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Cyclisative carbo-iodination of N-alkyl-N-arylacrylamide derivatives (3) in the presence of Phi(OAc)./l, afforded functionalized 3-(iodomethyl)-3-
substituted-indolin-2-ones (4) in good to excellent yields. With a suitably functionalized linear amide, spirooxindole 8 was prepared in a one-pot
fashion via a sequence of iodo-arylation followed by an in situ base-promoted intramolecular Sy2 reaction.

Halonium-induced cyclizations of heteroatom-tethered
olefins have emerged as powerful methods for the con-
struction of heterocycles." On the other hand, halocarbo-
cyclization of polyenes s far less developed,” although such
processes are known in the biogenesis of halogenated
natural products.® Notable recent achievements in this
field are as follows: (a) Ishiraha’s enantioselective cycliza-
tion of 1,5-dienes in the presence of chiral phosphorami-
dite-complexed N-iodosuccinimide (NIS);* (b) Barluenga’s
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bis(pyridine)iodonium tetrafluoroborate (Py,IBF,)/HBF-
promoted iodoarylation of N-protected-N-allylanilines (1)
to afford 1,2,3,4-tetrahydroquinolines (2, Scheme 1, eq 1);’
and (¢) Snyder’s BDSB (bromodiethylsulfonium bromo-
pentachloroantimonate) promoted cyclization of polyenes.®
In all of these examples, electron-rich olefins are used as
cyclization partners, and in the case of 1,5-dienes, formal
6-endo-trig cyclization is strongly favored over the alter-
native 5-exo-trig mode’ in accord with the Eschenmoser—
Stork postulate (Scheme 1, eq 1).® We report herein
that a combination of two reagents, PhI(OAc), and I, is
capable of promoting the iodoarylation of a-substituted
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N-arylacrylamide derivatives (3) to afford 3,3’-disubsti-
tuted oxindoles (4, Scheme 1, eq 2). To the best of our
knowledge, this work constitutes the first examples of
iodo-carbocyclization of electron-deficient olefins. The
unique cyclization mode is also noteworthy as it proceeds
via an unusual formal 5-exo-trig cyclization mode in sharp
contrast to the cyclization of structurally similar N-pro-
tected-N-allylanilines (1).°

Scheme 1. Different Cyclization Modes for Iodoarylation
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3,3’-Disubstituted oxindoles are highly valuable syn-
thetic targets due to their presence in a wide range of
natural products, pharmaceuticals, and agrochemicals.'®
Among known synthetic strategies, palladium-catalyzed
cyclization of ortho-functionalized anilides was particularly
successful.!! More recently, metal-catalyzed C—H activa-
tion'?/cyclization processes starting from unfunctionalized

PhI(OAC),/l,

3 R2 CHLCN, tt
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anilides have been developed.'*!* We have been involved
in the development of a palladium-catalyzed synthesis of
oxindoles'® and have recently reported an oxidative palla-
dium-catalyzed carbo-heterofunctionalization of alkenes 3
involving a direct aromatic C—H functionalization step.'®
Stimulated by the recent development of halonium-
mediated carbocyclization processes,* ¢ we became inter-
ested in investigating the cyclization of 3 under metal-free
conditions using 3a as a model substrate.

As shown in Table 1, our initial survey of reaction
conditions using molecular iodine (I,), iodine monochlo-
ride (ICI), or Barluenga’s reagent (Py,IBF,/HBF,)"’
iodonium sources showed them to be inefficient at promot-
ing the desired transformation. However, a combination of
oxidant [PhI(OAc),, IBX (2-iodoxybenzoic acid), AgOAc,
or PhI(OCOCFs3),] with iodine in acetic acid (AcOH)
furnished in each case the oxindole 4a, with PhI(OAc),/
I, being the most effective.'® In sharp contrast to the
cyclization of 1 reported by Barluenga (eq 1, Scheme 1),’
a S-exo-trig iodo-carbocyclization occurred in our case
leading to oxindole with concurrent iodination of the
aromatic ring.

