Synthesis, Characterization and Reactivity of Formal 20 Electron Zirconocene-Pentafulvene Complexes

Florian Jaroschik,^{*,†} Manfred Penkhues,[‡] Bernard Bahlmann,[‡] Emmanuel Nicolas,^{§,⊥} Malte Fischer,[‡] Fabien Massicot,[†] Agathe Martinez,[†] Dominique Harakat,[†] Marc Schmidtmann,[‡] Radhakrishnan Kokkuvayil Vasu,^{||} Jean-Luc Vasse,[†] and Rüdiger Beckhaus^{*,‡}

[†]Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims, 51687 Reims Cedex 2, France [‡]Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Federal Republic of Germany [§]Laboratoire Hétéroéléments et Coordination, Ecole Polytechnique and CNRS, 91128 Palaiseau, France ^{II}National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, P.O. Trivandrum 19, Kerala, India

S Supporting Information

ABSTRACT: The reaction of low-valent zirconocene reagents formed either from the Negishi reagent $Cp_2Zr(n-butyl)_2$ or from the reduction of Cp_2ZrCl_2 with Mg with various pentafulvenes yielded the first zirconocene-pentafulvene complexes, Cp_2ZrFv (Fv = 6,6-di(aryl), 6,6'-adamantylidene, and 6-*tert*-butylfulvene), which are formal 20electron complexes. In addition to NMR spectroscopic analysis and DFT calculations, three complexes were characterized by X-ray crystallography, showing a $\eta^5:\eta^1$ dianionic binding mode of the fulvene to the metal. The obtained complexes react with carbonyl compounds (aldehydes and ketones) to unexpectedly afford double-insertion products, as shown by NMR spectroscopy and X-ray studies. In the case of aldehydes these diolate complexes were obtained as single diastereoisomers. The reaction of Cp_2ZrFv with internal alkynes did not result in the formation of insertion products but release of the

coordinated fulvene and reductive dimerization of the alkynes to the corresponding zirconacyclopentadienes.

INTRODUCTION

Transition-metal pentafulvene complexes exhibit a wide range of structural and reactivity patterns.¹ With late transition metals bonding to one or two double bonds of the fulvene skeleton has been observed: e.g., complexes **A** and **B** (Figure 1).^{2,3} However, most metals bind in a η^6 manner, either with a neutral fulvene fragment bound in a $\eta^2:\eta^2:\eta^2$ fashion or in a dianion-like $\eta^5:\eta^1$

Figure 1. Selected examples of metal-pentafulvene complexes showing different binding modes.

fashion, as in complexes C and D, respectively.^{4,5} The most widely used synthetic pathway to early-transition-metal and felement pentafulvene complexes is the heat- or light-induced deprotonation of alkyl-substituted cyclopentadienyl ligands containing protons in the α position.⁶ Another method consists of the displacement of neutral ligands from the metal center by the fulvene fragment.⁷ In group 4 chemistry, an important breakthrough was achieved when Ti(IV), Zr(IV), and Ti(III) precursors were reduced by sodium or magnesium in the presence of sterically encumbered pentafulvenes (Fv), yielding a range of new mixed Cp/Fv or bis-Fv complexes. These complexes gave rise to numerous transformations, including insertion of electrophiles, small-molecule activation, hydroamination and hydroaminoalkylation reactions, including C–H bond activation reactions.⁸

With very few exceptions,^{8c,9} the reactive part of earlytransition-metal—pentafulvene complexes is the bond between the metal and the exocyclic fulvene carbon (C6). Many insertion reactions have been described using carbonyl groups, nitriles, isonitriles, alkynes, or sulfur-containing compounds as electrophiles to gain access to new metallocene complexes.^{6,8,10} With

Received: March 21, 2017

boranes cationic metal complexes could be obtained through carbon–boron bond formation.¹¹

To date, all metal—pentafulvene complexes contain either one or no cyclopentadienyl-type ligand. To the best of our knowledge, no metallocene—pentafulvene complex has been described. In the case of group 4 metals, η^6 coordination of a fulvene moiety to the 14-electron metallocene part would lead to formal 20-electron complexes, a class of compounds which has attracted considerable interest of both experimental and theoretical chemists.¹² For example, Cp₃MX complexes (X = H, Me, Cl, Cp) show different binding modes in the triad Ti, Zr, Hf: i.e., Ti and Hf mainly bind the Cp ligands in a $2\eta^5:1\eta^1$ fashion, whereas Zr generally adopts a $3\eta^5$ mode. The analysis of the electronic configuration in such 20-electron complexes revealed the presence of one ligand-centered molecular orbital which does not interact with the metal, hence reducing the formal 20 electrons down to 18 electrons.^{12c,e}

We herein report the synthesis and characterization of the first zirconocene-pentafulvene complexes and their unexpected reaction behavior toward carbonyl compounds and alkynes.

RESULTS AND DISCUSSION

Synthesis of Zirconocene–Pentafulvene Complexes. *Negishi Reagent.* Low-valent zirconocene(II) equivalents are known to bind well to alkenes, alkynes, and dienes.¹³ It was therefore anticipated that the unsaturated fulvene system may readily coordinate onto the metallocene(II) species. The Negishi reagent was chosen for this purpose, as the Zr-bound alkene moiety formed during the warming of $Cp_2Zr(n-butyl)_2$ to room temperature is readily displaced by dienes or alkynes.¹⁴ Indeed, warming this complex from $-60 \,^{\circ}C$ to room temperature in the presence of differently substituted pentafulvenes 1a-c led to the formation of the first zirconocene–pentafulvene complexes Cp_2ZrFv (2a-c), which were isolated in good to moderate yields after workup (Scheme 1a). It should be noted that with fulvenes 1a,c the reaction was complete after 6 h, whereas the bulky adamantylidene fulvene 1b required 15 h reaction time.

Bimetallic Approach. Alternatively, we also investigated the reduction of Cp_2ZrCl_2 with Mg in the presence of pentafulvenes **1b–e**, in analogy to previous reports on Ti and Zr fulvene

1e, **2e** : $R_1 = R_2 = p$ -F-phenyl

complexes.^{5,8} These reactions were carried out at room temperature in THF for 15 h and afforded the corresponding Cp_2ZrFv complexes 2b-e in good to very good isolated yields (Scheme 1b). This approach was successfully employed on a multigram scale.

Characterization of Zirconocene–Pentafulvene Complexes. The obtained yellow to orange solids **2a–e** are stable under an inert atmosphere for weeks at room temperature but decompose quickly upon heating above 100 °C. They are well soluble in ethereal and aromatic solvents, show poor solubility in alkanes, and decompose in chlorinated solvents. The complexes were fully characterized by multinuclear NMR spectroscopy, single-crystal X-ray diffraction studies, and electron-impact mass spectrometry. Correct elemental analysis could only be obtained in the case of **2e**; in all other cases the analyses showed systematically low values for carbon.

