ChemComm

COMMUNICATION

Check for updates

Cite this: DOI: 10.1039/c7cc01616f

Received 2nd March 2017, Accepted 25th March 2017

A controlled selective synthesis of dihydropyrans through tandem reaction of alkynes with diazo compounds[†]

Junxiang Min, Guangyang Xu and Jiangtao Sunigodot *

DOI: 10.1039/c7cc01616f

rsc.li/chemcomm

We report here an effective protocol to prepare highly functionalized dihydropyrans via sequential reaction of cross-coupling-intramolecular Michael addition of functionalized terminal alkynes and diazo compounds under mild reaction conditions. Importantly, by choosing different ligands, the configuration of exocyclic double bonds of dihydropyrans can be selectively controlled.

Five- and six-membered oxygen-containing heterocycles are common motifs found in a variety of bioactive natural products and pharmaceuticals.¹ Numerous efforts have been devoted to development of efficient protocols for the stereoselective synthesis of these compounds. However, despite great advances, highly substituted six-membered oxacycles, including pyrans and dihydropyrans, remain difficult to access. Thus, new methodologies are highly needed.

On the other hand, metal–carbene mediated cyclizations have received much attention due to their versatility in constructing synthetically useful molecular scaffolds.² Many valuable methodologies have been developed to prepare various ring systems including oxacycles *via* metal-catalyzed intermolecular reactions of diazo compounds with readily available substrates.³ Such methods for the construction of 5-membered oxygenated heterocycles are many, including tetrahydrofurans⁴ and dihydrofurans.⁵ In contrast, approaches to synthesize 6-membered oxacycles are less. Recently, Saá and co-workers described an elegant protocol for synthesizing dihydropyrans from readily available alkynals and alkynones through ruthenium-catalyzed cyclizations (Scheme 1a).⁶ In controlled stereoselective synthesis of dihydropyrans from diazo compounds and alkynyl–carbonyl compounds (Scheme 1b).

a) Ru-catalyzed annulation (ref.)

CHEMISTRY

View Article Online

b) Allene formation/Michael addition (this work):

Recently, we developed a copper-catalyzed protocol to synthesize five-membered heterocycles from diazoacetates and terminal alkynes under base free conditions.^{7a} We envisaged that this protocol could be improved or modified to synthesize six-membered dihydropyrans by choosing specific functionalized alkynes. Thus, our plan starts from the copper-catalyzed cross-coupling reaction of terminal alkyne 1a with diazoacetate 2a (Scheme 2). This reaction would result in the formation of an allenoate intermediate in the presence of a base (from alkynes)⁸ even under base-free conditions. Moreover, as a good Michael acceptor, this allenoate intermediate could undergo three types of cyclizations under different reaction conditions. First, in the absence of base, the direct intramolecular oxo-Michael addition of carbonyl oxygen atoms to allenoate would generate zwitterionic intermediate II, followed by H-migration to afford cycloaddition product 3a (Scheme 2, path A). Alternatively, treatment of allenoate I with base would furnish nucleophilic enol anion III or carbon anion IV, respectively. We anticipated that these different addition modes would selectively yield dihydropyrans (3a or 4a) through path

Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, and School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou 213164, P. R. China. E-mail: jtsun@cczu.edu.cn, jtsun08@gmail.com; Fax: +86 519 86334598; Tel: +86 519 86334597

[†] Electronic supplementary information (ESI) available. CCDC 1528333. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/ c7cc01616f

B (oxo-Michael addition), or carbocycle **5a** through path C (C–C bond formation). Nevertheless, it should be noted that this type of alkyne is prone to undergo Conia-ene reaction resulting in the formation of **6a** in the presence of a copper complex.⁹