Using PhI(OAc),/I, as an iodonium source, we next
investigated the solvent effect. The reaction was less effi-
cient in more acidic media (TFA, entry 8, Table 1) and
failed to take place in MeOH (entry 9). Among other
screened solvents [CH,Cl,, THF, EtOAc, 1,2-dichloro-
ethane (DCE), dioxane, MeCN, DMF, DMSO], aceto-
nitrile (MeCN) was found to be the most efficient one to
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yield 4a in 88% yield (entry 15). We also checked that
neither iodine nor PhI(OAc), alone was capable of pro-
moting this transformation under otherwise identical con-
ditions. Itisinteresting to note that products resulting from
the alternative pathway, involving the participation of
MeCN, were not observed.'”

Table 1. Survey of Reaction Conditions

Me ) Me
©\ lodonium source |
> o
N O 1.5 equiv, solvent, rt N
e

3a M 4a \e

entry iodonium source solvent yield (%)*

1 I, AcOH* 0

2 IC1 AcOH Trace

3t IPy,BF/HBF, CH,Cl, 0

4 IBX/I, AcOH 34

5 PhI(OAc)y/1, AcOH 66

6 PhI(OCOCF3)o/1, AcOH 58

7 AgOAc/I, AcOH 62

8 PhI(OAc)y/1, TFA 40

9 PhI(OAc)o/I, MeOH N.R.

11 PhI(OAc)o/15 THF Trace

12 PhI(OAc)y/15 EtOAc 24

13¢ PhI(OAc)o/15 DCE 47

14 PhI(OAc)o/I5 Dioxane Trace

15 PhI(OAc)y/15 CH3;CN 88

16 PhI(OAc)o/15 DMF Trace

17 PhI(OAc)o/1, DMSO 18

“Isolated yield. ® Reaction performed at 0 °C. ¢ Reaction performed
at 80 °C.

With the optimum conditions [PhI(OAc), (1.5 equiv), I,
(1.5 equiv), in CH3CN at rt] in hand, we next examined the
scope of this process, and the results are presented in
Tables 2 and 3. Use of a tertiary amide was mandatory
to ensure the occurrence of the iodo-carbocyclization as no
oxindole was formed in the case of N-phenylmethacryla-
mide (entry 1, Table 2). The N-benzyl derivative afforded
oxindole 4c¢ in 74% yield. It is worth mentioning that the
benzyl residue did not participate in the cyclization as no
1,2-dihydroisoquinolin-3(4 H)-one was observed. The pre-
sence of an electron-donating or -withdrawing group at the
para-position of anilides was well tolerated (entries 3—6).
However, 3 equiv of PhI(OAc),/I, were required to achieve
full conversion of 4-cyano anilide (entry 4). Except for the
4-methoxy-substituted anilides, no additional iodination
of the aromatic ring was observed. When N-meta-tolyl-
methacrylamide was employed, an inseparable mixture of
regioisomers 4g and 4g’ (1.4:1 ratio) was isolated in
81% overall yield in favor of the 6-substituted oxindole
(entry 7). Ortho-substitution was also compatible as de-
monstrated by the formation of 4h (entry 8). Cyclization of

(19) Yeung, Y.-Y.; Gao, X.; Corey, E. J. J. Am. Chem. Soc. 2006, 128,
9644-9645.
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Table 2. Scope of the Iodo-Carbocyclization: Substitution at the

Anilines®
entry substrate (3) product (3) yield (%)”
I O S Rcho
o \Qi;o 4c,R=Bn, 74
R R
3 R Me R Me I 4a, R =1, 96.
4 O i \@fio 4d, R =CN, 67°
5 e C N 4e,R = Me, 67
Me
g% MeO Me Me. | 4 R=H
\ R N 68 (4.7/1)
Me Me
7 iMe . Me | 49, R = 6-Me,
M /©\N o) R\Qf;o 4g’, R = 4-Me,
e N AN 81 (1.4/1)
e Me
o)
N~ 0O
Me I\Ille Ve NMe
o° IMB e 4i, 75
10 O e O ve | 4.R=H,
O 1 47, R=1,
N So O O 98 (1)
M
4k, 75

OO

“General conditions: PhI(OAc), (1.5 equiv), I, (1.5 equiv), CH;CN,
rt. ?Isolated yield. “PhI(OAc), (3 equiv), I, (3 equiv), CH5CN, rt.
YPhI(OAc), (1.0 equiv), I, (1.0 equiv) at 0 °C. € 14% of starting marterial
was recovered.

a tetrahydroquinoline derivative furnished tricyclic oxi-
ndole 4j in 75% yield (entry 9). A regioselective reaction
was also observed with the a- or S-naphthylanilide as
shown in entries 10 and 11 (Table 2).