NMR Spectroscopy. The ¹H NMR spectra of the 6,6disubstituted complexes 2b-e are very similar (some selected data are summarized in Table 1). They show one signal for the Cp protons between 5.03 and 5.23 ppm and two signals in the ranges 3.85-4.50 and 5.44-5.52 ppm for the fulvene ring protons. In comparison to the free fulvenes, this corresponds to a significant high-field shift, especially for the protons in the 1,4positions. These signals indicate a symmetrical arrangement of the complex, which is in good agreement with a dianionic η^6 coordination of the fulvene to the metal. For the monosubstituted complex 2a two signals for the Cp ligand and four signals for the fulvene ring protons are observed. Interestingly, the exocyclic proton in 2a is shifted upfield to 3.14 ppm with respect to the free fulvene (6.18 ppm): however, at considerably lower field than the corresponding proton in the Cp*(6-tertbutylfulvene)TiCl complex (1.68 ppm).^{8a} The ¹³C NMR spectra of 2a-e indicate a high-field shift for all carbons of the fulvene skeleton with respect to the free fulvenes. Especially, the signals for C6 are shifted up to 60 ppm, confirming important electron donation from the metal to the carbon center. The signals for the fulvene ring are in the vicinity of the Cp signals, in agreement with the formation of a Cp-type ligand upon coordination. The $^1\mathrm{H}$ and $^{13}\mathrm{C}$ spectra of 2c correspond well to the previously reported spectra for complex D.⁵

X-ray Diffraction Studies. Complexes 2c-e were further characterized by single-crystal X-ray diffraction studies. Selected bond lengths and angles of these complexes and of free fulvene 1c for comparison reasons are summarized in Table 2, and the structures are shown in Figure 2. The structures confirm the $\eta^5:\eta^1$ coordination of the fulvene moiety to zirconium. As in other metal-pentafulvene complexes, this coordination leads to a bending of the exocyclic C5-C6 bond out of the fulvene plane toward the metal by 28.4–29.2°, slightly more than in complex D. The zirconium is in a distorted-trigonal-pyramidal coordination environment, as indicated by the sum of angles around Zr, close to 360°. The metal lies just above the plane defined by the three centroids of the Cp and fulvene ligands (0.20 Å for **2c**, 0.18 Å for 2d,e) as in other Cp₃ZrX complexes, e.g. 0.20 Å in Cp₃ZrH.^{12d} In the fulvene moiety, the coordination to the metallocene fragment leads to the loss of the alternating singlebond-double bond pattern of the free fulvene as shown by the narrow range of the C–C bond lengths (1.390-1.442 Å). The most significant change occurs in the exocyclic bond which is, for example, elongated by 0.08 Å in 2c compared to 1c. A slight influence of the para-substituents on the phenyl groups of the fulvene can be observed on the Zr-C6 and the C5-C6 bond

Table 1. Selected ¹H and ¹³C NMR Data of Fulvenes 1a-c, Complexes 2a-c, and Complex D in C₆D₆ at Room Temperature

	$\mathbf{R} \mathbf{R}$	[R ρ ρ· 5	-tol tol 2 3 4	p-tol $5^{6}p-tol$	
	1a-c		2a-c		D		
	1a	1b	1c	2a	2b	2c	D ^a
H1	6.18	6.62	6.58	3.58	3.85	4.50	4.17
H2	6.39	6.67	6.66	5.52	5.52	5.49	4.39
H3	6.57	6.67	6.66	5.45	5.52	5.49	5.72
H4	6.69	6.62	6.58	4.25	3.85	4.50	6.43
H6	6.18			3.14			
H(Cp)				5.21, 5.39	5.23	5.13	
C1	120.2	120.5	124.8	111.4	108.2	109.8	92.2
C2	134.5	131.6	132.4	105.1	106.2	108.8	99.1
C3	129.0	131.6	132.4	111.8	106.2	108.8	102.6
C4	129.0	120.5	124.8	111.9	108.2	109.8	114.7
C5	143.4	137.1	144.3	114.9	117.7	117.6	129.2
C6	152.8	167.3	152.1	94.6	106.5	103.8	103.4
C(Cp)				106.4, 106.5	106.7	109.1	
^a See ref 5.							

Table 2. Selected X-ray Data of Fulvene 1c, Complexes 2c-e, and Complex D^a

	\mathbf{R}	$ \begin{array}{c} $	ζ / β	<i>p</i> -tol <i>p</i> -tol <i>p</i> -tol <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i>	, p-tol `p-tol
1	C	20,u,e	21		D¢
	IC	2c	2 d	2e	
C1-C2	1.340(3)	1.390(9)	1.409(3)	1.402(3)	1.412(2), 1.414(2)
C2-C3	1.445(3)	1.419(9)	1.397(4)	1.400(3)	1.401(3), 1.403(2)
C3-C4	1.344(3)	1.402(8)	1.398(4)	1.397(3)	1.415(3), 1.407(2)
C4–C5	1.458(3)	1.434(7)	1.442(3)	1.428(3)	1.443(2), 1.443(2)
C5-C1	1.465(2)	1.432(8)	1.439(3)	1.436(3)	1.446(2), 1.444(2)
C5-C6	1.359(2)	1.440(7)	1.455(3)	1.462(2)	1.443(2), 1.450(2)
Zr-C1		2.474(5)	2.485(2)	2.4907(18)	2.4109(16), 2.4316(16)
Zr-C2		2.597(6)	2.636(4)	2.631(2)	2.5278(17), 2.5273(17)
Zr-C3		2.623(5)	2.617(2)	2.637(2)	2.5322(17), 2.5637(17)
Zr-C4		2.464(5)	2.473(2)	2.4840(19)	2.4058(17), 2.3867(16)
Zr-C5		2.332(5)	2.330(2)	2.3321(17)	2.3266(16), 2.3266(16)
Zr-C6		2.602(6)	2.574(2)	2.5623(17)	2.7084(17), 2.7007(16)
Ct(Fv)-Zr		2.191	2.203	2.213	2.121, 2.129
Ct(Cp)–Zr		2.304, 2.325	2.336, 2.319	2.315, 2.332	
Ct(Cp)-Zr-Ct(Cp)		117.8	117.6	117.7	133.9
Ct(Fv)-Zr-Ct		121.4, 118.5	121.9, 118.4	120.8, 119.6	
\sum (angles around Zr)		357.7	357.7	358.1	
$\frac{1}{\theta}$		28.4	29.2	29.2	26.9
Δ		0.310	0.335	0.340	0.236, 0.262
^a Bond lengths are given in	Å and angles in deg. ^b	See ref 8b. ^c See ref 5.			

lengths, which are shorter/longer in the case of the hydrogen or fluorine substituents in **2d**,**e** compared to the methyl group in **2c**.

El Mass Spectrometry. For all complexes **2a-e**, the molecular ion peak corresponding to Cp_2ZrFv was observed by EI-MS, albeit in low intensity. Furthermore, relevant fragments of the

complexes were clearly identified, namely CpZrFv, Cp_2Zr and the free fulvenes.

DFT Calculations. In order to obtain further insights into the bonding situation of the new complexes, DFT calculations were carried out. Complexes 2a-c were optimized in the gas phase,

Figure 2. Molecular structures of complexes **2c**-**e**, with 50% probability ellipsoids. Hydrogen atoms and solvent molecules are omitted.

with the B3PW91 functional, Def2-QZVP basis set for Zr and 6-31G(d) for all other atoms (see the Supporting Information for details), and the results are shown in Table 3. A good agreement between the crystal structure of 2c and the optimized calculated structure was obtained. Next, the evolution of NBO charges upon coordination of Zr to the pentafulvene was examined. An important decrease in the charge on the exocyclic carbon is observed, ranging from 0.26 to 0.39 e, which indicates a strong reorganization of the electron density (Figure 3). A comparison of the NICS(0) values between free and coordinated fulvenes shows a strong increase in aromaticity, displaying values of -15.5, -15.6, and -15.1 ppm for 2a-c, respectively, close to that of Cp ligands.¹⁵ Finally, a Mayer bond order analysis

Figure 3. Evolution of NBO charges upon coordination of fulvene 1a to $\mathrm{Cp}_2\mathrm{Zr}.$

performed with the ADF software indicates a clear shift toward a single bond for the C_5-C_6 bond: in the free fulvenes the bond orders are 1.56 for the 6-*tert*-butylfulvene, 1.54 for the 6,6-adamantylidene, and 1.47 for the 6,6-bis-*p*-tolylfulvene, which shift to 1.09, 1.16, and 1.15 for **2a**-**c**, respectively, upon coordination. This analysis further shows an increased interaction in the $Zr-C_6$ bond (HOMO; see Figure 4) and a similar bond order for Zr-C(Cp) and Zr-C(fulvene ring).

Figure 4. HOMO of complex 2a.