Upon the above hypothesis, we started our investigation by using 1a and 2a as starting materials and CuCl as the catalyst to optimize the reaction conditions. Initially, we observed that the reaction did not give the cycloaddition products in acetonitrile at 50 °C in the absence of a ligand and base (Table 1, entry 1). The combination of CuCl with nitrogen-containing ligands L1 to L10 also did not furnish any product under the same conditions as in entry 1. However, when phosphine ligand L11 was added, the yield of 3a was improved to 55% associated with 36% yield of 4a and 9% yield of 6a (entry 3). The use of L12 and L13 gave similar results (entries 4 and 5). Gratifyingly, the combination of phosphine ligand L14 with CuCl resulted in 70% isolated yield of 3a with a small amount of 4a and 6a (entry 6). When diphosphine ligand L15 was employed, the reaction selectivity was poor (entry 7). Next, we examined the role of base in the reaction. The use of CuCl followed by addition of Cs₂CO₃ gave 3a and 4a in 33% and 27% isolated yield associated with a small amount of Conia-ene product 6a in dichloromethane at room temperature (entry 8). However, the addition of L1 or L2 to the reaction gave very low conversion (entry 9). To our delight, using L3 as a ligand, the reaction furnished 4a in 52% yield, without the detection of 3a (entry 10). The isolated yield of 4a was further improved to 65% when 2,2'-bipyridine ligand L4 was used (entry 11). Ligand L10 gave 4a in 60% yield associated with a small amount of 3a and 6a (entry 13). Other ligands did not promote the reaction (entries 12 and 14). Next, screening other bases did not give better results (entries 15 to 17). The formation of an allenoate intermediate was

 Table 1
 Selected optimization^a

^{*a*} Reaction conditions: **1g** (0.2 mmol), **2a** (0.24 mmol), CuCl (10 mmol%), ligand (12 mmol%), at 50 °C for 12 h (entries 1 to 7). Then base (0.24 mmol) was added and the reaction mixture was continuously stirred for another 2 h (entries 8 to 17). ^{*b*} NMR yields. Isolated yields in parentheses.

observed in the absence of base (this intermediate is unstable, see the ESI[†] for details). The above optimization revealed that **3a** and **4a** with opposite double bond configuration could be selectively obtained as the major products by changing the reaction conditions. The experiment results disclosed that the addition of a base favored the formation of the *E*-isomer of the dihydropyran. It should be noted that compound **5a** (described in Scheme 2, path C) was not detected in the whole screening process. Moreover, the use of CuI, CuBr and other copper salts resulted in very low yields of the dihydropyrans.

With the optimal reaction conditions in hand, we then used the combination of CuCl and L14 to investigate the substrate scope (Table 2). Both alkynes and diazo compounds were examined. Gratifyingly, a wide range of aryl diazoacetates with different substitution patterns could be utilized in this reaction, providing the corresponding dihydropyrans in moderate to excellent yields. Either electron-donating or electron-withdrawing groups were tolerated on the aryl ring of the diazoacetates (**3a** to **3e**). The reaction of **1a** with thiophene derived diazoacetate **2h** furnished **3f** in 64% yield. Alkyl diazoacetate **2i** was tolerated in the reaction and the corresponding product **3g** was isolated in 59% yield. The ketone diazo compound **2j** also reacted well and **3h** was isolated in 56% yield. Moreover, the reaction of **1b** with phenyl diazoacetate **2a**

 a Reaction conditions: 1 (0.2 mmol), 2 (0.24 mmol), CuCl (0.02 mmol), L14 (0.024 mmol), in MeCN (3 mL) at 50 $^\circ \rm C$ for 12 h. b Isolated yields.

provided **3b** in 65% yield. The structure of **3b** was confirmed by X-ray crystallographic analysis.¹⁰ Then, the alkyne substrates bearing methyl groups at different positions (**1c** to **1f**) were employed in the reaction. The corresponding products were obtained in moderate to good yields (**3i** to **3m**). Moreover, alkyne with di-ketone moieties (**1g**) was also tolerated and **3n** was obtained in 55% yield.

Next, by using CuCl and L4 in dichloromethane followed by addition of Cs_2CO_3 under standard reaction conditions, the tandem reactions of alkynes 1 and diazo compounds 2 were conducted to prepare dihydropyrans 4 (Table 3). As observed, the reaction tolerated a series of aryl diazoacetates bearing either electron-donating or electron-withdrawing substituents on the aryl ring, and the corresponding dihydropyrans were obtained in moderate yields (4a to 4e). Different alkynes were also subjected to reaction and the corresponding products were isolated in moderate yields too (4g to 4i). It should be noted that for alkynes 1e and 1f, the products were obtained as a mixture of two isomers in 1.2:1 and 1.3:1 ratios, respectively.

