

Nitrosocarbonyl–Henry and Denitration Cascade: Synthesis of α -Ketoamides and α -Keto Oximes

Mallu Kesava Reddy, Sumitava Mallik, Isai Ramakrishna, and Mahiuddin Baidya*[©]

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India

Supporting Information

ABSTRACT: An unprecedented Henry reaction of in situ generated nitrosocarbonyl intermediates and concomitant denitration cascade has been developed. The reaction is catalyzed by organic base at room temperature offering α -ketoamides, a demanding scaffold for drug discovery, in high yields. An alteration of substitution pattern also produced α -keto oximes, a high-value synthon. The protocol features operational simplicity and broad substrate scope.

 \mathbf{N} itrosocarbonyl intermediates and the derivatives thereof have occupied a prominent position in contemporary organic synthesis.¹ They are very reactive and versatile prototypes of ambident electrophiles allowing construction both C–N and C–O bonds from a single source. In this context, chemists have compiled a reaction compendium that includes nitrosocarbonyl aldol, ene, Diels–Alder, and other types of cycloaddition reactions.^{2–4} Despite these accomplishments, heretofore, the reaction of nitroalkanes with nitrosocarbonyl compounds, the so-called nitrosocarbonyl-Henry reaction, remains elusive, which is the quintessence of this report.⁵

 α -Ketoamides represent an important structural motif found in numerous natural products and bioactive molecules (Scheme 1a).° They also serve as useful synthetic intermediates for various transformations.^{6,7} Consequently, synthetic endeavors toward this scaffold are in high demand and remain a focus of general interest.⁶⁻⁹ We envisaged that Henry reaction of substituted nitroalkane with in situ generated nitrosocarbonyl intermediate could be a convenient transformative alternative to access this scaffold (Scheme 1b, $R^2 = H$). The product A thus obtained through the Henry reaction may undergo a water elimination-addition sequence to give densely substituted hemiaminol C, which will trigger a denitration¹⁰ reaction to produce the desired product α -ketoamide. However, formation of the competing O-selective nitroso-Henry reaction and the undesired hydrolysis as depicted in Scheme 1b poses significant challenges to this strategy. Additionally, a mild oxidation cycle for in situ generation of nitrosocarbonyl intermediate is crucial to overcome the decomposition of substrate. Herein, we report an unprecedented nitrosocarbonyl Henry reaction en route to α -ketoamides (R² = H) and α -keto oximes (R² \neq H) catalyzed by cinchona alkaloid at room temperature (Scheme 1b). It is worth noting that, similar to α -ketoamides, α -keto oximes are also key building blocks for the synthesis of diverse heterocyclic frameworks.¹¹

We commenced our investigation using keto-substituted nitroalkane **1a** as a model substrate and commercially available hydroxamic acid **2a** as a precursor of nitroso intermediate Scheme 1. Bioactive α -Ketoamides and Reaction of Nitroalkanes with Nitrosocarbonyl Intermediates

b) Nitrosocarbonyl-Henry and denitration cascade

(Table 1). A solution of 2a was slowly injected into a mixture of 1a and MnO_2 oxidant in THF at room temperature under the influence of various base catalysts (10 mol %). However, the reaction was unfruitful for commonly employed tertiary amines such as DBU, NEt₃, and DABCO (entries 1–3). The breakthrough came when cinchona alkaloid cinchonidine was considered. To our satisfaction, the reaction proceeded with complete *N*-selectivity, rendering the desired α -ketoamide 3a in 34% isolated yield. When the catalyst was changed to quinidine, the yield increased to 78% (entry 5). Screening of other solvents and oxidant gave inferior results (entries 6–9). Control experiments revealed that the presence of both the

Received: February 16, 2017

Table 1. Optimization of Reaction Conditions for the Synthesis of α -Ketoamides^{*a*}

Ĉ	0 NO ₂ + 1a	cataly BnO ₂ C、 <mark>NOH oxid H s 2a</mark>	vst (10 mol %) ant (5 equiv) olvent, rt 3a	NHCO ₂ Bn II O
entry	solvent	oxidant	catalyst	yield ^b (%)
1	THF	MnO ₂	DBU	С
2	THF	MnO_2	NEt ₃	С
3	THF	MnO ₂	DABCO	с
4	THF	MnO ₂	cinchonidine	34
5	THF	MnO ₂	quinidine	78
6	CH ₃ CN	MnO_2	quinidine	30
7	DCE	MnO ₂	quinidine	trace
8	MeOH	MnO ₂	quinidine	trace
9 ^d	THF	CuCl, Py, O ₂	quinidine	48
10	THF		quinidine	с, е
11	THF	MnO ₂		С

