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Abstract 

A sensitive and simple 2,6-diphenylpyridine-based receptor servered as a “turn-on” fluorescent 

chemosensor was designed and synthesised for selectively sensing Ag+ ions in aqueous media 

with an anomalously quantum yield. The probe exhibits high selectivity toward Ag+ over other 

common metal ions, displaying a significant fluorescent turn on nature in the presence of Ag+. 

The fluorescence response is explained by X-ray diffraction analysis, mass spectrometry, and 

theoretical calculations. The unprecedentedly high luminescence quantum yield can be attributed 

to intraligand charge transfer (ILCT) transitions with mixed some Ag(I) 5p orbitals perturbation 

characters. Finally, the results of cell experiments show that the probe can be used to selectively 

detect Ag+ in mammalian cells. 

Keywords: Turn on; Fluorescent chemosensor; bioimaging; Silver ion; High luminescence quantum 

yield  

1. Introduction 

Fluorescence detection techniques have become powerful tools for sensing and imaging of trace 

amounts of heavy and transition-metal (HTM) ions due to their simplicity, high selectivity and 

sensitivity, and instantaneous response [1-14]. More importantly, most fluorescent sensors are 

ready for in vivo and in vitro cellular imaging to make the fluorescence approach superior to other 

analytical methods, such as atomic absorption and ICP atomic emission spectroscopy [15-19]. 

Design of chemosensors for Ag+ is a field of intense research activity, because they are potentially 

attractive for use in such areas as bioaccumulation, toxicity, enzymes, drug delivery, and 

antimicrobial activities, and so on [20-25]. Recently, synthetic strategies for constructing 

functional Ag+ receptors with various structures and novel binding properties have been well 

established [26-34, 20]. However, only a handful of fluorescence-on sensors for Ag+ with high 
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selectivity and sensitivity have been reported because of the characters of Ag+ with d10 electronic 

configuration which is known as fluorescence quencher via the electron transfer and facilitated 

intersystem crossing processes [35-41]. The poor binding selectivity for Ag+ over other HTM ions, 

such as Hg2+, Cu2+, and Fe3+, decrease the accuracy of Ag+ detection in the analysis media [42-45]. 

Additionally, all these reported sensors often display poor luminescence quantum yields (LQY) 

due to most Ag(I) complexes exhibit clearly the nature of non-emissive in the solution state or 

weak emission only at low temperature and/or in the solid state [46-52]. Ahn and co-workers have 

reported the highest LQY (Фf = 0.76) of reaction-based Ag+ sensor relied on the binding-promoted 

ring-opening process by the coordination of Ag+ to argentophillic element [13]. 

Therefore, development of chemosensors for Ag+ with high selectivity and sensitivity, clear 

confirmed luminescence mechanism, and excellent LQY have remained rare up to now. Recently, our 

group reported an unprecedented high LQY nature of two-coordinated silver(I) complex 

[Ag(4-(4-N,N-dimethylaminophenyl)-C^N^C)2]X (X = ClO4
-, C^N^C = 2,6-diphenylpyridine) due to 

the introducing of strong electron-donating substituent of N, N-dimethylamine (DMA) group (Фf = 

0.83) [53]. The successful applications of the DMA group encouraged us finding a new strongly 

electron-donating substituent to extend our research in the field of design novel fluorescence probe for 

Ag+. As a continuous investigations on the chemosensors [54-59], herein, we report the syntheses and 

metal binding properties of new simple C^N^C-type receptor (CNC-OMe) for fluorescent 

discriminating of Ag+ over a wide range of tested metal ions with high LQY (Scheme 1). Indeed, the 

chromophore of p-methoxy (p-OMe) group was selected as the strongly electron-donating property of 

the substituent, while pyridine was selected as the unique two-coordinated Ag+ receptors. 

Single-crystal X-ray diffraction analyses proved that the two necessary units were introduced as trigger 

sites to achieve efficient metal interactions and a consequently good fluorescence signal response. This 

“turn-on” nature of the CNC-OMe + Ag+ can be assigned to intraligand charge transfer (ILCT) 
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transitions with mixed some Ag(I) 5p orbitals perturbation characters. Interestingly, the bright blue (λ 

~ 300-500 nm) with high LQY (Φf = 0.79) and visible-light excitation of [Ag(CNC-OMe)2]
+ provide 

an opportunity to luminescent image Ag+ in living cells. To the best of our knowledge, CNC-OMe 

was one of the brightest Ag+-binding chemosensors with high selectivity and sensitivity to date. 

Scheme 1 

2. Experimental 

2.1 Materials and apparatuses 

All materials were used as received. The solvents used for synthesis were of analytical grade. 

Caution! Perchlorate salts are potentially explosive and should be handled with care and in small 

amounts. 

1H NMR and 13C NMR spectra were recorded using a Varian inova-400 spectrometer with 

chemical shifts reported as ppm (in DMSO-d6, TMS as internal standard). ESI-TOF mass spectra 

were obtained using a LC/Q-TOF MS spectrometer. Steady-state luminescence emission spectra 

were recorded using a SPEX Fluorolog-2 Model F111 fluorescence spectrophotometer. For all 

fluorescent measurements, both excitation and emission slit widths were 1 nm. Optical absorption 

spectra were measured using a Hitachi U-0080D spectrometer at room temperature. Luminescent 

QYs were referenced to quinine sulfate in 0.1 N H2SO4 (Фf = 0.546) and extrapolated to infinite 

dilution (estimated error ≤ 1%). All the spectroscopic measurements were performed at least in 

triplicate and averaged. 