 Table 3
 Scope for dihydropyrans 4^{a,b}

^{*a*} Reaction conditions: **1** (0.2 mmol), **2** (0.24 mmol), CuCl (0.02 mmol), **L4** (0.024 mmol), in CH₂Cl₂ (3 mL) at RT for 12 h; then Cs_2CO_3 (0.24 mmol) was added and stirred for another 2 h. ^{*b*} Isolated yields.

In conclusion, we have developed an efficient protocol to prepare polysubstituted dihydropyrans in a stereoselective mode. This protocol tolerated a wide range of functionalized terminal alkynes as well as diazo substrates. Importantly, by choosing suitable ligands and catalytic systems, dihydropyrans with opposite exocyclic double bonds can be synthesized in a controlled manner.

We gratefully acknowledge the National Natural Science Foundation of China (21572024), the Natural Science Foundation of Jiangsu Province (BK20151184) and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (BM2012110) for their financial support.

Notes and references

- 1 For leading reviews, see: (a) A. Deiters and S. F. Martin, *Chem. Rev.*, 2004, **104**, 2199; (b) R. Jacques, R. Pal, N. A. Parker, C. E. Sear, P. W. Smith, A. Ribaucourt and D. M. Hodgson, *Org. Biomol. Chem.*, 2016, **14**, 5875.
- 2 For selected reviews, see: (a) M. P. Doyle, R. Duffy, M. Ratnikov and L. Zhou, *Chem. Rev.*, 2010, **110**, 704; (b) H. M. L. Davies and D. Morton, *Chem. Soc. Rev.*, 2011, **40**, 1857; (c) X. Zhao, Y. Zhang and J. Wang, *Chem. Commun.*, 2012, **48**, 10162; (d) Y. Xia, Y. Zhang and J. Wang, *ACS Catal.*, 2013, **3**, 2586; (e) A. Ford, H. Miel, A. Ring, C. N. Slattery, A. R. Maguire and M. A. McKervey, *Chem. Rev.*, 2015, **115**, 9981.
- 3 For selected examples, see: (a) O. A. Davis and J. A. Bull, Angew. Chem., Int. Ed., 2014, 53, 14230; (b) O. A. Davis, R. A. Croft and J. A. Bull, Chem. Commun., 2015, 51, 15446; (c) Z. Liu, H. Tan, L. Wang, T. Fu, Y. Xia, Y. Zhang and J. Wang, Angew. Chem., Int. Ed., 2015, 54, 3056; (d) V. V. Pagar and R.-S. Liu, Angew. Chem., Int. Ed., 2015, 54, 4923; (e) M.-Y. Wu, W.-W. He, X.-Y. Liu and B. Tan, Angew. Chem., Int. Ed., 2015, 54, 9409; (f) Z. Yu, H. Qiu, L. Liu and J. Zhang, Chem. Commun., 2016, 52, 2257; (g) W.-W. Tan and N. Yoshikai, J. Org. Chem., 2016, 81, 5566; (h) A. C. Hunter, S. C. Schlitzer and I. Sharma, Chem. – Eur. J., 2016, 22, 16062; (i) A. R. Reddy, C.-Y. Zhou, Z. Guo, J. Wei and C.-M. Che, Angew. Chem., Int. Ed., 2014, 53, 14175; (j) D. Solé, F. Mariani, M.-L. Bennasar and I. Fernández, Angew. Chem., Int. Ed., 2016, 55, 6467; (k) Y. Zhu, C. Zhai, Y. Yue,

L. Yang and W. Hu, Chem. Commun., 2009, 1362; (1) F. Cambeiro, S. López, J. A. Varela and C. Saá, Angew. Chem., Int. Ed., 2012, **51**, 723; (m) E. López, G. Lonzi, J. González and L. A. López, Chem. Commun., 2016, **52**, 9398; (n) E. López, J. González and L. A. López, Adv. Synth. Catal., 2016, **358**, 1428; (o) C. González-Rodríguez, J. R. Suárez, J. A. Varela and C. Saá, Angew. Chem., Int. Ed., 2015, **54**, 2724; (p) M. Tang, D. Xing, H. Huang and W. Hu, Chem. Commun., 2015, **51**, 10612; (q) J. Kalepu and S. Katukojvala, Angew. Chem., Int. Ed., 2016, **55**, 7831.

