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1. Introduction 

Allyl amines and allylamine derivatives represent an 

important class of compounds due to their potency in medicinal 

chemistry given their activities such as chemotherapeutic agents,
1
 

enzyme inhibitors
2
 and antifungal activities.

3
 Furthermore, allylic 

amines are very important synthetic intermediates
4
 and functional 

groups in many biologically active compounds and natural 

products.
5
 Due to their significance in organic synthesis, much 

effort has been exerted to develop efficient methods of allylic 

amines or allylamine derivatives.
6
 The allylamine functionality 

can be introduced by nucleophilic substitution at the allylic 

position or by direct allylic amination of olefins (Scheme 1a, b)
7
. 

Conversions of alcohols or a better leaving group, for instance, 

halide, carboxylate, carbonates, phosphonate, or sulfonate, etc. to 

their corresponding nitriles or azides are very important and 

essential in functional group transformation for the synthesis of 

amino groups.
8 
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Scheme 1. Different approaches for the synthesis of allyl 

amines. 

MBH adducts possess a high potential for use as synthetic 

intermediates; therefore, in recent years, several research groups 

have focused their efforts on the modification of the β-position 

(the alcohol moiety) of the MBH adducts. In particular, by 

converting the hydroxy group into a leaving group, the MBH 

adducts, such as acetates and carbonates, can construct a large 

variety of multifunctional compounds.
9
 However, Among them 

little attention has been paid to exploring cyanide as viable 

nucleophilic substrates in the cyanation of MBH carbonates
10

 and 

there are no effective methods for transforming the adducts of the 

cyanation to allylic amines. 
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Scheme 2. Cyanation of MBH Carbonate 1a. 

 

Herein, we disclose a new type of organocatalytic approach 

towards synthetic of vinyl cyanide moieties via a procedure of 

DABCO promoting 1,3-proton shift transfer reaction. The 

significance of the present chemistry is: 1) Compared to previous 

work mainly with metal catalysts, this work is under metal free 

conditions. 2) Acetone cyanohydin as cyanide source was used 

which was simple, stable, easy to handle, and readily available 

compared with other toxicity, volatility, and hazardous handling 

cyanide sources such as HCN, TMSCN or KCN. 3) It is the first 

example of a transformation of vinyl cyanide to allylic amines 

derivatives. This research not only provides a new approach for 
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 2 
allylic amines derivatives in organic synthesis, but also offers 

valuable mechanistic insights into this novel 1,3-proton shift 

transfer reaction. 

Table 1. Optimization of Reaction Conditions.
a 
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Entry Base (mol %) Solvent 
Yield (%)b 

(E/Z)c 

3a 4 

1 DABCO (10) toluene 85 － 1.5:1 

2 Et3N (10) toluene 45 － 1:1 

3 DBU (10) toluene 23 64 1.2:1 

4 DMAP (10) toluene － －  

5 Ph3P (10) toluene － －  

6 K2CO3 (10) toluene － 83  

7 DBACO (10) THF 90 － 1.5:1 

8 DABCO (10) CH2Cl2 96 － 1.7:1 

9 DABCO (10) DMF 40 － 1.1:1 

10 DABCO (10) CH3OH － －  

11 DABCO (10) CHCl3 92 － 1.6:1 

12 DABCO (5) CH2Cl2 80 － 1.7:1 

13 DABCO (20) CH2Cl2 96 － 
1.6:1 

 
 a Reactions were performed with MBH carbonate 1a (0.5 mmol), acetone 

cyanohydin (2.0 equiv) in 1.0 mL of solvent for 2 h at room temperature.  

b Yield after column chromatography.  

c E:Z ratio of the product determined by yield after column chromatography. 

Our study commenced with MBH carbonate 1a and acetone 

cyanohydin in the presence of 10 mol % of DABCO in toluene at 

room temperature. Gratifyingly, the final product of cyanation 

was thermodynamically-favored compound 3a containing the 

vinyl cyanide moiety, a precursor of allylic amine transforming 

from kinetic-favored product 2 envisaged initially which could be 

detected in the reaction system. As indicated in Table 1, among 

various bases evaluated in the cyanation of MBH carbonate 1a, 

the strong nucleophilic base DABCO showed the best 

regioselectivity, affording 3a in 85% yield (E/Z=1.5/1, Entry 1). 