2.2 General procedures for spectroscopy  
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Stock solutions (2 × 10-2 M) of the perchlorate salts of Na+, K+, Mg2+, Fe3+, Fe2+, Co2+, Ni2+, 

Cu2+, Zn2+, Cr3+, Cd2+, Hg2+, Mn2+, Al3+, Pb2+, and Ag+ in acetonitrile were prepared. Stock 

solution of CNC-OMe (1 mM) was also prepared in acetonitrile solution. Test solutions were 

prepared by placing 40 µL of the probe stock solution into a quartz cell of 1 cm optical path length 

including 2 mL CH3CN:H2O (1:1, v/v, containing 0.01 M HEPES, pH = 7.21) solution, and then 

adding an appropriate aliquot of each metal stock solution with a micro-syringe. All the 

spectroscopic measurements were performed at least in triplicate and averaged.  

1H NMR titration was measured using a Varian inova-400 spectrometer at 298 K. A solution (1 

mM) of receptor CNC-OMe in DMSO-d6 was titrated with a sufficient quantity of AgClO4 using a 

micro-syringe. After shaking it for ten minutes, 1H NMR spectrum was taken at room temperature. 

The chemical shift changes of the proton of CNC-OMe were monitored. 

For Ag+-bound CNC-OMe, ESI-TOF spectrum was measured using a LC/Q-TOF MS 

spectrometry. The reaction mixture of AgClO4 and CNC-OMe in a 1 : 2.05 molar ratio in 30 mL 

mixed solvents of acetonitrile and methanol (9:1, v/v) was stirred at room temperature for 2 h, then 

filtered and concentrated to 5 mL. Addition of diethyl ether gave the product as a colorless solid. 

The solid was filtered and washed with diethyl ether. Then, the product was redissolved in 

dichloromethane for the ESI-TOF spectrum.  

2.3 Computational details  

All theoretical calculations were performed in Virtual Laboratory for Computational Chemistry, 

CNIC, CAS. All calculations were carried out with the Gaussian09 programs. The B3LYP 

calculations were carried out by the 6-31G** basis set for the main group elements and the 

effective core potentials (ECP) such as Lanl2DZ for the Ag atom. We employed the density 

functional theory (DFT) with no symmetry constraints to investigate the optimized ground state 

(S0) geometries of the ligand CNC-OMe and [2CNC-OMe + Ag]+ (GENECP). The first 
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excited-state (S1) geometrical optimization was performed using the Time dependent DFT 

(TDDFT, nstates = 30) method. Fluorescence emission energies were computed from TDDFT 

calculations (nstates = 30) based on the optimized geometry of the lowest excited state in 

acetonitrile. The contour plots of MOs were obtained with the Gaussian 09 view program. 

2.4 Cell incubation and imaging  

HeLa cells were cultured in 1640 supplemented with 10% FCS (Invitrogen). Cells were seeded 

in 24-well flat-bottomed plates for Nikon eclipase TE2000-5 inverted fluorescence microscopy. 

After 12 h, HeLa cells were incubated with 5 µM compound CNC-OMe (in the culture medium 

containing 0.5% DMSO) for 15 min at 37 oC under 5% CO2 and then washed with 

phosphate-buffered saline (PBS) three times before incubating with 10 eq Ag+ for another 30 min, 

and cells were rinsed with PBS three times again. The fluorescence imaging of intracellular Ag+ in 

HeLa cells was observed under Nikon eclipase TE2000-5 inverted fluorescence microscopy with a 

20 × objective lens (excited with blue light). For all images, the microscope settings, such as 

brightness, contrast, and exposure time were held constant to compare the relative intensity of 

intracellular Ag+ fluorescence. 

2.5 X-ray structure determinations  

Crystals mounted in a glass capillary were used for data collection at 28 ◦C on a MAR diffractometer 

with a 300 mm image plate detector using graphite monochromatized Mo-Kα radiation (λ = 0.71073 

Å). Data collection was made with 1.5o oscillation step of ϕ, 5 or 10 minutes exposure time and 

scanner distance at 120 mm. 130 images were collected. The images were interpreted and intensity 

was integrated with the program DENZO. All structures were solved by direct methods employing 

SHELXS-97 program on a PC. Ag and many non-H atoms were located according to the direct 

methods. The positions of the other non-hydrogen atoms were found after successful refinement by 
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full-matrix least-squares using the SHELXL-97 program suite. In the final stage of least-squares 

refinement, disordered C atoms were refined isotropically, other non-H atoms were refined 

anisotropically. The positions of H atoms were calculated based on riding mode with thermal 

parameters equal to 1.2 times that of the associated C atoms, and participated in the calculation of final 

R-indices. CCDC 1444590 contain the supplementary crystallographic data for this paper. These data 

can be obtained free of charge from the Cambridge Crystallographic Data Centre via 

http://www.ccdc.cam.ac.uk/cgi-bin/catreq.cgi. 

2.5 Synthesis of CNC-OMe 

A mixture of acetamide (45.5 g, 0.77 mol), ammonium acetate (29.3 g, 0.38 mol), acetophenone 

(6.0 mL, 51.5 mmol), and 4-4-methoxybenzaldehyde (25.7 mmol) was heated to reflux for 2 h and 

then cooled to 120 oC, and NaOH (22.5 g in 50 cm3 of water) was added. After a further 2 h, the 

solution was cooled to room temperature. The suspension was diluted with water and extracted 

with dichloromethane. After evaporation of the solvent, the residue was washed by petroleum ether 

to give products with yield of 36%. Anal calc. for C24H19NO: C 85.43, H 5.68, N 4.15%. Found: C 

85.37, H 5.72, N 4.14%; 1H NMR (400 MHz, CDCl3) δ: 8.65 (s, 2H), 7.95 (d, J = 6.4, 4H), 7.68 

(m, 6H), 7.16 (d, J = 6.4, 2H), 7.00 (d, J = 6.4, 2H), 3.87 (s, 6H); 13C NMR (101 MHz, CDCl3) δ 

161.8, 159.5, 152.5, 141.2, 130.7, 129.9, 128.8, 128.1, 126.7, 119.9, 115.0, 55.6 ppm; MS: m/z 

338.4 (M+H)+. 