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (1.2 equiv), catalyst (0.1 equiv), MnO_2 (5 equiv), solvent (3 mL), 48 h. ^{*b*}Isolated yield. ^{*c*}No reaction with the recovery of **1a**. ^{*d*}CuCl (0.1 equiv), pyridine (Py, 0.2 equiv), O_2 balloon. ^{*e*}No reaction with recovery of **1a** and **2a**. DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene. DABCO: 1,4-diazabicyclo[2.2.2]-octane; DCE: 1,2-dichloroethane.

quinidine catalyst and the MnO_2 oxidant is mandatory, and the reaction was ineffective in the absence of either of them (entries 10 and 11).

With the optimized conditions in hand, the scope of the α ketoamide synthesis was then explored (Scheme 2). The reaction is quite general. Various keto-substituted nitroalkanes having electron-donating and -withdrawing substituents (1b-i) uniformly delivered the desired products in good yields (55-82%). Compound 3f was crystallized, and the structure was unambiguously confirmed through X-ray analysis.¹² Interestingly, the reaction tolerates various functional groups; alkene (3i) and alkyne (3k) groups were unaffected. Heterocyclic systems are also compatible to the reaction conditions, producing 31,m in 63% and 57% yields, respectively. Substitutions at the hydroxamic acid moiety were also explored to furnish 3n-r in 62-74% isolated yields. Notably, (-)-menthol-derived hydroxamic acid also efficiently participated in this reaction, and chiral α -ketoamides 3s-u were obtained in good yields.

Interestingly, when a higher homologue of nitroalkane 4a (R₂ = Me) was exposed to optimized reaction conditions in the presence of Cbz-substituted hydroxamic acid 2a (R = Bn), α keto oxime 7a was obtained exclusively (Scheme 3). The formation of oxime product can be rationalized on the basis of the N-selective nitroso-Henry reaction en route to compound 5 followed by $C-NO_2$ bond cleavage (Scheme 3). This conjecture was corroborated by the fact that the reactions of nitroalkane 4a with other hydroxamic acids, Troc-NHOH (2b) and Boc-NHOH (2c), also produced the same product 7a but in diminished yields (70% and 52%, respectively). This fortuitous finding encouraged us to explore the reaction further. To our delight, a series of nitroethanes and nitropropanes reacted smoothly to produce substituted α -keto oximes in high yields (52-80%, Scheme 3). The functional group compatibility of this reaction is impressive. The reaction can be performed in the presence of various halogens (7e-i,n), nitrile (7i), acetal (7k), and double bond (7l) functionalities without any difficulties. The mild reaction conditions are also

Scheme 2. Scope of α -Ketoamide Synthesis^{*a*}

 a Reaction conditions: 1a (0.2 mmol), 2a (1.2 equiv), quinidine (0.1 equiv), MnO_2 (5 equiv), THF (3 mL), 48 h. Isolated yield.

suitable for heterocyclic systems, furnishing furyl- (70), benzofuryl- (7p), and thienyl-substituted (7q) α -keto oximes in good yields (60–66%). Furthermore, only *E*-oximes are selectively formed in this reaction, and crystal structures of 7a and 7q also support this observation.¹² It is important to emphasize that traditional α -keto oxime syntheses are usually performed under acidic conditions.¹³ In contrast, our protocol operates under catalytic basic conditions.

To highlight the synthetic utility of this protocol, we have performed the reaction on a gram scale (Scheme 4). With only 10 mol % catalyst loading under the optimized conditions, the gram-scale *N*-selective nitrosocarbonyl-Henry reaction of **1e** with **2a** proceeded smoothly, and the corresponding product **3e** was isolated in comparable yield (76%). Additionally, compound **3e** was also exquisitely reduced with NaBH₄, rendering β -hydroxy- α -amino alcohol **8** in excellent yield (Scheme 4).

In conclusion, we have described a Henry reaction of in situ generated nitrosocarbonyl intermediates with keto-substituted nitroalkanes and the subsequent denitration cascade. The reaction is catalyzed by cinchona alkaloid quinidine and proceeds at room temperature to deliver α -ketoamides in high yields with nitromethane derivatives (up to 82%). When

В

^aReaction conditions: 1a (0.2 mmol), 2a (1.2 equiv), quinidine (0.1 equiv), MnO_2 (5 equiv), THF (3 mL), 48 h. Isolated yield.