Regioisomer 4 was obtained when using inorganic base K2CO3 

(Entry 6). Mixture of both products were obtained employing the 

DBU (Entry 3). Further optimization on the other reaction 

conditions (including solvent and base’s loading) led to the 

discovery that the regioisomer of 3a was formed exclusively in 

96% yield (E/Z=1.7/1) when CH2Cl2 was used as solvent and 

base’s loading was 10 mol % (Entry 11). 

 

Table 2. Different cyanide sources effect on the Cyanation of 

MBH Carbonates.
a 
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Entry Cyanide Solvent 
Yield (%)b 

(E/Z)c 

3a 4 

1 5 CH2Cl2 96 － 1.7:1 

2 6 CH2Cl2 80 － 1:1 

3 7 CH2Cl2 n.r. － － 

4 8 CH2Cl2 78 － 1.2:1 

5 TMSCN CH2Cl2 87 － 1:1 
 a Reactions were performed with MBH carbonate 1a (0.5 mmol), cyanide (2.0 

equiv) in 1.0 mL of solvent for 2 h at room temperature.  

b Yield after column chromatography.  

c E:Z ratio of the product determined by yield after column chromatography. 

A series of other cyanide sources were screened in Table 2. In 

general, silyl cyanide reagent (87% yield) was found to be 

superior to benzophenone cyanohydrin (6; 80% yield) and 8 

(78% yield) in this reaction (entries 5 vs. 2 and 4), whereas 

chalcone cyanohydrin 7 gave no conversion (entry 3). Of the 

cyanide reagents, 5 exhibited the best yield 96%. 

Having identified optimized reaction conditions for the 

cyanation of MBH carbonate, we explored the substrate scope of 

this process. The results are summarized in Table 3. A variety of 

aromatics with electron-donating and electron-withdrawing 

groups in the 3-, or 4-position were tolerated (Table 2, entries 2–

10). MBH carbonates bearing electron-withdrawing groups on 

the aromatic ring participate in the reaction, affording the 

cyanation products in good yields within 4 h (entries 4–7, 9–10). 

The substrates bearing electron-donating groups on the aromatic 

ring participate in the slower transformation, delivering the 

sequential products in excellent yields after 12 h (entries 2–3, 8). 

Heteroaromatic substrates were also suitable under these 

conditions (entries 15, 16). In addition, the reaction worked well 

with 1- and 2-naphthyl MBH carbonates to give the desired 

products 3m and 3n in 88% and 86%, respectively (entries 13, 

14). Due to the steric effect, substrates substituted in the 2-

position on the aromatic rings afforded the desired products in 

lower yields (entries 11, 12). The reaction also worked well by 

changing the ester group in the MBH carbonates, providing the 

corresponding product 3q in 96% yield (entry 17). Subsequently, 

in the case of aliphatic substrate, the reaction proceeded smoothly 

at room temperature. However, the final product obtained was 2r 

not transformational product even prolonged reaction time to 24 

h (entry 18). 

Table 3. Substrate Scope for the Cyanation of MBH 

Carbonates.
a 
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Entry 1 (R, R’) Product 3 
Time 
(h) 

Yield 
(%)b 

(E/Z)c 

1 1a (C6H5, Me) 3a 8 97 1.7:1 

2 1b (4-MeOC6H4, Me) 3b 12 94 2.3:1 

3 1c (4-MeC6H4, Me) 3c 12 97 1.7:1 

4 1d (4-FC6H4, Me) 3d 4 88 1.5:1 

5 1e (4-ClC6H4, Me) 3e 4 84 1.9:1 

6 1f (4-BrC6H4, Me) 3f 4 83 1.7:1 

7 1g (4-CF3C6H4, Me) 3g 4 81 3.2:1 

8 1h (3-MeOC6H4, Me) 3h 12 96 2.0:1 
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9 1i (3-ClC6H4, Me) 3i 4 80 1.6:1 

10 1j (3,4-Cl2C6H3, Me) 3j 4 81 2.2:1 

11d 1k (2-MeOC6H4, Me) 3k 12 60 6:1 

12 1l (2-BrC6H4, Me) 3l 12 78 1.5:1 

13 1m (1-Naphthyl, Me) 3m 8 88 1.3:1 

14 1n (2-Naphthyl, Me) 3n 8 86 1.4:1 

15 1o (2-Furanyl, Me) 3o 4 85 1.6:1 

16 1p (2-thienyl, Me) 3p 4 84 2.3:1 

17 1q (C6H5, Et) 3q 8 96 1.4:1 

18 1r (isopropyl, Me) 2r 24 65 - 

 

 
 

aReactions were performed with MBH carbonate 1 (0.5 mmol), acetone 

cyanohydin (2.0 equiv), and 10 mol % of DABCO in 1.0 mL of CH2Cl2 for 4-

24 h at room temperature. 
bYield after column chromatography.  
cE:Z ratio of the product determined by yield after column chromatography. 
dE:Z ratio of the product determined by NMR analysis. 