3. Results and discussion 

3.1 Design and synthesis 

CNC-OMe was first reported by Krygowski [60]. In order to further examine and tune the 

fluorescence properties of 4’-phenyl terpyridines, Araki and co-workers had introduced several 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

substituents having different electron donating or withdrawing properties into the p-position of the 

4’-phenyl unit [61]. Interestingly, p-OMe group has the similar ∆µ (the difference between ground 

and excited state dipole moment) as that of p-amino groups. Here, we adopt the one-step method 

reported by Collin et al [62]. and Cao et al [63]. CNC-OMe was synthesized by 1,4-Michael 

addition reaction of the unsaturated ketone intermediate produced by condensation of the 

4-methoxybenzaldehyde and acetophenone in good yield (Scheme 1). CNC-OMe was 

characterized by EA, NMR and MS.  

3.2 Fluorescent detections of Ag+ 

CNC-OMe exhibited two characteristic absorption band cenerted at 258 nm and 315 nm in 

CH3CN:H2O (1:1, v/v, containing 0.01 M HEPES, pH=7.21) solution (Fig. S1). CNC-OMe 

displayed a weak fluorescence band with a corresponding emission maximum at 349 nm (Φf = 

0.11) in CH3CN:H2O (1:1, v/v, containing 0.01 M HEPES, pH=7.21) solution when excited at 315 

nm. The addition of AgClO4 resulted in a significant fluorescence enhancement until a plateau was 

reached (Φf = 0.79). Upon adding Ag+, the fluorescence intensity of CNC-OMe increased by ca. 

12-fold (Fig. 1a). The association constant for Ag+ binding to CNC-OMe was calculated as 3.17 ± 

0.20 × 106 M-1 [64]. Moreover, CNC-OMe featured a detection limit for Ag+ of at least down to 

6.20 × 10-6 M.  

Under the same conditions, no drastic fluorescence enhancement of CNC-OMe (20 µM) was 

observed in the presence of other tested metal salts of ClO4
- (Hg2+, Zn2+, Fe3+, Fe2+, Ni2+, Mn2+, 

Cd2+, Co2+, Cu2+, Cr2+, Al3+, Mg2+, and Na+) (Fig. 1b). Furthermore, the competition experiments 

revealed that CNC-OMe retained the excellent Ag+ specificity in the presence of a variety of other 

metal found in environmental and biological settings (Fig. S12), this means that the luminescence 
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enhancement induced by Ag+ was little affected by these metal ions. These results suggest that 

CNC-OMe could respond to Ag+ with high selectivity by a fluorescence output manner. 

Fig. 1 

3.3 Nature of interaction 

1H NMR titration displayed the chemical shift changes of CNC-OMe upon the addition of Ag+, 

as shown in Fig. 2. Compared to the 1H NMR spectrum of the free ligand CNC-OMe (Fig. 2a), the 

Ag+ binding caused significant shifts of almost all of the proton signals, especially for the protons 

on the pendant phenyl groups (Fig. 2b). And so forth, strongly suggested the coordination of the 

ligand to the Ag+ center [65]. The binding model was further supported by the ESI-MS spectra. In 

the case of a CH3CN solution of CNC-OMe in the presence of a sufficient amount of AgClO4 (Fig. 

S2), an exact comparison of the most interesting experimental peak (which is observed at m/z 

783.1) with the simulation results obtained on the basis of natural isotopic abundances reveals that 

the univalently charged species can be reasonably assigned to [(CNC-OMe)2+Ag]+, thus providing 

a direct evidence of a 2 : 1 stoichiometric host-guest complexation. 

Fig. 2  

Fortunately, the binding model was further supported by the single-crystal X-ray diffraction 

analysis. Crystals were grown by layering an CH3CN solution of 1 mM AgClO4 on top of an 

CH3CN solution of 2 mM CNC-OMe (crystallographic data are summarized in Table S1). As 

shown in Fig. 3, the crystal structure reveals the Ag(I) center is coordinated to two pyridine 

nitrogens from two distinct CNC-OMe ligands in a slightly distorted linear geometry with the 

bond angles of N-Ag-N being 172.11(12)°. The steric hindrance of the pendant phenyl groups 

prevent the two pyridyl rings from being coplanar, and the dihedral angle between the two 
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pyridylplanes is approximately 76°. Meanwhile, The steric hindrance of the side phenyl groups 

effectively encapsulate the Ag(I) cation. 

Fig. 3 

The spatial arrangement of the side aromatic groups around the silver is clearly demonstrated by 

viewing the molecule along the N-Ag-N axis as shown in Fig. S3, which clearly shows how the 

Ag(I) cation is protected in the middle of the complexes. So, the steric hindrance of the pendant 

phenyl groups prevent the formation of the planar three-coordinate complexes or tetrahedral 

four-coordinate complexes. This phenomenon is the key role of the high selectivity due to Ag+ is 

the only two-coordinate metal in environmental and biological settings. No intermolecular π-π 

stacking are observed in the stacking diagrams of [Ag(CNC-OMe)2]
+ and the mono-nuclear units 

are only stacked by C-H...O interactions (Fig. S4). The feature of encapsulated and non-conjugated 

structure is helpful for the emitters to maintain high fluorescent efficiency due to the reducing 

nonradiative transition probability [66, 67]. To the best of our knowledge, [Ag(CNC-OMe)2]
+ was 

the third crystal structure for clearly confirming the luminescence mechanism of the Ag+ recepter 

[24, 37].  