Scheme 4. Gram-Scale Reaction and Post-functionalization

higher homologues of nitromethane derivatives were employed, selective formation of α -keto oximes was accomplished (up to 80% yield). The protocol is operationally simple, scalable, and displays broad substrate scope with high functional group compatibility. Additional studies of nitrosocarbonyl chemistry for organic synthesis are in progress in our laboratory.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.7b00482.

Complete experimental details and characterization data for the prepared compounds (PDF) Crystallographic data for **3f** (CIF) Crystallographic data for **7a** (CIF) Crystallographic data for **7q** (CIF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: mbaidya@iitm.ac.in.

ORCID 💿

Mahiuddin Baidya: 0000-0001-9415-7137

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge DST (EMR/2014/000225) for financial support. M. K. R thanks UGC New Delhi for a JRF, and S. M. and I. R. thank IIT Madras for HTRA. We also thank the Department of Chemistry, IIT-Madras for instrumental facilities.

REFERENCES

(1) For reviews: (a) Iwasa, S.; Fakhruddin, A.; Nishiyama, H. Mini-Rev. Org. Chem. 2005, 2, 157. (b) Yamamoto, Y.; Yamamoto, H. Eur. J. Org. Chem. 2006, 2006, 2031. (c) Bodnar, B. S.; Miller, M. J. Angew. Chem., Int. Ed. 2011, 50, 5630. (d) Memeo, M. G.; Quadrelli, P. ARKIVOC 2013, 418. and references cited therein. (e) Selig, P. Angew. Chem., Int. Ed. 2013, 52, 7080. (f) Baidya, M.; Yamamoto, H. Synthesis 2013, 45, 1931. (g) Palmer, L. I.; Frazier, C. P.; Read de Alaniz, J. Synthesis 2014, 46, 269. (h) Maji, B.; Yamamoto, H. Bull. Chem. Soc. Jpn. 2015, 88, 753. (i) Memeo, M. G.; Quadrelli, P. Chem. Rev. 2017, 117, 2108.

(2) For selected examples on nitrosocarbonyl aldol type reactions, see: (a) Sandoval, D.; Frazier, C. P.; Bugarin, A.; Read de Alaniz, J. J. Am. Chem. Soc. 2012, 134, 18948. (b) Baidya, M.; Griffin, K. A.; Yamamoto, H. J. Am. Chem. Soc. 2012, 134, 18566. (c) Frazier, C. P.; Sandoval, D.; Palmer, L. I.; Read de Alaniz, J. Chem. Sci. 2013, 4, 3857. (d) Kano, T.; Shirozu, F.; Maruoka, K. J. Am. Chem. Soc. 2013, 135, 18036. (e) Maji, B.; Yamamoto, H. Angew. Chem., Int. Ed. 2014, 53, 14472. (f) Xu, C.; Zhang, L.; Luo, S. Angew. Chem., Int. Ed. 2014, 53, 941. (h) Liang, M.-Q.; Lu, C.-D. Synlett 2014, 25, 991. (i) Yang, W.; Huang, L.; Yu, Y.; Pflaesterer, D.; Rominger, F.; Hashmi, A. S. K. Chem. - Eur. J. 2014, 20, 3927. (j) Ramakrishna, I.; Grandhi, G. S.; Sahoo, H.; Baidya, M. Chem. Commun. 2015, 51, 13976. (k) Nourian, S.; Zilber, Z. A.; Toscano, J. P. J. Org. Chem. 2016, 81, 9138.

(3) For selected examples on nitrosocarbonyl ene reactions, see:
(a) Keck, G. E.; Webb, R. R. J. Am. Chem. Soc. 1981, 103, 3173.
(b) sibi, M. P.; Prabagaran, N.; Ghorpade, S. G.; Jasperse, C. P. J. Am. Chem. Soc. 2003, 125, 11796.
(c) Fokin, A. A.; Yurchenko, A. G.; Rodionov, V. N.; Gunchenko, P. A.; Yurchenko, R. I.; Reichenberg, A.; Wiesner, J.; Hintz, M.; Jomaa, H.; Schreiner, P. R. Org. Lett. 2007, 9, 4379.
(d) Frazier, C. P.; Engelking, J. R.; Read de Alaniz, J. J. Am. Chem. Soc. 2011, 133, 10430.
(e) Atkinson, D.; Kabeshov, M. A.; Edgar, M.; Malkov, A. V. Adv. Synth. Catal. 2011, 353, 3347.
(f) Quadrelli, P.; Mella, M.; Carosso, S.; Bovio, B. J. Org. Chem. 2013, 78, 516.
(g) Teo, Y. C.; Pan, Y.; Tan, C. H. ChemCatChem 2013, 5, 235.
(h) Sandoval, D.; Samoshin, A. V.; Read de Alaniz, J. Org. Lett. 2015, 17, 4514.