 

To gain additional insight into the transformation of 

dynamically-favored product 2 to thermodynamically favored 

product 3a, the reaction of 1a under standard reaction conditions 

in CDCl3 was monitored by 
1
H NMR spectroscopy (Figure 1). 

After reacting with acetone cyanohydin for 5 min, the signals A, 

B, C and D were assigned to the hydrogen of MBH carbonate 1a, 

which weakened gradually and disappeared after 15 min (Figure 

1). The characteristic peaks E and F were assigned to 2, which 

appeared and increased after 5 min along with the decrease of 1a. 

The peaks of 2 became weak at 2 h, and completely disappeared 

at 12 h as it was converted into the characteristic peaks G, H and 

I, J of final product 3a (Figure 1). 

 

Figure 1. Dynamically-favored Product 2 Detected by NMR 

Analysis. 

 

In order to explain this astonishing transformation of 

dynamically-favored product 2 to the thermodynamically favored 

product 3a, DFT calculation was conducted on the M06-2X/6-

31G(d) level (Figure 2). The combination of 2 and DABCO is 

endothermic by 2.8 Kcal/mol in gas phase. Then, acidic β-H was 

snatched by Lewis base DABCO furnishing an allylic anion IN2. 

This procedure is endothermic by 3.7 Kcal/mol. The subsequent 

step is the releasing of proton from proton shuttle H-DABCO to 

sp
2
-hybidized carbon after overcoming an activation Gibbs free 

energy barrier of 21.6 kcal/mol to get the final product and is 

exergonic by -1.1 kcal/mol. 

 

Figure 2. DFT Profile of 1,3-hydrogen Transfer 

 

We next turned our attention to the application of the 

cyanation products to the synthesis of the allylic amines 

derivatives. The adducts 3a and 3c were readily transformed into 

corresponding unsaturated lactam 4a and 4c by reductive 

amidation using InCl3 and NaBH4 with good yields (Scheme 3).
11

 

 

 

Scheme 3. Transformation of Cyanation Adducts 3a and 3c to 

Unsaturated Lactam 4a and 4c. 
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Scheme 4. Possible reaction mechanism for the formation of 3. 

On the basis of above experimental results, previous work and 

computational data,
12

 a plausible reaction mechanism has been 

outlined in Scheme 4. The nucleophilicity of the catalyst plays an 

important role in the mechanism of the reaction. The reaction 

might be initiated with the in situ formation of a quaternary 

ammonium ion I from 1 via an addition-elimination-

deprotonation process. The deprotonation of acetone cyanohydin 
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at -OH by in situ generated tert-butoxide anion occurs, and is 

followed by allylation of I to give 2. Then in the presence of 

DABCO, intermediate IN1 was formed as hydrogen-bonding 

interaction between the C-H of DABCO and carbonyl group of 2. 

Then, acidic β-H was snatched by Lewis base DABCO 

furnishing an allylic anion II. Subsequential release of proton 

from proton shuttle H-DABCO to sp
2
-hybidized carbon occurred 

after overcoming an activation Gibbs free energy to get the final 

product 
3
. 

In conclusion, we have demonstrated a general and practical  

reaction of acetone cyanohydin with MBH carbonates via an 1,3-

proton shift transfer process under metal free conditions. This 

novel protocol provided an efficient method for the construction 

of vinyl cyanide moieties, which could be easily transformed into  

allylamine derivatives, in good to excellent yields and 

regioselectivities. Remarkably, the transformation of 

dynamically-favored product to the thermodynamically favored 

product was conducted by a joint research of NMR and DFT 

calculation. Efforts are currently underway in our laboratory to 

explore medicinal applications of the products, and the results of 

which will be reported in due course. 
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Highlights 

 

Organocatalytic approach towards synthetic of 

vinyl cyanide moieties is disclosed. 

 

A procedure of DABCO promoting 1,3-proton 

shift transfer reaction is mentioned. 

 

1,3-proton shift transfer is conducted by 

researching of NMR and DFT  calculation. 

 

Vinyl cyanide is transformed into allylic amines 

derivatives. 

 

Mechanism relies on addition-elimination-

deprotonation and 1,3-proton shift transfer. 

 