3.4 Theoretical calculations for sensing mechanisms of Ag+ 

In order to further rationalizing the anomalously strong fluorescence turn-on switch effect, as 

well as the ILCT effect of the probe, we optimized the S1 state structures of CNC-OMe and 

[Ag(CNC-OMe)2]
+ in acetonitrile solvent (Fig. S5). The result showed that in the S1 state 

[Ag(CNC-OMe)2]
+ exhibited a similar structure to that in the crystal state. The time-dependent 

density functional theory (TDDFT) calculations on the UV-vis absorption (vertical excitation) and 

the emission are summarized in Table S3 and S4. The calculated absorbance and fluorescence 

emission of CNC-OMe and [Ag(CNC-OMe)2]
+ are in good agreement with the experimental 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

results (Fig. 1 and S1). [Ag(CNC-OMe)2]
+ complex showed that the first (S1ėS0, HOMOė

LUMO, λem = 378.68 nm, Osc. = 0.8094) and second (S2ėS0, HOMO-2ėLUMO, HOMO-1ė

LUMO, HOMO-1ėLUMO+1, λem = 345.60 nm, Osc. = 0.3616) emissive states were relevant to 

the fluorescence emission maxima with predominant ILCT character (Table. S4). As shown in Fig. 

4, the distributions of the FMOs for [Ag(CNC-OMe)2]
+, the HOMO are mainly located on the π 

orbitals of one independent CNC-OMe ligand, whereas the LUMO are mainly localized on the π* 

orbitals of the two pyridine rings from distinct ligands and the unnoticeable pπ orbitals of metal 

centers. The computed electronic transitions in S1 state reveal that the emission process is mainly 

due to π*ėπ transition from LUMO to HOMO. By comparison, the shapes of the HOMO and 

LUMO involved in S1 state are similar with that of that of S0 state (Fig. S9). The distribution of the 

FMOs suggests the mainly ILCT nature of the emission process in Ag(I) binding with CNC-OMe. 

The result of theoretical calculations is high similar to that of our previous work [53]. So, this 

“turn-on” nature of the CNC-OMe+Ag+ can be exactly assigned to ILCT transitions with mixed 

some Ag(I) 5p orbitals perturbation characters. 

Fig. 4 

Based on these observations, it should be noted that the strongly electron-donating substituent of 

p-OMe portions play an important role in the high LQY of CNC-OMe+Ag+. The strong 

fluorescence was due to a reduced electron-charge density at the pyridine site after the binding 

with Ag(I), which reduced the “push-pull” nature of the ILCT excited state of CNC-OMe (caused 

by the electron-donating p-OMe and the electron-withdrawing pyridine) [68]. Ultimately, the steric 

hindrance of the pendant phenyl groups help to improve the selectivity of the recognition process. 

3.5 Fluorescent detection of Ag+ in living organisms 
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As we know, only a handful of cellular sensors for Ag+ have been reported because of the 

mechanism of fluorescence quenching by water [69, 15-19]. However, preliminary inverted 

fluorescence microscopy fluorescent images of CNC-OMe-loaded HeLa cells in the absence and 

presence of Ag+ was examined (Fig. 5). HeLa cells incubated with CNC-OMe for 30 min at room 

temperature showed a weak blue intracellular fluorescence, which suggested that CNC-OMe was 

cell permeable. The cells remained viable and no apparent toxicity and side effects were observed 

throughout the imaging experiments. A weak but remarkable fluorescence enhancement was 

observed when cells stained were further incubated with AgClO4 for 30 min by contrast of the 

fluorescence titration, indicating the possible usage in fluorescence images involving Ag+ within 

living cells. 

Fig. 5 

4. Conclusions 

In conclusion, a simple 2,6-diphenylpyridine-based cyclometalated ligand showing “turn on” 

fluorescent sensing response for Ag+ ion found in aqueous media. Further binding model studies by 

1H NMR spectroscopy, mass spectroscopy, crystal structure, and TDDFT calculations 

demonstrated that the receptor CNC-OMe formed a 2 : 1 complexation with Ag+. The “turn-on” 

nature of the CNC-OMe+Ag+ with high LQY can be assigned to ILCT transitions with mixed 

some Ag(I) 5p orbitals perturbation characters. Due to its excellent sensitivity, high selectivity, and 

favorable spectroscopic properties, CNC-OMe could act as efficient sensing probe for the 

detection of Ag+ in living cells, over biologically-relevant metal ions. 
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Scheme Title and Captions of Figures 

Scheme 1. Synthesis of receptor CNC-OMe. 

Fig. 1. (a) Fluorescence titrations of CNC-OMe (20 µM) with AgClO4 in CH3CN:H2O(1:1, v/v, 

containing 0.01 M HEPES, pH=7.21). [Ag+]: 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 

6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5 equiv. λex= 315 nm. Inset: liner of log ((F-F0)/(Flim-F) vs. log [Ag+]. 

(F present fluorescence of CNC-OMe at 362 nm). (b) Fluorescence changes of CNC-OMe (20 µM) 

upon titration with 10.0 equiv. of each of the guest metal ions in CH3CN:H2O (1:1, v/v, containing 

0.01 M HEPES, pH=7.21). Condition: excitation: 315 nm, emission: 362 nm. 

Fig. 2. Partial 1H NMR spectra for pure CNC-OMe (a) and CNC-OMe +AgClO4 (sufficit quantum) 

(b) in DMSO-d6, respectively. 

Fig. 3. X-ray crystal structure of [Ag(CNC-OMe)2]
+ complex. Thermal displacement ellipsoids are 

drawn at the 30% probability level. The anions, solvent molecules and H atoms are omitted for 

clarity.  

Fig. 4. Plots of HOMOs and LUMOs for the S1 state of [Ag(CNC-OMe)2]
+ by TDDFT methods.in 

acetonitrile solvent. 