All of this information (NBO charges, aromaticity, bond distances, bond orders) points toward the formation of a formal Cp₃ZrX type complex. However, the one-bond link between the Cp moiety and the X ligand in the fulvene prevents a true Cp₃ZrX complex from forming. The Zr–C₆ bond is thus not completely formed, and the C₁–C₆ is not a true single bond but still contains a slight double-bond character. The highest negative charge was found on the exocyclic fulvene carbon in complexes 2a-c, in

Table 3. Selected Structural Parameters, NBO Charges, NICS(0) Values, and Mayer Bond Orders for Cp₂ZrFv complexes^a

	2a	2b	2c
$C_5 - C_6$ bond (Å)	1.48 (1.35)	1.44 (1.36)	1.45 (1.37)
NBO charge C_6 (e)	-0.42(-0.10)	-0.18 (0.11)	-0.21 (0.06)
NICS(0) $C_1 - C_5$ ring	-15.5 (-0.9)	-15.6 (-1.7)	-15.1 (-0.7)
Mayer bond order C ₅ -C ₆	1.09 (1.56)	1.16 (1.54)	1.15 (1.47)
av Mayer bond order for Zr–C(Cp)	0.22	0.22	0.24
av Mayer bond order for Zr–C(fulvene ring)	0.27	0.27	0.26

^aValues for free fulvenes are given in parentheses.

agreement with other early-transition-metal pentafulvene complexes. It was therefore interesting to study the influence of an "excess" of electrons on the reactivity of these complexes.

Reactivity Studies. *Carbonyl Compounds.* It has been well established that the coordination of pentafulvenes to group 4 metals inverts the polarity of the exocyclic carbon atom. This makes insertion of electrophilic reagents into the metal–carbon bond possible. We started our investigations with the addition of 1 equiv of *p*-bromobenzaldehyde to a C_6D_6 solution of 2c. This led to the transformation of half the amount of 2c to a new product, while half of the starting material remained, as shown by ¹H NMR. Further addition of 1 equiv of *p*-bromobenzaldehyde led to the complete conversion of 2c to complex 3b (Scheme 2). The same results were observed in the case of benzaldehyde and *p*-anisaldehyde, resulting in the formation of complexes 3a,c, respectively.

Scheme 2. Reaction of Cp_2ZrFv Complex 2c with Carbonyl Compounds

One- and two-dimensional NMR analysis of the newly formed complexes $3\mathbf{a}-\mathbf{c}$ revealed their identity, and additional stereochemical information was obtained by NOE experiments (Table 4). The structure of $3\mathbf{b}$ was further corroborated by X-ray diffraction studies (see below). The ¹H NMR spectra of complexes $3\mathbf{a}-\mathbf{c}$ show one set of signals, in agreement with a highly diastereoselective reaction. Two peaks are observed for the Cp protons, which are shifted downfield with respect to those for $2\mathbf{c}$. The signal for H2 is between 3.42 and 3.55 ppm, in the range of cyclopentadienes, whereas the other protons of the former fulvene ring are found in the alkene region (5.94–6.84 ppm). The ¹³C NMR spectra reveal a drastic shift for the C2 and C6 carbons, going, for example, from 108.8 and 117.6 ppm in $2\mathbf{c}$ to 62.0 and 63.0 ppm in $3\mathbf{a}$, in good agreement with the loss of the aromatic character of the fullyene moiety.

We next studied the reaction behavior of **2c** toward ketones. The reaction with acetone or 3-pentanone was successful, yielding again the double-insertion products **3d**,**e**, respectively, as

Arw, H nOe H nOe	Cp 28H 3 4 2 H H Sa-c	nOe O H H 21 Ar <i>b</i> -tol	R my 2 R H ² H	Cp Cp Zr Cr 4/26 H 3 4 H 3d,e	R 21 R 7 mup-tol p-tol
	3a	3b	3c	3d	3e
H1	5.94	5.96	6.03	5.70	5.34
H2	3.52	3.42	3.55	2.84	2.92
H3	6.27	6.17	6.35	6.31	6.31
H4	6.81	6.83	6.84	6.77	7.09
H21	5.50	5.40	5.52		
H28	5.37	5.22	5.40		
H(Cp)	5.97, 6.06	5.95, 6.09	6.03, 6.11	6.00, 6.20	6.05, 6.26
C2	62.0	61.6	62.3	62.7	57.8
C6	63.0	62.7	62.9	64.8	64.3
C21	93.0	92.1	92.4	87.3	92.2
C24/26/28	83.4	82.6	83.1	80.9	86.5

shown by NMR analysis and X-ray studies. The generation of two adjacent quaternary carbon centers (C6 and C21) increases the steric crowding of the complexes. This has some influence on the ¹H NMR shifts of the cyclopentadiene ring protons, especially H2, and leads to a spreading apart of the signals of the Cp rings (Table 4).

X-ray Diffraction Studies. Complex 3b was formed as a single diastereoisomer and the solid-state structure confirmed the above description based on NMR spectroscopy (Scheme 2 and Table 4). Some major differences were observed in the solid state structures of **3b** in comparison to **3d**, e (Figure 5 and Table 5). First, in the case of 3d,e the nine-membered ring shows considerable strain, as indicated by the long C6-C21 bond lengths (1.634(4) and 1.625(2) Å), which are in contrast only slightly elongated in the case of **3b** (1.595(5) Å). Second, other interesting features are the large Zr-O1-C21 and Zr-O2-C24/C26 angles in 3d,e ranging from 168.42(19) to 171.69(9)°, which are only 151.4(2) and $155.7(3)^{\circ}$ in **3b**. A consequence of these angles is that the C24/C26-O2-Zr-O1-C21 system in 3d,e is quasi-planar: e.g. the tilt angles C21-O1-Zr-O2 and O1-Zr-O2-C26 have values of only 1.35 and 3.06°, respectively, in 3e. In contrast, in 3b an up-and-down arrangement is observed; here the corresponding tilt angles are 56.5 and 73.0°, respectively. In the literature, two ninemembered zirconocene-diolate complexes have been described. The sterically strained cumulene complex E has features between those of complexes 3b and 3d,e: e.g. Zr-O-C1 and Zr-O-C2 angles of 165.88(10) and 151.12(10)°, respectively.¹⁶ On the other hand, the strain-free phosphonium complex F ressembles complex 2b, with Zr-O-C1 and Zr-O-C2 angles of 142.3(2) and 141.9(2)°, respectively (Figure 6).¹⁷

Mechanistic Considerations. The diolate complexes **3a–e** constitute the first examples of endo- and exocyclic reactivity of metal–fulvene complexes. There is only one other report of a double incorporation of an aldehyde into a metal–fulvene complex, Cp*Fv*Ti; however, in that case both insertions took

Table 4. Selected ¹H and ¹³C NMR Data of Complexes 3a-e in C₆D₆ at Room Temperature

Figure 5. Molecular structures of complexes **3b**,**d**,**e** with 50% probability ellipsoids. Hydrogen atoms and solvent molecules are omitted.

place at the endocyclic positions.⁹ A proposed mechanistic pathway for the formation of our double-insertion products is shown in Scheme 3 (stereochemical indications have been neglected for clarity). As the 20-electron complex does not have any available coordination site for the carbonyl group, an electron shift has to occur in **2**, leading presumably to a dienic η^4 coordination mode of zirconium to the fulvene moiety.^{13b} The first insertion of the carbonyl group then leads to a zirconium allyl species, which further reacts with a second equivalent of

Table 5. Selected X-ray Data of Complexes 3b,d,e^a

	3b	3d	3e
C1-C2	1.498(6)	1.490(4)	1.5072(19)
C2-C3	1.497(6)	1.493(5)	1.496(2)
C3-C4	1.335(6)	1.323(5)	1.331(2)
C4-C5	1.487(5)	1.483(4)	1.4849(19)
C5-C1	1.346(6)	1.344(4)	1.338(2)
C5-C6	1.517(5)	1.522(4)	1.5358(19)
C6-C21	1.595(5)	1.634(4)	1.625(2)
C2-C24/26/28	1.573(6)	1.555(4)	1.566(2)
Zr-O1	1.979(3)	1.959(2)	1.9582(10)
Zr-O2	1.971(3)	1.9374(19)	1.9332(10)
O1-C7	1.408(4)	1.408(4)	1.4268(17)
O2-C24/26/28	1.403(5)	1.401(3)	1.4047(18)
Ct–Zr	2.269, 2.271	2.261, 2.287	2.272, 2.302
Ct-Zr-Ct	127.0	124.1	123.0
O1-Zr-O2	103.70(11)	101.77(8)	101.74(4)
Zr-O1-C21		168.42(19)	170.17(9)
Zr-O2-C24/26/28	155.7(3)	169.4(2)	171.69(9)
C21-C6-C1	151.4(2)	106.2(2)	106.43(11)
	103.4(3)		

^aBond lengths are given in Å and angles in deg.