(4) Selected examples on cycloaddition reactions: (a) Ware, R. W., Jr.; King, S. B. J. Am. Chem. Soc. **1999**, *121*, 6769. (b) Chaiyaveij, D.; Cleary, L.; Batsanov, A. S.; Marder, T. B.; Shea, K. J.; Whiting, A. Org. Lett. **2011**, *13*, 3442. (c) Frazier, C. P.; Bugarin, A.; Engelking, J. R.; Read de Alaniz, J. Org. Lett. **2012**, *14*, 3620. (d) Beniazza, R.; Desvergnes, V.; Girard, E.; Kauffmann, B.; Berlande, M.; Landais, Y. Chem. - Eur. J. **2012**, *18*, 11976. (e) Wang, R.; Bojase, G.; Willis, A. C.; Paddon-Row, M. N.; Sherburn, M. S. Org. Lett. **2012**, *14*, 5652. (f) Kensy, V. K.; Peterson, G. I.; Church, D. C.; Yakelis, N. A.; Boydston, A. J. Org. Biomol. Chem. **2016**, *14*, 5617. (g) Varshnaya, R. K.; Banerjee, P. Eur. J. Org. Chem. **2016**, *2016*, 4059. (h) Also see ref 1c..

Organic Letters

(5) For reviews on the Henry reaction, see: (a) Luzzio, F. A. *Tetrahedron* **2001**, *57*, 915. (b) Boruwa, J.; Gogoi, N.; Saikia, P. P.; Barua, N. C. *Tetrahedron: Asymmetry* **2007**, *17*, 3315. (c) Palomo, C.; Oiarbide, M.; Laso, A. *Eur. J. Org. Chem.* **2007**, 2007, 2561. (d) Noble, A.; Anderson, J. C. *Chem. Rev.* **2013**, *113*, 2887.

(6) Recent reviews (a) De Risi, C.; Pollini, G. P.; Zanirato, V. Chem. Rev. 2016, 116, 3241. (b) Kumar, D.; Vemula, S. R.; Cook, G. R. ACS Catal. 2016, 6, 4920. (c) Wasserman, H. H.; Petersen, A. K. J. Org. Chem. 1997, 62, 8972. (d) Qian, J.; Cuerrier, D.; Davies, P. L.; Li, Z.; Powers, J. C.; Campbell, R. L. J. Med. Chem. 2008, 51, 5264.

(7) (a) Natarajan, A.; Wang, K.; Ramamurthy, V.; Scheffer, J. R.; Patrick, B. Org. Lett. 2002, 4, 1443. (b) Sai, K. K. S.; Esteves, P. M.; da Penha, E. T.; Klumpp, D. A. J. Org. Chem. 2008, 73, 6506. (c) Tomita, D.; Yamatsugu, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 6946. (d) Yang, L.; Wang, D.-X.; Huang, Z.-T.; Wang, M.-X. J. Am. Chem. Soc. 2009, 131, 10390. (e) Jesuraj, J. L.; Sivaguru, J. Chem. Commun. 2010, 46, 4791. (f) Zhang, Z.; Zhang, Q.; Ni, Z.; Liu, Q. Chem. Commun. 2010, 46, 1269. (g) Yang, L.; Lei, C.-H.; Wang, D.-X.; Huang, Z.-T.; Wang, M.-X. Org. Lett. 2010, 12, 3918. (h) Xu, H.; Wolf, C. Angew. Chem., Int. Ed. 2011, 50, 12249.