Fig. 5. Fluorescence images of HeLa cells (λex = 320 nm). (a) Cells supplemented with CNC-OMe 

for 15 min. (b) Cells supplemented with CNC-OMe for 15 min and then incubated with Ag+ for 30 

min. 
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Scheme 1. Synthesis of receptor CNC-OMe. 
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Fig. 1. (a) Fluorescence titrations of CNC-OMe (20 µM) with AgClO4 in CH3CN:H2O(1:1, v/v, 

containing 0.01 M HEPES, pH=7.21). [Ag+]: 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 

6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5 equiv. λex= 315 nm. Inset: liner of log ((F-F0)/(Flim-F) vs. log [Ag+]. 

(F present fluorescence of CNC-OMe at 362 nm). (b) Fluorescence changes of CNC-OMe (20 µM) 

upon titration with 10.0 equiv. of each of the guest metal ions in CH3CN:H2O (1:1, v/v, containing 

0.01 M HEPES, pH=7.21). Condition: excitation: 315 nm, emission: 362 nm. 
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Fig. 2. Partial 1H NMR spectra for pure CNC-OMe (a) and CNC-OMe +AgClO4 (sufficit quantum) 

(b) in DMSO-d6, respectively. 
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Fig. 3. X-ray crystal structure of [Ag(CNC-OMe)2]
+ complex. Thermal displacement ellipsoids are 

drawn at the 30% probability level. The anions, solvent molecules and H atoms are omitted for 

clarity.  
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Fig. 4. Plots of HOMOs and LUMOs for the S1 state of [Ag(CNC-OMe)2]
+ by TDDFT methods.in 

acetonitrile solvent. 
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Fig. 5. Fluorescence images of HeLa cells (λex = 320 nm). (a) Cells supplemented with CNC-OMe 

for 15 min. (b) Cells supplemented with CNC-OMe for 15 min and then incubated with Ag+ for 30 

min. 
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Highlights 

1. CNC-OMe was one of the brightest Ag+-binding chemosensors with high selectivity and sensitivity 

to date.  

2. The sensing mechanism is proposed on the basis of the experimental and theoretical studies. 

3. CNC-OMe could act as efficient sensing probe for the detection of Ag+ in living cells. 
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1. Figure S1 Absorption spectra of CNC-OMe upon addition of 10 equiv. of AgClO4 in 
CH3CN:H2O(1:1, v/v, containing 0.01 M HEPES, pH=7.21).  
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2. Figure S2 ESI-TOF spectrum of CNC-OMe + Ag+. 
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3. Table S1 Crystal data and structure refinements for [Ag(CNC-OMe)2]
+ClO4

-. 

 [Ag(CNC-OMe)2]
+ClO4

- 

Formula C49H40AgCl3N2O6 

Formula weight 967.05 

Space group P 21/n 

Crystal system Monoclinic 

a(Å) 10.411(2) 

b(Å) 20.962(4) 

c(Å) 20.356(4) 

α(deg) 90 

β(deg) 90.54(3) 

γ(deg) 90 

V(Å3) 4442.2(15) 

Z 4 

T(K) 301(2) 

ρcalc(g cm-3) 1.446  

θrang(deg) 2.18-25.66 

µ(mm-1) 0.686 

GOF 0.929 

no. unique 8024 

Rint 0.0531 

no. parameters 522 

R1a 0.0458 

WR2a 0.1204 

Max, min 0.473, -0.416 

Peaks (e Å-3)  
  

 

aI>2σ(I). R1 = Σ||Fo| - |Fc||Σ|Fo|. wR2 = {Σ[w(Fo
2 – Fc

2)2]/Σ[w(Fo
2)2]} 1/2 
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4. Table S2 Selected bond lengths and angles for [Ag(CNC-OMe)2]
+. 

 

Bond       lengths       Bond            angles 

Ag1-N1  2.173(3)  C1-N1-C5  119.0(3) 

Ag1-N2  2.160(3)  N1-Ag1-N3  172.11(12) 

N1-C5  1.348(4)  Ag1-N1-C1  113.7(2) 

N1-C1  1.356(5)  Ag1-N1-C5  125.2(2) 

N2-C25  1.360(5)  Ag1-N2-C25  120.4(2) 

N2-C29  1.343(5)  Ag1-N2-C29  19.5(2) 

N1-C1-C2  121.0(4)   

                        C2-C1-C6  121.7(3)   

                        N1-C1-C6  117.4(3)   

                        C1-C2-C3  121.3(3)    

                        C2-C3-C18  120.5(3)   

                        C2-C3-C4  116.4(3)    

                        C4-C3-C18  123.1(3)    

                        C3-C4-C5  120.8(3)    

                        N1-C5-C4  121.3(3)    

                        N1-C5-C12  117.1(3)   

                        C4-C5-C12  121.7(3)    

                        C1-C6-C11  121.9(4)   
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5. Figure S3 The encapsulate structure of [Ag(CNC-OMe)2]
+ showing the spatial 

orientation of the side aromatic groups around the central Ag(I) cation and view along 
the N-Ag-N axis. 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

6. Figure S4 Crystal-packing diagram of [Ag(CNC-OMe)2]
+ClO4

-. 
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7. Figure S5 S1 state structures of CNC-OMe (top) and [Ag(CNC-OMe)2]
+ (bottom) in 

acetonitrile solvent. 
a) 

 
b) 
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8. Table S3 Selected parameters for the vertical excitation (UV-vis absorption) of 
CNC-OMe and [Ag(CNC-OMe)2]

+ obtained by the TDDFT//B3LYP/LANL2DZ, 
based on the DFT//B3LYP/LANL2DZ optimized ground state geometries (acetonitrile 
was employed as a solvent in all the calculations) 