Figure 6. Other nine-membered zirconocene-diolate complexes.^{16,17}

Scheme 3. Mechanistic Proposal for the Double Insertion of Carbonyl Compounds into Zirconocene–Fulvene Complexes

carbonyl compound to yield the observed complexes **3**. Under the conditions described above, the monoinsertion product could not be observed and the reaction goes straight to the bisinsertion product.

Reactivity toward Alkynes. In 2008, Mach reported the insertion of internal alkynes into the Ti-C6 bond of a Cp*FvTi complex.^{10a} In analogy, we have investigated the reaction of complex 2c with 1 equiv of diphenylacetylene in C_6D_6 . After 1 h, the solution had turned from pale yellow to pale orange and the ¹H NMR spectrum indicated the presence of a new singlet peak at 6.0 ppm as well as the appearance of signals corresponding to the free fulvene in addition to remaining starting complex. Addition of another 1 equiv of diphenylacetylene led to full conversion of 2c and only the peak at 6.0 ppm remained as a signal for the Cp ligands, which can be attributed to the zirconacyclopentadiene 4a,^{14b} arising from the reductive dimerization of the alkyne at the low-valent zirconium center.¹⁸ Quenching the reaction mixture with HCl and analysis of the obtained solution indicated the formation of 1,2,3,4-tetraphenyl-1,3-butadiene (Scheme 4). The same reaction outcome was observed when 2 equiv of 3-hexyne was reacted with 2c to form zirconacyclopentadiene 4b.¹⁹

Scheme 4. Reductive Dimerization of Alkynes with Complex 2c

Despite the supposedly strong coordination of the fulvene moiety to the zirconocene fragment, which we have described as dianionic according to NMR and X-ray studies, the fulvene keeps some triene character and can therefore be displaced from the metal center by more strongly π -complexating ligands. The synthetic potential of complexes **2** as new isolable Zr(II) equivalents needs to be investigated further.

CONCLUSION

In this work we have described the synthesis of the first metallocene-pentafulvene type complexes using either the Negishi reagent or the bimetallic system Cp₂ZrCl₂/Mg with a variety of pentafulvenes. These formal 20-electron complexes were characterized in the solid state by X-ray diffraction studies and in solution by NMR spectroscopy, showing in both cases a $\eta^5:\eta^1$ binding mode of the fulvene to the zirconium metal. DFT studies confirmed this description as well as the inversion of polarity at the exocyclic fulvene carbon upon complexation. The reactivity of these new complexes was explored toward carbonyl compounds and alkynes. In the former case, a new doubleinsertion reaction was observed, leading to zirconocene-diolate complexes with excellent diastereoselectivity in the case of aldehydes. With alkynes, fulvene displacement occurred with concomitant reductive dimerization to yield the corresponding zirconacyclopentadienes. Further work to elucidate the reaction

mechanism of the double insertion and the scope of reactivity of this new class of metal-fulvene complexes is currently underway.

EXPERIMENTAL SECTION

General Considerations. All reactions were conducted under an atmosphere of argon with rigorous exclusion of oxygen and moisture using standard glovebox and Schlenk techniques. Solvents were freshly distilled over sodium/benzophenone ketyl or collected from a PURSOLV MD-3 (Innovative Technologies Inc.) solvent purification unit. C₆D₆ was stored over activated 4 Å molecular sieves. Zirconocene dichloride was purchased from Strem Chemicals. Aldehydes and nbutyllithium (2.5 M solution in hexanes) were purchased from Aldrich and used as received. Fulvenes were prepared according to literature procedures.²⁰ ¹H and ¹³C NMR spectra were recorded in C_6D_6 on a 500 MHz Bruker Avance III spectrometer equipped with a BBFO+ probe. Chemical shifts are reported in delta (δ) units, expressed in parts per million (ppm) and referenced to residual protons of the solvent. Elemental analyses were carried out on a EuroEA 3000 Elemental Analyzer. High-resolution ESI-MS spectra were recorded on a hybrid tandem quadrupole/time-of-flight (Q-TOF) instrument, equipped with a pneumatically assisted electrospray (Z-spray) ion source (Micromass, Manchester, U.K.) operated in positive mode. Low-resolution EI-MS spectra were obtained by direct introduction on a GCT Premier mass spectrometer with orthogonal acceleration time-of-flight detector using an electron impact source (Micromass, Manchester, U.K.) or on a Finnigan-MAT 95 spectrometer using the LIFDI method.

Single crystals were coated in Paratone-N oil and mounted on a loop. Data were collected at 150.0(1) K on a Nonius Kappa CCD or a Stoe IPDS diffractometer using a Mo K α (λ = 0.71070 Å) X-ray source and a graphite monochromator. All data were measured using ψ and ω scans. The crystal structures were solved using SIR 97 and refined using Shelx 2014.^{21,22}

General Procedure (GP-1) for the Synthesis of Cp₂ZrFv Complexes 2 Using the Negishi Reagent. In a Schlenk tube under argon, a solution of zirconocene dichloride (292 mg, 1.0 mmol) in THF (8 mL) was reacted at -78 °C with *n*-butyllithium (2.5 M in hexanes, 0.8 mL, 2.0 mmol) for 30 min. A solution of fulvene (1 mmol) in THF (2 mL) was added to the reaction mixture at -60 °C, and the solution was slowly warmed to room temperature over 2 h. The reaction was further stirred at this temperature for the given time to result in a dark orange-red solution. THF was evaporated under vacuum, and toluene (10 mL) was added to the resulting yellow-orange solid. The white precipitate of LiCl was removed by centrifugation. Then toluene was evaporated under vacuum and the solid washed with hexanes (10 mL). Further drying of the solid under vacuum yielded complexes 2.

General Procedure (GP-2) for the Synthesis of Cp₂ZrFv Complexes Using the Bimetallic Approach. In a Schlenk tube under argon was prepared a mixture of zirconocene dichloride (1 equiv) and Mg (1 equiv). A solution of fulvene (1 equiv) in THF (100 mL) was added at room temperature, and the reaction mixture was stirred for 12 h. THF was evaporated under vacuum, and toluene (70 mL) was added onto the resulting yellow-orange solid. After filtration, toluene was evaporated under vacuum and the solid washed with small amounts of hexanes. Further drying of the solid under vacuum yielded complexes 2.

Cp₂Zr(6-tert-butylfulvene) (2a). According to GP-1, 6-tertbutylfulvene (134 mg, 1.0 mmol) was reacted for 6 h to give complex 2a as a yellow solid in 73% yield (260 mg, 0.7 mmol). ¹H NMR (500 MHz, C_6D_6): δ 5.52 (s, 1H, H2), 5.46 (s, 1H, H3), 5.39 (s, 5H, Cp), 5.21 (s, 5H, Cp), 4.25 (s, 1H, H4), 3.58 (s, 1H, H1), 3.17 (s, 1H, H6), 1.42 (s, 9H, tBu). ¹³C NMR (125 MHz, C_6D_6): δ 114.9 (C), 111.9 (CH), 111.8 (CH), 111.4(CH), 106.5(CH), 106.4(CH), 105.1(CH), 94.6(CH), 35.8(C), 34.1(CH₃). LR-MS (EI, *m/z*, relative intensity): 354 ([M⁺], 8), 289 ([M⁺ - Cp], 7), 220 ([M⁺ - Fv], 12), 134 ([M⁺ - Cp₂Zr], 25), 119 ([Fv - CH₃⁺], 100). No correct elemental analysis of the bulk product was obtained, despite several attempts.