- 4 (a) X. Xu, X. Han, L. Yang and W. Hu, Chem. Eur. J., 2009, 15, 12604; (b) Y. Hashimoto, K. Itoh, A. Kakehi, M. Shiro and H. Suga, J. Org. Chem., 2013, 78, 6182; (c) F. Urabe, S. Miyamoto, K. Takahashi, J. Ishihara and S. Hatakeyama, Org. Lett., 2014, 16, 1004; (d) S. M. Nicolle, W. Lewis, C. J. Hayes and C. J. Moody, Angew. Chem., Int. Ed., 2015, 54, 8485; (e) C. Jing, D. Xing, L. Gao, J. Li and W. Hu, Chem. Eur. J., 2015, 21, 19202.
- 5 (a) S. Son and G. C. Fu, J. Am. Chem. Soc., 2007, 129, 1046; (b) C.-R. Liu, B.-H. Zhu, J.-C. Zheng, X.-L. Sun, Z. Xie and Y. Tang, Chem. Commun., 2011, 47, 1342; (c) J. Wang, X. Yao, T. Wang, J. Han, J. Zhang, X. Zhang, P. Wang and Z. Zhang, Org. Lett., 2015, 17, 5124; (d) T. Shi, X. Guo, S. Teng and W. Hu, Chem. Commun., 2015, 51, 15204.

- 6 F. Cambeiro, S. López, J. A. Varela and C. Saá, *Angew. Chem., Int. Ed.*, 2014, **53**, 5959.
- 7 (a) K. Liu, C. Zhu, J. Min, S. Peng, G. Xu and J. Sun, Angew. Chem., Int. Ed., 2015, 54, 12962; (b) D. Zhang, G. Xu, D. Ding, C. Zhu and J. Sun, Angew. Chem., Int. Ed., 2014, 53, 11070; (c) L. Qiu, D. Huang, G. Xu, Z. Dai and J. Sun, Org. Lett., 2015, 17, 1810; (d) G. Xu, C. Zhu, W. Gu, J. Li and J. Sun, Angew. Chem., Int. Ed., 2015, 54, 883; (e) C. Zhu, G. Xu, K. Liu, L. Qiu, S. Peng and J. Sun, Chem. Commun., 2015, 51, 12768; (f) C. Zhu, G. Xu and J. Sun, Angew. Chem., Int. Ed., 2016, 55, 11867.
- 8 (a) Q. Xiao, Y. Xia, H. Li, Y. Zhang and J. Wang, Angew. Chem., Int. Ed., 2011, 50, 1114; (b) M. Hassink, X. Liu and J. M. Fox, Org. Lett., 2011, 13, 2388; (c) Q. Xiao, Y. Zhang and J. Wang, Acc. Chem. Res., 2013, 46, 236; (d) Y. Tang, Q. Chen, X. Liu, G. Wang, L. Lin and X. Feng, Angew. Chem., Int. Ed., 2015, 54, 9512; (e) J.-S. Poh, D. N. Tran, C. Battilocchio, J. M. Hawkins and S. V. Ley, Angew. Chem., Int. Ed., 2015, 54, 7920; (f) W.-D. Chu, L. Zhang, Z. Zhang, Q. Zhou, F. Mo, Y. Zhang and J. Wang, J. Am. Chem. Soc., 2016, 138, 14558.
- 9 (a) C.-L. Deng, R.-J. Šong, S.-M. Guo, Z.-Q. Wang and J.-H. Li, Org. Lett., 2007, 9, 5111; (b) T. Yang, A. Ferrali, F. Sladojevich, L. Campbell and D. J. Dixon, J. Am. Chem. Soc., 2009, 131, 9140.
- 10 CCDC 1528333 (**3b**).