Compound Electronic transitiona Energy (eV) f b Composition CIc Character 

CNC-OMed S0→S1 4.0458 (306.45 nm) 0.1238 HOMO-1→LUMO 0.55525 ILCT 

    HOMO→LUMO+1 0.41096 ILCT 

 S0→S2 4.1705 (297.29 nm) 0.5171 HOMO→LUMO 0.69181 ILCT 

 S0→S3 4.3244 (286.71 nm) 0.2082 HOMO-1→LUMO 0.41085 ILCT 

    HOMO→LUMO+1 0.56737 ILCT 

 S0→S4 4.5290 (273.76 nm) 0.1193 HOMO-6→LUMO 0.36777 ILCT 

    HOMO-5→LUMO 0.24994 ILCT 

    HOMO-3→LUMO 0.27571 ILCT 

    HOMO-2→LUMO 0.27427 ILCT 

    HOMO-1→LUMO+1 0.36830 ILCT 

 S0→S5 4.5463 (272.72 nm) 0.1746 HOMO-6→LUMO 0.25038 ILCT 

    HOMO-5→LUMO 0.17776 ILCT 

    HOMO-2→LUMO 0.21309 ILCT 

    HOMO-1→LUMO+1 0.57798 ILCT 

 S0→S6 4.6762 (265.14 nm) 0.0352 HOMO-6→LUMO+1 0.39793 ILCT 

    HOMO-5→LUMO+1 0.24752 ILCT 

    HOMO-2→LUMO+1 0.27907 ILCT 

    HOMO-1→LUMO+1 0.41501 ILCT 

       

[Ag(CNC-OMe)2]+ S0→S1 3.3456 (370.58 nm) 0.7201 HOMO→LUMO 0.70011 ILCT 

 S0→S2 3.6124 (343.22 nm) 0.1766 HOMO-2→LUMO 0.15124 ILCT 

    HOMO-1→LUMO 0.66086 ILCT 

    HOMO-1→LUMO+1 0.17837 ILCT 

 S0→S3 3.6630 (338.48 nm) 0.1607 HOMO-2→LUMO 0.63286 ILCT 

    HOMO-1→LUMO 0.15043 ILCT 

    HOMO→LUMO+2 0.24139 ILCT 

 S0→S4 3.7421 (331.32 nm) 0.0187 HOMO→LUMO+1 0.70106 ILCT 

 S0→S5 3.7881 (327.30 nm) 0.4548 HOMO-1→LUMO 0.19601 ILCT 

    HOMO-1→LUMO+1 0.66958 ILCT 

 S0→S6 3.8483 (322.18 nm) 0.0192 HOMO-4→LUMO 0.59272 MLCT 

    HOMO-3→LUMO 0.30809 ILCT 

    HOMO→LUMO+2 0.13262 ILCT 

 S0→S7 3.9400 (314.68 nm) 0.0530 HOMO-4→LUMO 0.24147 MLCT 

    HOMO-3→LUMO 0.18534 ILCT 

    HOMO-3→LUMO+1 0.12738 ILCT 

    HOMO-2→LUMO 0.23109 ILCT 

    HOMO→LUMO+2 0.56517 ILCT 

 S0→S8 3.9418 (314.54 nm) 0.0717 HOMO-4→LUMO 0.22600 MLCT 

    HOMO-3→LUMO 0.50283 ILCT 

    HOMO-3→LUMO+1 0.24914 ILCT 
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a Only the main configuration are presented (absorbance bands ˃ 250 nm and f ˃ 0.01). b Oscillator strengths. c
 The CI coefficients are in 

absolute values. d L1 obtained by the TDDFT//B3LYP/6-31G**(d, p), based on the DFT//B3LYP/6-31G**(d, p) optimized ground state 
geometries.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    HOMO-2→LUMO 0.10381 ILCT 

    HOMO-1→LUMO+3 0.15284 ILCT 

    HOMO→LUMO+2 0.29740 ILCT 

 S0→S9 4.0824 (303.70 nm) 0.0648 HOMO-3→LUMO 0.32784 ILCT 

    HOMO-3→LUMO+1 0.46710 ILCT 

    HOMO-2→LUMO+1 0.11461 ILCT 

    HOMO-1→LUMO+3 0.37536 ILCT 

 S0→S10 4.1517 (298.64 nm) 0.0294 HOMO-4→LUMO+1 0.29941 MLCT 

    HOMO-2→LUMO+1 0.61299 ILCT 

    HOMO-1→LUMO+3 0.11782 ILCT 

 S0→S12 4.2561 (291.31 nm) 0.0995 HOMO-4→LUMO+1 0.15693 MLCT 

    HOMO-3→LUMO+1 0.40145 ILCT 

    HOMO-1→LUMO+2 0.10526 ILCT 

    HOMO-1→LUMO+3 0.51394 ILCT 

    HOMO→LUMO+3 0.14637 ILCT 

 S0→S16 4.3728 (283.53 nm) 0.0169 HOMO-10→LUMO 0.14314 ILCT 

    HOMO-8→LUMO 0.23276 ILCT 

    HOMO-6→LUMO 0.55101 ILCT 

    HOMO-5→LUMO 0.27487 ILCT 
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9. Table S4 Selected parameters for the fluorescence emission of CNC-OMe and 
[Ag(CNC-OMe)2]

+ obtained by the TDDFT//B3LYP/LANL2DZ, based on the 
DFT//B3LYP/LANL2DZ optimized ground state geometries (acetonitrile was employed 
as a solvent in all the calculations)  

a Only the main configuration are presented (emission bands ˃  300 nm and f ˃ 0.001). b Oscillator strengths. c
 The CI coefficients are in 

absolute values. d L1 obtained by the TDDFT//B3LYP/6-31G**(d, p), based on the DFT//B3LYP/6-31G**(d, p) optimized ground state 
geometries.  