Cp₂Zr(6,6-adamantylidenefulvene) (2b). According to GP-1, 6,6-adamantylidenefulvene (198 mg, 1.0 mmol) was reacted for 15 h to give complex 2b as a yellow solid in 72% yield (290 mg, 0.7 mmol). ¹H NMR (600 MHz, C_6D_6): δ 5.52 (t, *J* = 2.6 Hz, 2H, H2 + H3), 5.23 (s,

10H, Cp), 3.85 (t, J = 2.6 Hz, 2H, H1 + H4), 2.38 2.32 (m, 2H, CH₂(Ad)), 2.32 2.26 (m, 3H, CH₂ + CH(Ad)), 2.21 2.14 (m, 3H, CH₂ + CH(Ad)), 2.08 2.03 (m, 2H, CH₂(Ad)), 1.82 (m, 2H, 2CH(Ad)). ¹³C NMR (151 MHz, C₆D₆): δ 117.7 (C), 108.2 (CH), 106.7 (CH), 106.5 (C), 106.2 (CH), 44.3 (CH₂), 39.0 (CH₂), 38.8 (CH₂), 36.9 (CH), 29.6 (CH), 29.1 (CH). LR-MS (EI, *m*/*z*, relative intensity): 418 ([M⁺], 5), 353 ([M⁺ - Cp], 3), 220 ([M⁺ - Fv], 15), 198 ([M⁺ - Cp₂Zr], 100). No correct elemental analysis of the bulk product was obtained, despite several attempts.

Cp₂Zr(6,6-di-*p***-tolylfulvene) (2c).** According to GP-1, 6,6-di-*p*-tolylfulvene (258 mg, 1.0 mmol) was reacted for 4 h to give complex **2c** as an orange-yellow powder in 50% yield (240 mg, 0.5 mmol). ¹H NMR (500 MHz, C₆D₆): δ 7.79 (d, *J* = 8.2 Hz, 4H, *o*-CH), 7.03 (d, *J* = 7.9 Hz, 4H, *m*-CH), 5.49 (t, *J* = 2.6 Hz, 2H, H2 + H3), 5.13 (s, 10H, Cp), 4.50 (t, *J* = 2.6 Hz, 2H, H1 + H4), 2.17 (s, 6H, CH₃). ¹³C NMR (126 MHz, C₆D₆): δ 146.3 (C), 134.1 (C), 129.8 (CH), 128.7 (CH), 117.5 (C), 109.8 (CH), 109.1 (CH), 108.8 (CH), 103.8 (C), 21.0 (CH₃). LR-MS (EI, *m*/*z*, relative intensity (%)): 478 ([M⁺], 26), 258 ([M⁺ - Cp₂Zr], 100), 220 ([M⁺ - Fv], 76). No correct elemental analysis of the bulk product was obtained, despite several attempts. Crystals of complex **2c** suitable for X-ray studies were grown from a concentrated C₆D₆ solution.

Cp₂Zr(6,6-diphenylfulvene) (2d). According to GP-2, Cp₂ZrCl₂ (2.34 g, 8.0 mmol), Mg (0.19 g, 8.0 mmol), and 6,6-diphenylfulvene (1.84 g, 8.0 mmol) were reacted to give complex 2d as an orange-yellow powder in 65% yield (2.35 g, 5.2 mmol). ¹H NMR (500 MHz, C₆D₆): δ 7.83 (m, 4H, phenyl), 6.94−7.20 (m, 6H, phenyl), 5.45 (t, ³J_{HH} = 2.6 Hz, 2H, H2 + H3), 5.08 (s, 10H, Cp), 4.44 (t, ³J_{HH} = 2.6 Hz, 2H, H1 + H4). ¹³C NMR (126 MHz, C₆D₆): δ 148.9 (C), 129.8 (CH), 128.5 (CH), 125.0 (CH), 117.2 (C), 109.8 (CH), 109.1 (CH), 108.9 (CH), 103.9 (C). LR-MS (EI, *m*/*z*, relative intensity (%)): 450 ([M⁺], 16), 385 ([M⁺ − Cp], 7), 230 ([M⁺ − Cp₂Zr], 100), 220 (([M⁺ − Fv], 69). No correct elemental analysis of the bulk product was obtained, despite several attempts. Crystals of complex 2d suitable for X-ray studies were grown from a toluene solution at −15 °C. The compound crystallizes with 0.5 equiv of toluene.

Cp₂Zr(6,6-di-p-fluorophenylfulvene) (2e). According to GP-2, Cp₂ZrCl₂ (2.00 g, 6.84 mmol), Mg (0.17 g, 6.84 mmol), and 6,6-di-pfluorophenylfulvene (1.82 g, 6.84 mmol) were reacted to give complex 2e as an orange-yellow powder in 72% yield (2.41 g, 4.92 mmol). ¹H NMR (500 MHz, C_6D_6): δ 7.50 (m, ${}^{3}J_{HH}$ = 8.5 Hz, ${}^{4}J_{HF}$ = 5.6 Hz, 4H, o-CH), 6.83 (m, ${}^{3}J_{HH} = 8.5$ Hz, ${}^{3}J_{HF} = 9.0$ Hz, 4H, m-CH), 5.44 (t, ${}^{3}J_{HH} =$ 2.6 Hz, 2H, H2 + H3), 5.03 (s, 10H, Cp), 4.26 (t, ${}^{3}J_{HH}$ = 2.6 Hz, 2H, H1 + H4). ¹³C NMR (126 MHz, C_6D_6): δ 160.8 (¹ J_{CF} = 244 Hz, C), 144.9 $({}^{4}J_{CF} = 3.0 \text{ Hz}, \text{C}), 129.8 ({}^{3}J_{CF} = 7.0 \text{ Hz}, \text{CH}), 117.2 (\text{C}), 114.7 ({}^{2}J_{CF} = 7.0 \text{ Hz}, \text{CH}), 117.2 (\text{C}), 114.7 ({}^{2}J_{CF} = 7.0 \text{ Hz}, \text{CH}), 117.2 (\text{C}), 114.7 ({}^{2}J_{CF} = 7.0 \text{ Hz}, \text{CH}), 117.2 (\text{C}), 114.7 ({}^{2}J_{CF} = 7.0 \text{ Hz}, \text{CH}), 117.2 (\text{C}), 114.7 ({}^{2}J_{CF} = 7.0 \text{ Hz}, \text{CH}), 117.2 (\text{C}), 114.7 ({}^{2}J_{CF} = 7.0 \text{ Hz}, \text{CH}), 117.2 (\text{C}), 114.7 ({}^{2}J_{CF} = 7.0 \text{ Hz}, \text{CH}), 117.2 (\text{C}), 114.7 ({}^{2}J_{CF} = 7.0 \text{ Hz}, \text{CH}), 117.2 (\text{C}), 114.7 ({}^{2}J_{CF} = 7.0 \text{ Hz}, \text{CH}), 117.2 (\text{C}), 114.7 ({}^{2}J_{CF} = 7.0 \text{ Hz}, \text{CH}), 117.2 (\text{C}), 114.7 ({}^{2}J_{CF} = 7.0 \text{ Hz}, \text{CH}), 117.2 (\text{C}), 114.7 ({}^{2}J_{CF} = 7.0 \text{ Hz}, \text{CH}), 117.2 (\text{C}), 114.7 ({}^{2}J_{CF} = 7.0 \text{ Hz}, \text{CH}), 117.2 (\text{C}), 114.7 ({}^{2}J_{CF} = 7.0 \text{ Hz}, \text{CH}), 117.2 (\text{C}), 114.7 ({}^{2}J_{CF} = 7.0 \text{ Hz}, \text{CH}), 117.2 (\text{C}), 114.7 ({}^{2}J_{CF} = 7.0 \text{ Hz}, \text{CH}), 117.2 (\text{C}), 114.7 ({}^{2}J_{CF} = 7.0 \text{ Hz}, \text{CH}), 117.2 (\text{C}), 114.7 ({}^{2}J_{CF} = 7.0 \text{ Hz}, \text{CH}), 117.2 (\text{C}), 114.7 ({}^{2}J_{CF} = 7.0 \text{ Hz}, \text{CH}), 117.2 (\text{C}), 114.7 ({}^{2}J_{CF} = 7.0 \text{ Hz}, \text{CH}), 117.2 (\text{C}), 114.7 ({}^{2}J_{CF} = 7.0 \text{ Hz}, \text{CH}), 117.2 (\text{C}), 114.7 ({}^{2}J_{CF} = 7.0 \text{ Hz}, \text{C}), 114.7 ({}^{2}J_{CF} = 7.0 \text{ Hz}, 117.2 (\text{C})), 1$ 21.0 Hz, CH), 109.7 (CH), 109.1 (CH), 109.0 (CH), 101.1 (C). ¹⁹F NMR (300 MHz, C_6D_6): δ –118.1. LR-MS (EI, m/z, relative intensity (%)): $486 ([M^+], 13), 421 ([M^+ - Cp], 2), 220 ([M^+ - Fv], 100)$. Anal. Calcd for C31.5H26F2Zr: C, 70.88; H, 4.91. Found: C, 70.72; H, 5.14. Crystals of complex 2e suitable for X-ray studies were grown from a toluene solution at 4 °C. The compound crystallizes with 0.5 equiv of toluene.

