Figure 1b). Both the open and closed 
structures are confirmed by X-ray crystallographic analysis. In 
neutral water, the cylindrical cavity with dimensions of ~1 nm 
can bind long hydrophilic molecules with a pyranose or steroid 
moiety (up to 2.7 nm in length). Remarkably, the bound guests 
are released from the cavity through the open-to-closed 
structural change of the host framework upon addition of base. 

 

Figure 1. a) Cartoon of an open/closed structural change of a polyaromatic 
macrocycle and b) acridinium-based macrocyclic molecule 1 reported herein. 
c) General reactivity of a biarylacridinium salt with base (+ROH) and acid. 

 Biarylacridinium frameworks contain a rigid polyaromatic 
panel with a monocationic nitrogen atom (Figure 1c, left). Unlike 
common polyaromatic hydrocarbons (e.g., anthracene, pyrene, 
and perylene), nucleophilic addition of alcohols or water to the 
acridinium panel under basic conditions gives rise to flexible 
acridane panels (Figure 1c, right). The resultant neutral 
frameworks can revert to the originals under acidic conditions. 
We expected that the incorporation of multiple acridinium panels 
into a shape-persistent polyaromatic tubular structure[7] could 
generate new pH-responsive macrocyclic molecule 1 (Figure 
1b).[8] The tetracationic framework provides hydrophilic exterior 
surfaces so that the polyaromatic macrocycle is usable in water 
without the attachment of typical hydrophilic substituents. 
Importantly, the open macrocycle, prepared in only three-step 
reactions, can reversibly transform to the closed macrocycle (2) 
by simple addition of base (Figure 1a). 

We synthesized water-soluble polyaromatic macrocycle 1 
through nickel-catalyzed homocoupling of a 
diiododihydroacridine derivative followed by treatment with a HCl 
solution (step iii in Figure 2a).[9] The bent precursor was 
prepared in two steps starting from acridone and 1,3-
diiodobenzene (steps i and ii in Figure 2a).[10] The macrocyclic 
structure of 1 was unambiguously confirmed by NMR, MS, and 
X-ray single-crystal analyses.[9,11] A 1H NMR spectrum of 1 in 
D2O showed eleven signals in the aromatic region (Figure 3b) 
due to the high symmetry (virtually D2h). The ESI-TOF MS 
spectrum exhibited a prominent peak at m/z = 292.1 
corresponding to the [1 – 4•Cl–]4+ species (Figure S12). Single 
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crystals of the macrocycle suitable for X-ray crystallographic 
analysis were obtained from the PF6

– analogue 1” in the 
presence of coumarin guest 3a (Figure 2b).[12a] The molecular 
structure showed that the four acridinium panels are connected 
alternately by the non-substituted mono- or bisphenylene 
spacers, creating a cylindrical cavity with dimensions of 1.1 × 0.8 
nm (Figure 2c). The ~1 nm-length cavity is fully occupied by the 
stacked two molecules of 3a (1.5 nm in length) in an antiparallel 
fashion (Figure 2d). The interplanar guest-host (acridinium 
panels) and guest-guest distances of 3.4-3.8 Å indicate the 
existence of multiple π-π interactions.[13,14]  

 

Figure 2. a) Synthesis of polyaromatic macrocycle 1 starting from acridone in 
three steps.[11] Conditions and reagents: (i) CuI, dipivaloylmethane, K2CO3, 
DMF, 160 ºC, (ii) 1,3-diiodobenzene, n-BuLi, THF, –80 ºC and then NaHCO3, 
CH3OH, r.t., (iii) Ni(COD)2, 2,2’-bipyridyl, THF, 70 ºC and then CH3OH, HCl aq., 
r.t. (24% total yield).[9] b) Coumarin 3a as a guest molecule. Crystal structure 
of 1”•(3a)2 (counterions and solvent molecules are omitted for clarity): c) the 
top view without the guests (space-filling model) and d) the side views with the 
guests (cylinder and space-filling models). 