Variation at the acrylamide residue was next evaluated
(Table 3). n-Butyl, i-propyl, phenyl, and benzyl groups
were tolerated at the a-position of the acrylamide provid-
ing the corresponding iodooxindoles in yields ranging
from 59 to 83% (entries 1—4, Table 3). Whereas iodination
was observed on the aniline aromatic ring in each case,
phenyl and benzyl groups at the a-position remained
untouched (entries 3 and 4). Silyloxyl and methyl ester
groups were compatible with the reaction conditions as
illustrated with the synthesis of compounds 4p and 4q
(entries 5 and 6). a,(-Disubstituted N-phenylacrylamides
were also subjected to the process affording the spiroox-
indoles in 40% yield (entry 7, Table 3). The reaction was,
however, limited to the synthesis of 3,3'-disubstitued oxi-
ndoles as no desired product was observed for N-pheny-
lacrylamide (data not shown).

We finally evaluated the reactivity of anilide 5 bearing a
tosyl-protected alkylamine side chain at the a-position of
the acrylamide. Two possible reaction pathways, namely,

Org. Lett,, Vol. 13, No. 9, 2011



Table 3. Scope of the lodo-Carbocyclization: Substitution at the
Acrylates”

entry substrate (3) product (4) yield (%)°
1 R 41, R = n-Bu, 83
2 Q\I 4m, R = i-Pr, 59
3 N™ "0 4n, R =Ph, 81
4 Me 40,R=Bn, 76
OTBS
4 2
s QX
N"So
Me
6c CO,Me 4q’ 47
Me
7 % 4r, 40°
SHE
Me

“General conditions: PhI(OAc), (1.5 equiv), I, (1.5 equiv), CH3CN,
rt. ? Isolated yield. ¢ PhI(OAc), (3 equiv), I, (3 equiv), CH5CN, rt. Only
one diasteroisomer was isolated. The stereochemistry of 4r was tenta-
tively assigned based on a mechanistic hypothesis.

Scheme 2. One-Step Synthesis of Spirooxindole

TsHN Ph|(OAC)2/|2
3 equiv, CH3CN, NTs

cl t2h cl
> o
N"SO  thenK,COg tt, 1h N

5 Me TsHN 8, 719%M

@é@%

iodo-arylation and iodo-sulfonamidation,” could occur
leading to oxindole 6 and pyrrolidine 7, respectively. Both
6 and 7 could, in principle, be converted to the biologically

(20) For 5-endo-trig iodo-sulfonamidation for the synthesis of pyr-
rolidines, see: (a) Jones, D. A.; Knight, D. W.; Hibs, D. E. J. Chem. Soc.,
Perkin Trans. 2001, 7, 1182-1203. (b) Amjad, M.; Knight, D. W.
Tetrahedron Lett. 2006, 47, 2825-2828.
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relevant spiropyrrolidinyloxindole 8 (Scheme 2).>' Even-
tually, treatment of an acetonitrile solution of 5 with 3
equiv of PhI(OAc),/I, followed by addition of K,CO;
afforded directly the spirooxindole 8 in 71% yield. When
the addition of K,CO; was omitted, oxindole 6 was
isolated in excellent yield at the expense of 7, indicating
that the iodo-arylation dominated over the alternative
iodo-sulfonamidation under these conditions.

In summary, we have developed a novel metal-free
synthesis of 3,3'-disubstituted oxindoles via an iodine
monoacetate-promoted iodoarylation of anilides. The
salient features of the present halonium-induced cycli-
zation are as follows: (a) it involves, for the first time,
an electron-deficient olefin; (b) it proceeds via a unique
5-exo-trig cyclization mode in contrast to the more com-
mon 6-endo-trig mode observed for most of the halonium-
induced cyclizations of 1,5-dienes. While a few metal-
catalyzed cyclizations of anilides involving a C—H func-
tionalization step have been developed for the synthesis of
oxindoles, we believe that the present metal-free conditions
provided an attractive alternative to access this important
type of heterocycle. Efforts aiming at understanding the
reaction mechanism are ongoing.*?
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