General Procedure (GP-3) for Reaction of Cp_2ZrFv Complex 2c with Carbonyl Compounds (Bulk Reaction). To a solution of complex 2c (1 equiv) in toluene was added the carbonyl compound (2 equiv), and the reaction mixture was stirred at room temperature for a given time. The solvent was then removed under vacuum, and the residue was washed with small amounts of hexanes, filtered, and further dried under vacuum to yield 3.

Cp₂Zr[OCH(Ph)C(*p***-tolyl)₂C₅H₃CH(Ph)O] (3a).** According to GP-3, complex 2c (0.99 g, 2.06 mmol) was reacted with benzaldehyde (0.44 g, 0.42 mL, 4.12 mmol) in toluene (90 mL) for 2 h to give complex 3a as a white solid in 78% yield (1.12 g, 1.62 mmol). ¹H NMR (500 MHz, C_6D_6): δ 6.85–7.84 (m, 18H, *p*-tolyl and phenyl), 6.81 (d, *J* = 5.3 Hz, 1H, H4), 6.27 (m, 1H, H3), 6.06 (s, 5H, Cp), 5.97 (s, 5H, Cp), 5.94 (m, 1H, H1), 5.50, (s, 1H, H21), 5.37 (s, 1H, H28), 3.52 (s, 1H, H₂), 2.19 (s, 3H, CH₃), 2.08 (s, 3H, CH₃). ¹³C NMR (125 MHz, C_6D_6): δ 152.9 (C), 147.7 (C), 144.9 (C), 142.8 (C), 140.8 (C), 136.7 (CH), 136.1 (CH), 135.9 (C), 135.5 (C), 133.8 (CH), 132.2 (CH), 131.9 (CH), 130.3 (CH), 128.5 (CH), 128.3 (CH), 127.9 (CH), 127.7 (CH), 127.2 (CH), 126.9 (CH), 125.6 (CH), 112.0 (CH), 111.6 (CH), 93.0 (CH), 83.4 (CH), 63.0 (C), 62.0 (CH), 21.0 (CH₃), 20.9 (CH₃). LR-MS (EI, *m/z*, relative intensity (%)): 690 ([M⁺], 7), 584 ([M⁺ - C₆H₅CHO], 4), 478 ([M⁺ - 2{C₆H₅CHO}], 19), 413 ([M⁺ - 2{C₆H₅CHO} - Cp], 7), 326 ([M⁺ - {C₆H₅CHO} - Fv], 100), 258 ([Fv⁺], 39), 220 ([Cp₂Zr⁺], 98), 91 ([C₆H₄-CH₃⁺], 91).

Cp₂Zr[OCH(p-Br-Ph)C(p-tolyl)₂C₅H₃CH(p-Br-Ph)O] (3b; NMR **Experiment).** To a C_6D_6 solution of complex 2c (20 mg, 0.04 mmol) was added p-bromobenzaldehyde (15 mg, 0.08 mmol) and after stirring for 30 min ¹H NMR confirmed full conversion to complex 3a. ¹H NMR (500 MHz, C_6D_6): δ 7.81 (d, J = 8.3 Hz, 2H, *m*-CH, Ar), 7.46 (d, J = 8.4 Hz, 2H, m-CH, Ar), 7.28 (d, J = 8.5 Hz, 2H, m-CH, p-tol), 7.20 (d, J = 8.3 Hz, 2H, m-CH, p-tol), 7.17 (d, J = 8.2 Hz, 2H, o-CH, Ar), 7.06 (d, J = 8.5, 3.0 Hz, 2H, o-CH, Ar), 7.06 (d, J = 8.5, 3.0 Hz, 2H, o-CH, ptol), 6.92 (d, J = 8.1 Hz, 2H, o-CH, p-tol), 6.83 (d, J = 5.3 Hz, 1H, H4), 6.22-6.17 (m, 1H, H3), 6.09 (s, 5H, Cp), 5.96 (s, 6H, Cp + H1), 5.40 (s, 1H, H21), 5.22 (s, 1H, H28), 3.42 (s, 1H, H₂), 2.28 (s, 3H, CH₃), 2.16 (s, 3H, CH₃). ¹³C NMR (125 MHz, C₆D₆) δ152.7 (C), 146.5 (C), 143.7 (C), 142.3 (C), 140.4 (C), 136.5 (CH), 136.2 (C), 136.1 (CH), 135.9 (C), 133.5 (CH), 132.0 (CH), 131.9 (CH), 131.7 (CH), 131.6 (CH), 131.0 (CH), 128.3 (CH), 127.8 (CH), 127.3 (CH), 121.3 (C), 120.6 (C), 112.0 (CH), 111.6 (CH), 92.1 (CH), 82.6 (CH), 62.7 (C), 61.6 (CH), 21.0 (CH₃), 20.9 (CH₃). ESI-MS for $[C_{44}H_{38}O_2Br_2ZrK]^+$: calcd 884.9923, found 884.9913. Crystals suitable for X-ray studies were grown from a concentrated C_6D_6 solution.