An open-to-closed structural change of rigid polyaromatic 
macrocycle 1 was carried out under basic conditions in the 
presence of nucleophiles. For example, when macrocycle 1 and 
excess NaHCO3 were stirred in a mixed solvent of CH3CN and 
2-ethyl-1-butanol for 15 h at 60 ºC, the yellow solution turned 
colorless to give a white precipitate. 1H NMR analysis of the 
collected precipitate indicated the formation of closed 
macrocycle 2’ in 94% isolated yield.[9] The NMR spectrum of 2’ 
in toluene-d8 showed three broad signals derived from the 
attached ethylbutyloxy groups in the range of 3.23 to 0.82 ppm 
(Figure 3c). The aromatic signals of 2’ were also broadened, 
most probably due to the restricted motion of the compressed 
structure. The infrared (IR) spectroscopy and elemental analysis 
(E.A.) of the product also proved the full conversion of the 
acridinium rings into the acridane rings (Figure S22). The closed 
structure of 2’ was finally evidenced by X-ray crystallographic 
analysis.[12b] In the crystal structure, the open cavity found in 1 
completely disappeared due to flipping of the biphenyl rings 
inward through the structural change of the planar acridinium 

panels to the non-planar acridone panels (Figure 3e). The 
closed structure bearing the distorted four acridane panels 
remains intact even at 80 ºC, as indicated by variable 
temperature 1H NMR analysis (Figure S21). Notably, open 
macrocycle 1 could be regenerated from closed macrocycle 2’ 
under acidic conditions. Addition of an aqueous HCl solution 
(~60 equiv.) to a CH3OH suspension of 2’ followed by stirring for 
~5 h at room temperature afforded a clear yellow solution 
including the original macrocycle (93% isolated yield) (Figure 3d).  

 

 
Figure 3. a) Schematic representation of the open/closed structural change of 
polyaromatic macrocycle 1. 1H NMR spectra (400 or 500 Hz, D2O, r.t.) of b) 1, 
c) closed macrocycle 2’ (in toluene-d8), and d) 1 regenerated from 2’. e) 
Crystal structure of 2’ (space-filling model; solvent molecules are omitted for 
clarity). f) UV-visible spectra (H2O, r.t.) of 1 after alternate addition of (i) HCl aq. 
and (ii) NaOH aq. (~20 equiv. based on 1) and g) the open-closed switching 
cycles of 1 under basic/neutral conditions, monitored by the UV-visible spectra 
(plot of the absorption intensity at 434 nm). 

Next we demonstrated that the open-closed switching 
process of 1 can be repeated several times in aqueous solutions. 
Addition of an aqueous NaOH solution (~20 equiv.) to open 
macrocycle 1 in H2O gave rise to closed macrocycle 2 (R = -OH) 
as a white precipitate within 1 h at room temperature. The 
resultant macrocycle reverted into the original one by the 
treatment with an aqueous HCl solution (~20 equiv. based on 2) 
under similar conditions. The pH-responsive structural change 
was easily monitored by UV-visible spectroscopic analysis 
(Figure 3f). The absorption bands (λmax = 434 nm) derived from 
the acridinium panels of 1 disappeared under basic conditions 
due to the formation of 2 precipitated out of the solution.[9,15] The 
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bands were recovered through neutralization upon addition of 
acid. Repeatability of the spectroscopic changes (five times) 
revealed that the opening-closing cycles of 1 occur efficiently in 
water at ambient temperature (Figure 3g).     

In aqueous media, polyaromatic macrocycle 1 exhibited a 
binding ability toward water-soluble molecules, esculin (3b), 
sodium cholate (3c), and CHAPS (3d), whose lengths are longer 
than that of the cavity (Figure 4a). Simple mixing aqueous 
macrocycle 1 (1.2 µmol) with 3b (2.3 µmol), with a length of 1.3 
nm, in D2O (1.0 mL) at room temperature led to the quantitative 
formation of 1:2 host-guest complex 1•(3b)2 within 5 min. In the 
1H NMR spectrum of the product (Figure 4c), proton signals 
derived from the coumarin moiety (HA-D) of 3b were observed in 
the range of 7.45 to 5.68 ppm with large upfield shifts (Δδmax = 
0.64 ppm). On the other hand, those derived from the pyranose 
moiety appeared around 5.0 and 4.7 ppm with slight shifts (Δδ <  

 

Figure 4. a) Schematic representation of the binding of hydrophilic molecules 
3b-d by open macrocycle 1 in water. 1H NMR spectra (400 MHz, D2O, r.t.) of 
b) 3b, c) 1•(3b)2, d) 3c, e) 1•3c, and f) 1•3d. g) Plots of the integrated heat for 
the ITC titrations of 3c (left) and 3d (right) into a H2O solution of 1. Black 
squares and black lines are experimental and calculated values, respectively. 
h) An optimized structure of 1•3d (space-filling model). 