 

 

 

 

 

 

 

 

 

Compound Electronic transitiona Energy (eV) f b Composition CIc 

CNC-OMed S1→S0 3.5399 (350.25 nm) 0.3195 HOMO-1→LUMO+1 0.21788 

    HOMO→LUMO 0.66080 

 S2→S0 3.7645 (329.35 nm) 1.0069 HOMO-1→LUMO 0.67807 

    HOMO→LUMO+1 0.13821 

 S3→S0 3.9951 (310.34 nm) 0.2149 HOMO-1→LUMO+1 0.64909 

    HOMO→LUMO 0.22163 

    HOMO→LUMO+1 0.13478 

 S4→S0 4.0730 (304.41 nm) 0.2585 HOMO-1→LUMO 0.13810 

    HOMO-1→LUMO+1 0.13724 

    HOMO→LUMO+1 0.67048 

      

[Ag(CNC-OMe)2]+ S1→S0 3.2741 (378.68 nm) 0.8094 HOMO→LUMO 0.69877 

 S2→S0 3.5875 (345.60 nm) 0.3616 HOMO-2→LUMO 0.15759 

    HOMO-1→LUMO 0.61234 

    HOMO-1→LUMO+1 0.30219 
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10. Figure S6 (a) The theoretical UV-vis spectrum of CNC-OMe. (b) The theoretical 
fluorescence spectrum of CNC-OMe. 
(a) 

 

 

(b) 
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11. Figure S7 (a) The theoretical UV-vis spectrum of [Ag(CNC-OMe)2]
+. (b) The 

theoretical fluorescence spectrum of [Ag(CNC-OMe)2]
+. 

(a) 

 

(b) 
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12. Figure S8 Plots of HOMO and LUMO for the S1 state of [Ag(CNC-OMe)2]
+. Only 

the main configurations are presented. 
 

 

LUMO+1 (189) (-0.077)               LUMO (188) (-0.088) 

 

HOMO (187) (-0.225)                 HOMO-1 (186) (-0.232) 

 

HOMO-2 (185) (-0.246) 
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13. Figure S9 Electron density plots of the frontier molecular orbitals for S0 state of 
[Ag(CNC-OMe)2]

+ (isocontour value 0.02 au). Only the main configurations are 
presented. 

 

LUMO+3 (-0.05745)   LUMO+2 (-0.06134)   LUMO+1 (-0.07699) 

 

LUMO (-0.08755)   HOMO (-0.22512)   HOMO-1 (-0.23150) 

 

HOMO-2 (-0.24554)   HOMO-3 (-0.25029)   HOMO-4 (-0.25607) 

 

HOMO-5 (-0.26696)   HOMO-6 (-0.26904)   HOMO-8 (-0.27015) 
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HOMO-10 (-0.27189) 
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14. Figure S10 Electron density plots of the frontier molecular orbitals for S0 state of 
CNC-OMe (isocontour value 0.02 au) and plots of HOMO and LUMO for the S1 state 
of CNC-OMe. Only the main configurations are presented. 
S0 state 

 

LUMO+1 (-0.04528)    LUMO (-0.05050)   HOMO (-0.22041) 

 

HOMO-1 (-0.22496)    HOMO-2 (-0.24736)   HOMO-3 (-0.25363) 

 

HOMO-5 (-0.25832)    HOMO-6 (-0.26340) 
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S1 state 

 

LUMO+1 (-0.05262)               LUMO (-0.06177) 

 

HOMO (-0.21683)               HOMO-1 (-0.21800) 
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15. Figure S11 1H NMR and 13C NMR spectra of CNC-OMe. 
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16. Table S5 Atomic coordinates calculated for [Ag(CNC-OMe)2]
+ from TDDFT// 

B3LYP/LANL2DZ excited state geometry optimization. 
 

Atom Type             X        Y         Z 
 

C                     0.13849  -1.13502  -3.26274  

 C                     1.23549  -1.24202  -4.08274  

 C                     2.33349  -2.02502  -3.72274  

 C                     2.24349  -2.71202  -2.51974  

 C                     1.14549  -2.54502  -1.69474  

 C                    -1.06851  -0.38602  -3.67674  

 C                    -2.33751  -0.92002  -3.44674  

 C                    -3.47351  -0.23802  -3.81574  

 C                    -3.38051   0.96098  -4.46674  

 C                    -2.15151   1.47898  -4.72974  

 C                    -0.99151   0.81098  -4.34274  

 C                     1.05049  -3.23702  -0.37874  

 C                    -0.14651  -3.65202   0.13926  

 C                    -0.21651  -4.31102   1.35126  

 C                     0.93649  -4.57902   2.05926  

 C                     2.14549  -4.15102   1.57426  

 C                     2.21549  -3.49102   0.37126  

 C                     3.49049  -2.13602  -4.61774  

 C                     4.30649  -3.27302  -4.61474  

 C                     5.37549  -3.36702  -5.46774  

 C                     5.66149  -2.33602  -6.34274  

 C                     4.87549  -1.21202  -6.36074  

 C                     3.79649  -1.11402  -5.49774  

 C                     7.18249  -1.44702  -7.96174  

 C                    -3.44949  -0.51098   1.31974  

 C                    -4.09149   0.10702   2.36774  

 C                    -3.75449   1.40102   2.77174  

 C                    -2.77949   2.04502   2.02174  

 C                    -2.16549   1.40302   0.95674  

 C                    -3.80649  -1.87098   0.88074  

 C                    -4.09749  -2.11898  -0.46026  

 C                    -4.45149  -3.39998  -0.86226  

 C                    -4.52549  -4.41898   0.04174  

 C                    -4.21749  -4.17798   1.36674  

 C                    -3.86549  -2.91498   1.77374  

 C                    -0.05807   2.84878   0.95277  

 C                     0.86493   3.57378   0.21877  

 C                     0.72993   3.66178  -1.16423  

 C                    -0.32907   3.02478  -1.81123  

 C                    -1.25107   2.29978  -1.07623  

 C                    -4.39249   2.06002   3.91974  
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 C                    -5.68849   1.72402   4.30674  