Cp₂Zr[OCH(p-MeO-Ph)C(p-tolyl)₂C₅H₃CH(p-MeO-Ph)O] (3c; **NMR Experiment).** To a C_6D_6 solution of complex **2c** (20 mg, 0.04 mmol) was added p-anisaldehyde (11 mg, 0.08 mmol), and after stirring for 30 min ¹H NMR confirmed full conversion to complex **3c**. ¹H NMR $(500 \text{ MHz}, C_6D_6): \delta 7.89 \text{ (d, } J = 8.3 \text{ Hz}, 2\text{H}, o\text{-CH}, p\text{-tol}), 7.30 \text{ (d, } J = 8.3 \text{ Hz})$ Hz, 2H, o-CH, p-tol), 7.29 (d, J = 8.6 Hz, 2H, o-CH, anisyl) 7.26 (d, J = 8.7 Hz, 2H, o-CH, anisyl), 7.17 (d, J = 8.3 Hz, 2H, m-CH, p-tol), 6.94 (d, *J* = 8.6 Hz, 2H, *m*-CH, anisyl), 6.92 (d, *J* = 8.2 Hz, 2H, *m*-CH, *p*-tol), 6.84 (d, J = 5.1 Hz, 1H, H4), 6.74 (d, J = 8.7 Hz, 2H, m-CH, anisyl), 6.35 (d, J = 5.4 Hz, 1H, H3), 6.11 (s, 5H, Cp), 6.03 (s, 6H, Cp + H1), 5.52 (s, 1H, H21), 5.40 (s, 1H, H28), 3.55 (s, 1H, H2), 3.43 (s, 3H, OMe), 3.28 (s, 3H, OMe), 2.23 (s, 3H, CH₃), 2.10 (s, 3H, CH₃). ¹³C NMR (125 MHz, C₆D₆): δ 159.1 (C), 159.0 (C), 153.0 (C), 142.9 (C), 141.0 (C), 139.8 (C), 136.9 (C), 136.4 (CH), 136.2 (CH), 135.9 (C), 135.6 (C), 133.9 (CH), 132.2 (CH), 131.9 (CH), 131.3 (CH), 128.3 (CH), 127.7 (CH), 126.7 (CH), 114.0 (CH), 113.5 (CH), 112.0 (CH), 111.5 (CH), 92.4 (CH), 83.1 (CH), 62.9 (C), 62.3 (CH), 54.9 (CH₃), 54.7 (CH₃), 21.1 (CH₃), 20.9 (CH₃). ESI-MS for [C₄₆H₄₄O₄ZrNa]⁺: calcd 773.2184, found 773.2195.

Cp₂Zr[OCMe₂C(p-tolyl)₂C₅H₃CMe₂O] (3d). According to GP-3, complex 2c (0.89 g, 1.81 mmol) was reacted with acetone (0.21 g, 0.27 mL, 3.62 mmol) in toluene (70 mL) for 2 h to give complex 3d as a white solid in 75% yield (0.83 g, 1.40 mmol). ¹H NMR (500 MHz, C_6D_6): δ 7.04-7.52 (m, 8H, p-tol), 6.77 (m, 1H, H4), 6.31 (m, 1H, H3), 6.20 (s, 5H, Cp), 6.00 (s, 5H, Cp), 5.70 (s, 1H, H1), 2.84 (s, 1H, H₂), 2.18 (s, 3H, CH₃), 2.14 (s, 3H, CH₃), 1.66 (s, 3H, CH₃), 1.47 (s, 3H, CH₃), 1.22 (s, 3H, CH₃), 1.19 (s, 3H, CH₃). ¹³C NMR (125 MHz, C_6D_6): δ 151.6 (C), 144.9 (C), 142.6 (C), 137.8 (CH), 136.8 (CH), 135.7 (C), 135.4 (C), 133.5 (CH), 131.7 (CH), 128.8 (CH), 127.1 (CH), 111.7 (CH), 111.4 (CH), 87.3 (C), 80.9 (C), 64.8 (C), 62.7 (CH), 32.2 (CH₃), 31.7 (CH₃), 31.4 (CH₃), 30.9 (CH₃), 21.0 (CH₃), 20.9 (CH₃). LR-MS (EI, *m*/*z*, relative intensity (%)): 594 ([M⁺], 1), 536 ([M⁺ - acetone], 4), 478 ([M⁺ - 2 acetone], 25), 413 ([M⁺ - 2 acetone - Cp], 35), 278 $([M^+ - acetone - Fv], 87), 220 ([Cp_2Zr^+], 67), 91 ([C_6H_4-CH_3^+]),$ 100). No correct elemental analysis of the bulk product was obtained, despite several attempts. Crystals suitable for X-ray studies were grown from a hexane/toluene solution at -15 °C.

Cp₂Zr[OCEt₂C(*p***-tolyl)₂C₅H₃CEt₂O] (3e).** According to GP-3, complex 2c (0.47 g, 0.98 mmol) was reacted with 3-pentanone (0.17 g, 0.21 mL, 1.96 mmol) in toluene (60 mL) for 12 h to give complex 3e as a white solid in 67% yield (0.43 g, 0.66 mmol). ¹H NMR (500 MHz, C_6D_6): δ 6.94–7.81 (m, 8H, *p*-tol), 7.09 (m, 1H, H4), 6.31 (m, 1H, H3), 6.26 (s, 5H, Cp), 6.05 (s, 5H, Cp), 5.34 (s, 1H, H1), 2.92 (s, 1H, H₂), 2.32 (m, 1H, CH₂CH₃), 2.66 (m, 1H, CH₂CH₃), 2.17 (s, 3H, CH₃), 2.03 (m, 1H, CH₂CH₃), 1.83 (m, 1H, CH₂CH₃), 1.64 (m,

1H, CH_2CH_3), 1.40–1–56 (m, 3H, CH_2CH_3), 0.98 (t, 3H, CH_2CH_3), 0.75 (t, 3H, CH_2CH_3), 0.57 (t, 3H, CH_2CH_3), 0.27 (t, 3H, CH_2CH_3). ¹³C NMR (125 MHz, C_6D_6): δ 152.3 (C), 145.1 (C), 142.1 (C), 138.4 (CH), 137.8 (CH), 136.0 (C), 135.3 (C), 133.1 (CH), 128.3 (CH), 127.9 (CH), 112.1 (CH), 111.7 (CH), 92.2 (C), 86.5 (C), 65.7 (C), 57.8 (CH), 32.3 (CH₂), 30.9 (CH₂), 30.3 (CH₂), 26.9 (CH₂), 21.0 (CH₃), 20.9 (CH₃), 11.6 (CH₃), 9.5 (CH₃), 9.0 (CH₃), 7.6 (CH₃). LR-MS (EI, *m*/*z*, relative intensity (%)): 650 ([M⁺], 5), 621 ([M⁺ – C₂H₅], 10), 564 ([M⁺ – (C₂H₅)₂CO], 35), 535 ([M⁺ – {(C₂H₅)₂CO} – C₂H₅], 47), 499 ([M⁺ – {(C₂H₅)₂CO} – Cp], 36), 413 ([M⁺ – 2{(C₂H₅)₂CO} – Cp], 22), 305 ([M⁺ – {(C₂H₅)₂CO} – Fv], 100) 258 ([Fv⁺], 32). Crystals suitable for X-ray studies were grown from a benzene solution at room temperature. The compound crystallizes with 1.5 molecules of $C_{\kappa}D_{\kappa}$.

General Procedure for Reaction of Cp₂ZrFv Complex 2c with Alkynes (NMR Experiments). To a solution of complex 2c (15 mg, 0.03 mmol) in C₆D₆ (0.5 mL) was added a solution of alkyne (0.06 mmol) in C₆D₆ (0.2 mL). After the mixture was stirred for 12 h at room temperature, the disappearance of complex 2c was observed in the ¹H NMR spectrum with concomitant formation of free fulvene 1c and the corresponding zirconacyclopentadiene 4. The ¹H NMR data of 4a,b were in agreement with literature reports. ^{14b,19}

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.organo-met.7b00213.

Selected crystal data collection parameters, details on DFT calculations, and selected NMR spectra (PDF)

Cartesian coordinates for the calculated structures (XYZ)

Accession Codes

CCDC 1526506–1526507 and 1538922–1538925 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/ data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

*E-mail for F.J.: florian.jaroschik@univ-reims.fr.

*Email for R.B.: ruediger.beckhaus@uni-oldenburg.de.

ORCID [©]

Florian Jaroschik: 0000-0003-0201-568X Radhakrishnan Kokkuvayil Vasu: 0000-0001-8909-3175 Rüdiger Beckhaus: 0000-0003-3697-0378

Present Address

¹NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette Cedex, France.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank CEFIPRA (project 4505-1), the CNRS, the Ecole polytechnique, and the Université de Reims Champagne-Ardenne for financial support. This work was supported by the analytical platform PlAneT at the Université de Reims Champagne-Ardennne (financial support by CNRS, Conseil Regional Champagne Ardenne, Conseil General de la Marne, Ministry of Higher Education and Research (MESR), and EUprogramme FEDER). This work was supported also by the BMBF (Bundesminsiterium für Bildung und Forschung, MP, BB, 03C0276G4).