(8) For metal-based synthesis: (a) Zhang, C.; Jiao, N. J. Am. Chem. Soc. 2010, 132, 28. (b) Bouma, M.; Masson, G.; Zhu, J. J. Org. Chem. 2010, 75, 2748. (c) Zhang, C.; Xu, Z.; Zhang, L.; Jiao, N. Angew. Chem., Int. Ed. 2011, 50, 11088. (d) Guin, S.; Rout, S. K.; Gogoi, A.; Ali, W.; Patel, B. K. Adv. Synth. Catal. 2014, 356, 2559. (e) Kotha, S. S.; Chandrasekar, S.; Sahu, S.; Sekar, G. Eur. J. Org. Chem. 2014, 2014, 7451. (f) Wan, J.-P.; Lin, Y.; Cao, X.; Liu, Y.; Wei, L. Chem. Commun. 2016, 52, 1270. (g) Liu, X.-X.; Wu, Z.-Y.; He, Y.-Q.; Zhou, X.-Q.; Hu, T.; Ma, C.-W.; Huang, G.-S. Adv. Synth. Catal. 2016, 358, 2385. (h) Liu, F.; Zhang, K.; Liu, Y.; Chen, S.; Chen, Y.; Zhang, D.; Lin, C.; Wang, B. RSC Adv. 2017, 7, 7158 and the references cited therein.

(9) For metal-free synthesis, see: (a) Wong, M.-K.; Yu, C.-W.; Yuen, W.-H.; Yang, D. J. Org. Chem. 2001, 66, 3606. (b) Grassot, J.-M.; Masson, G.; Zhu, J. Angew. Chem., Int. Ed. 2008, 47, 947. (c) Wei, W.; Shao, Y.; Hu, H.; Zhang, F.; Zhang, C.; Xu, Y.; Wan, X. J. Org. Chem. 2012, 77, 7157. (d) Zhang, Z.; Su, J.; Zha, Z.; Wang, Z. Chem. Commun. 2013, 49, 8982. (e) Zhao, Q.; Miao, T.; Zhang, X.; Zhou, W.; Wang, L. Org. Biomol. Chem. 2013, 11, 1867. (f) Zhang, X.; Wang, M.; Zhang, Y.; Wang, L. RSC Adv. 2013, 3, 1311. (g) Mupparapu, N.; Khan, S.; Battula, S.; Kushwaha, M.; Gupta, A. P.; Ahmed, Q. N.; Vishwakarma, R. A. Org. Lett. 2014, 16, 1152. (h) Wu, X.; Gao, Q.; Liu, S.; Wu, A. Org. Lett. 2014, 16, 2888. (i) Liu, S.; Gao, Q.; Wu, X.; Zhang, J.; Ding, K.; Wu, A. Org. Biomol. Chem. 2015, 13, 2239.

(10) (a) Manna, M. S.; Mukherjee, S. J. Am. Chem. Soc. 2015, 137, 130. (b) Sarkar, R.; Mukherjee, S. Org. Lett. 2016, 18, 6160. (c) Vara, B. A.; Johnston, J. N. J. Am. Chem. Soc. 2016, 138, 13794. (d) Jiang, X.; Gan, B.; Liu, J.; Xie, Y. Synlett 2016, 27, 2737.

(11) (a) Kim, Y. H.; Park, Y. J.; Kim, K. Tetrahedron Lett. 1989, 30, 2833. (c) Hall, H. J.; Chien, J. Y.; Kauffman, J. M.; Litak, P. T.; Adams, J. K.; Henry, R. A.; Hollins, R. A. J. Heterocycl. Chem. 1992, 29, 1245. (d) Tillyer, R. D.; Boudreau, C.; Tschaen, D.; Dolling, U. H.; Reider, P. J. Tetrahedron Lett. 1995, 36, 4337. (e) Jiang, L.; Davison, A.; Tennant, G.; Ramage, R. Tetrahedron 1998, 54, 14233. (f) Masui, M.; Shioiri, T. Tetrahedron Lett. 1998, 39, 5195. (h) Campillo, N.; Garcia, C.; Goya, P.; Paez, J. A.; Carrasco, E.; Grau, M. J. Med. Chem. 1999, 42, 1698. (i) Mohammed, A. H. A.; Nagendrappa, G. Tetrahedron Lett. 2003, 44, 2753. (j) Baidya, M.; Yamamoto, H. J. Am. Chem. Soc. 2011, 133, 13880.

(12) The CCDC numbers for compounds $3f,\ 7a,\ and\ 7q$ are $1530871{-}1530873.$

(13) For selected examples, see: (a) Ferris, A. F. J. Org. Chem. **1959**, 24, 1726. (b) Kataoka, M.; Ohno, M. Bull. Chem. Soc. Jpn. **1973**, 46, 3474. (c) Kim, Y. H.; Park, Y. J.; Kim, K. Tetrahedron Lett. **1989**, 30, 2833. (d) Son, J.; Kim, K. H.; Mo, D.-L.; Wink, D. J.; Anderson, L. L. Angew. Chem., Int. Ed. **2017**, 56, 3059 and references cited therein.