 C                    -6.25849   2.28402   5.41574  

 C                    -5.53449   3.17502   6.18174  

 C                    -4.26649   3.54102   5.81774  

 C                    -3.69649   2.99102   4.68374  

 C                    -7.34249   3.49202   7.71574  

 Ag                   -1.28316  -0.9037   -0.71529  

 O                     6.76949  -2.52802  -7.11874  

 O                    -5.98849   3.75802   7.33174  

 N                     0.12049  -1.74102  -2.04974  

 N                    -2.47849   0.13702   0.63174  

 H                     1.24149  -0.78502  -4.89274  

 H                     2.92649  -3.29202  -2.26274  

 H                    -2.41251  -1.75102  -3.03574  

 H                    -4.30951  -0.59202  -3.62174  

 H                    -4.14951   1.41798  -4.72974  

 H                    -2.08551   2.29198  -5.17374  

 H                    -0.16051   1.17698  -4.53574  

 H                    -0.93151  -3.48502  -0.33874  

 H                    -1.03951  -4.57102   1.68626  

 H                     0.89849  -5.04902   2.86126  

 H                     2.92349  -4.31102   2.06526  

 H                     3.04049  -3.21202   0.05426  

 H                     4.12549  -3.97302  -4.03174  

 H                     5.90949  -4.12802  -5.45674  

 H                     5.06449  -0.51702  -6.94674  

 H                     3.26949  -0.34702  -5.51374  

 H                     6.46349  -1.20802  -8.55674  

 H                     7.94349  -1.71802  -8.47274  

 H                     7.41949  -0.68802  -7.41874  

 H                    -4.76249  -0.34998   2.81674  

 H                    -2.53649   2.91802   2.23574  

 H                    -4.05349  -1.43198  -1.08426  

 H                    -4.64149  -3.56598  -1.75726  

 H                    -4.78149  -5.26998  -0.23326  

 H                    -4.24649  -4.87198   1.98374  

 H                    -3.66449  -2.76098   2.66974  

 H                     0.03193   2.78978   1.87777  

 H                     1.57293   4.00178   0.64977  

 H                     1.34693   4.14878  -1.65623  

 H                    -0.41907   3.08378  -2.73523  

 H                    -1.96007   1.87178  -1.50823  

 H                    -6.17349   1.10902   3.80174  

 H                    -7.12949   2.06202   5.64974  

 H                    -3.78949   4.15702   6.33174  

 H                    -2.84149   3.24902   4.43274  

 H                    -7.94349   3.84002   7.04674  
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 H                    -7.51749   3.91602   8.55674  

 H                    -7.47149   2.54502   7.79774  

 C                    -1.03615   2.15127   0.22441  
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17. Table S6 Atomic coordinates calculated for CNC-OMe from TDDFT/B3LYP 
excited state geometry optimization. 
 

Atom Type             X        Y         Z 
 

C                     1.26922   1.18627  -0.07636  

 C                    -0.13288   1.1484   -0.09572  

 C                    -0.79764  -0.08479  -0.07284  

 C                    -0.00624  -1.2407   -0.03833  

 C                     1.3924   -1.12929  -0.02446  

 C                     2.01303   2.47827  -0.09747  

 C                     3.31651   2.54539   0.42349  

 C                     4.02411   3.74708   0.42547  

 C                     3.44787   4.90622  -0.10317  

 C                     2.15778   4.84987  -0.63677  

 C                     1.44754   3.64799  -0.63364  

 C                     1.82961  -3.58575  -0.44109  

 C                     2.66305  -4.70412  -0.38301  

 C                     3.953    -4.59308   0.14219  

 C                     4.40425  -3.3514    0.60011  

 C                     3.57325  -2.23327   0.53679  

 C                    -2.2793   -0.1645   -0.06352  

 C                    -3.05356   0.75611   0.65593  

 C                    -4.44945   0.68683   0.67581  

 C                    -5.10279  -0.32311  -0.04189  

 C                    -4.34507  -1.25311  -0.77089  

 C                    -2.95893  -1.17226  -0.77635  

 C                    -7.28279   0.43141   0.61334  

 O                    -6.45697  -0.48564  -0.09545  

 N                     2.00882   0.06499  -0.03163  

 H                    -0.70452   2.06847  -0.12401  

 H                    -0.47734  -2.21379   0.03485  

 H                     3.76251   1.64242   0.82433  

 H                     5.02779   3.779     0.84008  

 H                     4.00026   5.84147  -0.10482  

 H                     1.70539   5.73982  -1.06509  

 H                     0.45725   3.62059  -1.07742  

 H                     0.83996  -3.68891  -0.87498  

 H                     2.30626  -5.66003  -0.75584  

 H                     4.60147  -5.46321   0.18895  

 H                     5.40657  -3.25364   1.00771  

 H                     3.92162  -1.26715   0.88342  

 H                    -2.56309   1.53075   1.23801  

 H                    -5.00627   1.41188   1.25718  

 H                    -4.86463  -2.02316  -1.33178  

 H                    -2.39248  -1.88783  -1.36477  
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 H                    -7.08462   0.39633   1.6918  

 H                    -8.30874   0.11419   0.42362  

 H                    -7.14508   1.45683   0.24841  

 C                     2.26899  -2.33409   0.02325 
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18. Figure S12 Competitive experiments of Ag+ (10 equiv) with CNC-OMe˄20 µM˅

in CH3CN : H2O (1 : 1, v/v, containing 0.01 M HEPES, pH = 7.21) solution in the 
presence of various metals (10 equiv).  

 