REFERENCES

(1) (a) Kreindlin, A. Z.; Rybinskaya, M. A. Russ. Chem. Rev. 2004, 73, 417–432. (b) Gleiter, R.; Bleiholder, C.; Rominger, F. Organometallics 2007, 26, 4850–4859. (c) Preethalayam, P.; Syam Krishnan, K.; Thulasi, S.; Sarath Chand, S.; Joseph, J.; Nair, V.; Jaroschik, F.; Radhakrishnan, K. V. Chem. Rev. 2017, 117, 3930–3989.

(2) Kim, H. J.; Choi, N.-S.; Lee, S. W. J. J. Organomet. Chem. 2000, 616, 67–73.

(3) Rais, D.; Bergman, R. G. Chem. - Eur. J. 2004, 10, 3970-3978.

(4) Konietzny, S.; Finze, M.; Reiß, G. J. J. Organomet. Chem. 2010, 695, 2089–2092.

(5) Ebert, H.; Timmermann, V.; Oswald, T.; Saak, W.; Schmidtmann, M.; Friedemann, M.; Haase, D.; Beckhaus, R. *Organometallics* **2014**, *33*, 1440–1452.

(6) (a) Luinstra, G. A.; Teuben, J. H. J. Am. Chem. Soc. **1992**, *114*, 3361–3367. (b) Brunner, H.; Wachter, J.; Gerhart, G.; Leblanc, J.; Moise, C. Organometallics **1996**, *15*, 1327–1330. (c) Pellny, P.-M.; Kirchbauer, F. G.; Burlakov, V. V.; Baumann, W.; Spannenberg, A.; Rosenthal, U. Chem. - Eur. J. **2000**, *6*, 81–90. (d) Beweries, T.; Burlakov, V. V.; Peitz, S.; Bach, M. A.; Arndt, P.; Baumann, W.; Spannenberg, A.; Rosenthal, U. Organometallics **2007**, *26*, 6827–6831. (e) Evans, W. J.; Miller, K. A.; DiPasquale, A. G.; Rheingold, A. L.; Stewart, T.; Bau, R. Angew. Chem., Int. Ed. **2008**, *47*, 5075–5078. (f) Evans, W. J.; Walensky, J. R.; Ziller, J. W. Chem. - Eur. J. **2009**, *15*, 12204–12207.

(7) Bandy, J. A.; Mtetwa, V. S. B.; Prout, K.; Green, J. C.; Davies, C. E.; Green, M. L. H.; Hazel, N. J.; Izquierdo, A.; Martin-Polo, J. J. J. Chem. Soc., Dalton Trans. **1985**, 2037–2049.

(8) (a) Beckhaus, R.; Lützen, A.; Haase, D.; Saak, W.; Stroot, J.; Becke, S.; Heinrichs, J. Angew. Chem., Int. Ed. 2001, 40, 2056–2058. (b) Scherer, A.; Kollak, K.; Lützen, A.; Friedemann, M.; Haase, D.; Saak, W.; Beckhaus, R. Eur. J. Inorg. Chem. 2005, 2005, 1003–1010. (c) Scherer, A.; Haase, D.; Saak, W.; Beckhaus, R.; Meetsma, A.; Bouwkamp, M. W. Organometallics 2009, 28, 6969–6974. (d) Janssen, T.; Severin, R.; Diekmann, M.; Friedemann, M.; Haase, D.; Saak, W.; Doye, S.; Beckhaus, R. Organometallics 2010, 29, 1806–1817. (e) Manssen, M.; Lauterbach, N.; Dörfler, J.; Schmidtmann, M.; Saak, W.; Doye, S.; Beckhaus, R. Angew. Chem., Int. Ed. 2015, 54, 4383–4387.

(9) Fandos, R.; Teuben, J. H. Organometallics 1991, 10, 1637–1639.
(10) (a) Pinkas, J.; Cisařová, I.; Gyepes, R.; Horáček, M.; Kubišta, J.; Čejka, J.; Gómez-Ruiz, S.; Hey-Hawkins, E.; Mach, K. Organometallics 2008, 27, 5532–5547. (b) Pinkas, J.; Cisařová, I.; Horáček, M.; Kubišta, J.; Mach, K. Organometallics 2011, 30, 1034–1045.

(11) (a) Sun, Y.; Spence, R. E. V. H.; Piers, W. E.; Parvez, M.; Yap, G. P. A. J. Am. Chem. Soc. **1997**, 119, 5132–5143. (b) Varga, V.; Šindelář, P.; Cisařová, I.; Horáček, M.; Kubišta, J.; Mach, K. Inorg. Chem. Commun. **2005**, *8*, 222–226.

(12) (a) Brackemeyer, T.; Erker, G.; Fröhlich, R. Organometallics 1997, 16, 531–536.
(b) Jacobsen, H.; Berke, H.; Brackemeyer, T.; Eisenblätter, T.; Erker, G.; Fröhlich, R.; Meyer, O.; Bergander, K. Helv. Chim. Acta 1998, 81, 1692–1709.
(c) Costuas, K.; Saillard, J.-Y. Chem. Commun. 1998, 2047–2048.
(d) Edelbach, B. L.; Rahman, A. K. F.; Lachicotte, R. J.; Jones, W. D. Organometallics 1999, 18, 3170–3177.
(e) Palmer, E. J.; Bursten, B. E. Polyhedron 2006, 25, 575–584.
(f) Emmert, M.; Kehr, G.; Fröhlich, R.; Erker, G. Chem. - Eur. J. 2009, 15, 8124–8127.
(g) Palmer, E. J.; Strittmatter, R. J.; Thornley, K. T.; Gallucci, J. C.; Bursten, B. E. Polyhedron 2013, 58, 120–128.

(13) (a) Negishi, E.; Huo, S. In *Titanium and Zirconium in Organic Synthesis*; Marek, I., Ed.; Wiley-VCH: Weinheim, Germany, 2002; Chapter 1, pp 1–49. (b) Erker, G.; Kehr, G.; Fröhlich, R. *Adv. Organomet. Chem.* **2004**, *51*, 109–162.

(14) (a) Negishi, E.; Cederbaum, F. E.; Takahashi, T. *Tetrahedron Lett.* **1986**, 27, 2829–2832. (b) Negishi, E.; Holmes, S. J.; Tour, J. M.; Miller, J. A.; Cederbaum, F. E.; Swanson, D. R.; Takahashi, T. *J. Am. Chem. Soc.* **1989**, 111, 3336–3346.

(15) Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; van Eikema Hommes, N. J. R. *J. Am. Chem. Soc.* **1996**, *118*, 6317–6318. (16) Fu, X.; Yu, S.; Fan, G.; Liu, Y.; Li, Y. Organometallics 2012, 31, 531-534.

(17) Xu, X.; Kehr, G.; Daniliuc, C. G.; Erker, G. Organometallics **2015**, 34, 2655–2661.

(18) For reviews on metallacyclopentadienes see: (a) Yan, X.; Xi, C. Acc. Chem. Res. **2015**, 48, 935–946. (b) Ma, W.; Yu, C.; Chen, T.; Xu, L.; Zhang, W.-X.; Xi, Z. Chem. Soc. Rev. **2017**, 46, 1160–1192.

(19) Freeman, W. P.; Tilley, T. D.; Liable-Sands, L. M.; Rheingold, A. L. J. Am. Chem. Soc. **1996**, 118, 10457–10468.

(20) (a) Stone, K. J.; Little, R. D. J. Org. Chem. 1984, 49, 1849–1953.
(b) Miller, S. A.; Bercaw, J. E. Organometallics 2006, 25, 3576–3592.

(21) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, C. A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. **1999**, 32, 115–119.

(22) Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112–122.