0.12 ppm). These characteristic shifts, caused by aromatic 
shielding effects, indicate selective binding of the hydrophobic 
coumarin part of 3b by the cylindrical cavity of 1 through the 
hydrophobic effect and π-stacking interactions. The 1H NMR 
Job’s plot identified the host-guest stoichiometry of the binding 
to be 1:2 (Figure S29). ESI-TOF MS analysis also confirmed the 
host-guest ratio (Figure S30).[16] In the same way, hydrophilic 
steroid derivatives 3c and 3d (1.5 and 2.7 nm in length, 
respectively) were quantitatively accommodated within 1 to give 
1:1 host-guest complexes 1•3c and 1•3d, respectively. Upfield 
shifts of the methyl signals (HA-C) on the steroid moieties were 
definitely observed in the 1H NMR spectra (Figure 4e,f). The 
relatively large binding constant (Ka = 3.9 × 104 M–1) and 
thermodynamic parameters (ΔH = 3.89 kcal mol–1 and ΔS = 34.0 
cal mol–1 K–1) toward the 1•3c complex were determined by 
isothermal titration calorimetry (ITC; Figure 4g, left).[9] On the 
other hand, relatively long compound 3d was bound by 1 with a 
moderate binding constant (7.3 × 103 M–1; Figure 4g, right).[17] 
The optimized structure of 1•3d by semiempirical calculations 
(PM6 level) reveals that most of the steroid moiety of 3d is 
encircled by the acridinium panels of 1 (Figure 4h).[18,19] 

We further examined the release of the bound guests from 
the cavity of 1 through the pH-responsive open-to-closed 
structural change at room temperature (Figure 5a). Addition of a 
base (NaHCO3, ~20 equiv. based on 1) to the aqueous solution 
of 1•(3b)2 evoked the rapid color change from yellow to colorless, 
accompanying the precipitation of a white solid. The 1H NMR 
spectrum showed the disappearance of the host signals and the 
large downfield shifts of the aromatic signals of guest 3b (Δδmax 
= +0.48 ppm) (Figure 5b,c). Similarly, the steroid signals (e.g., 
HA-C) of 3d bound in 1 were shifted downfield (Δδmax = +1.09 
ppm) upon addition of the base (Figure 5e,f). These spectral 
changes stem from the release of the bound guests from open 
macrocycle 1 in water. 
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Figure 5. a) Schematic representation of pH-responsive catch and release of 
guests 3b and 3d by macrocycle 1 in water. 1H NMR spectra (400 MHz, D2O, 
r.t.) of 1•(3b)2 b) before and c) after addition of NaHCO3, and d) after further 
addition of HCl aq. 1H NMR spectra (400 MHz, D2O, r.t.) of 1•3d e) before and 
f) after addition of NaHCO3 and g) after further addition of HCl aq. 

  Finally, rebinding of the released guests to the open 
macrocycle was readily achieved by adding acid to the resultant 
suspension of 2 and 3b in water. Addition of an aqueous HCl 
solution (~20 equiv. based on 1) caused rapid color change of 
the solution from colorless to yellow, accompanied with the 
dissolution of the precipitate, at room temperature. The 1H NMR 
spectrum of the product (Figure 5d) was virtually identical to that 
of 1•(3b)2 (Figure 5b). The original 1•3d complex was also 
regenerated exclusively by the same way (Figure 5g). 

In conclusion, we have developed a new polyaromatic 
macrocycle providing (i) a open/closed switching function within 
the framework, (ii) a binding capability toward long hydrophilic 
molecules with the lengths longer than that of the cavity, and (iii) 
a releasing ability of the bound molecules in water at ambient 
temperature. The structures of the open and closed macrocycles 
are successfully confirmed by NMR, MS, and X-ray single-
crystal analyses. In addition, reversible catch and release of the 
long molecules by the macrocycle are revealed by detailed NMR 
analysis. The key to the characteristics of the present 
macrocycle arises from the installation of pH-responsive 
polyaromatic panels (i.e., acridinium ring) into a macrocyclic 
structure, which has never been reported so far.[20] Therefore, 
the guest release can be accomplished through not typical 
electrostatic repulsion or solvent effects but mechanical motions. 
Further studies on the finite open/closed switchable macrocycle, 
e.g., incorporation of them into infinite polymer and inorganic 
matrixes, could exploit novel stimuli-responsive sensing and 
separating materials. 
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