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Abstract: An efficient route to prepare the 4-hydroxy-2,3,4,5-tet-
rahydro[1,4]diazepino[1,2-a]indol-1-one scaffold is described. The
key reactions of the synthesis are an iodolactonisation followed by
a lactone-to-lactam rearrangement. Various 11-substituted deriva-
tives were obtained by palladium-mediated cross-coupling reac-
tions.
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Syntheses and reactivities of 1,4-diazepines fused with
five- and six-membered heterocyclic rings are well inves-
tigated.1 2,3,4,5-Tetrahydro[1,4]diazepino[1,2-a]indol-1-
one derivatives have received much less attention. One
series of compounds I has been reported as precursor of
serotonine antagonists (Figure 1).2,3 The synthesis of I is
achieved by ring closure of ethyl 1-(3-aminopropyl)-3-
substituted-indole-2-carboxylates.3

As a part of an ongoing research work dedicated to the de-
sign of kinase inhibitors, we became interested in the de-
sign of new derivatives II. The retrosynthetic approach of
this series was based on an iodolactonisation of 1-allylin-
dole-2-carboxylic acids followed by a lactone-to-lactam
rearrangement as shown in Scheme 1.

Figure 1 General formulae of I and II

We now report a direct and convenient procedure for the
access of 4-hydroxy-11-iodo-2,3,4,5-tetrahydro[1,4]diaz-
epino[1,2-a]indol-1-one skeleton (Scheme 2, Table 1)
followed by the functionalisation of the position C-11 via
palladium-mediated cross-coupling reactions.

The esters 1 were synthesised by adapting standard meth-
ods. Compounds 1a4 and 1b were prepared from esterifi-
cation of the commercially available acids in 92–98%
yield. Treatment of commercially available p-anisalde-

hyde with ethyl azidoacetate in the presence of MeONa
yielded the azidoacrylate, which was converted into in-
dole 1c by refluxing in xylene (overall yield 68%).5 N-Al-
lylation of indolic nitrogen 1 was carried out in the
presence of allyl bromide and an appropriate base such as
K2CO3 or NaH to afford 2 in good yield (2a: 94%, 2b:
94% and 2c: 88%). Saponification of esters 2 afforded ac-
ids 3 in 96–100% yield.

Scheme 1 Retrosynthetic scheme for the synthesis of II

The iodolactonisation was investigated on model com-
pound 3a. The first reaction conditions using iodine (2
equiv) in CHCl3–H2O at 0 °C for 90 minutes afforded
compound 4a in 66% yield.6 Iodination of the position C-
3 of the indole part occurred in the same time. Increase of
the temperature reaction at 70 °C afforded 4a in a better
yield (84%). The second assay was performed on 3a in the
presence of N-iodosuccinimide (2.3 equiv) and 2,6-luti-
dine in CH2Cl2 at –20 °C.7 Compound 4a was again ob-
tained in good yield (81%).8 Iodolactonisation using N-
iodosuccinimide was applied to 3b and 3c to afford 4b and
4c, respectively, in 94% and 67% yield. The treatment of
3c with iodine at 0 °C afforded 4c in a disappointing 15%
yield. In this case, 1-allyl-2,3-diiodo-6-methoxyindole
was isolated as the major product (41%).

Lactones 4 were finally converted into the desired lactams
5. Once again, optimisation studies were required for this
rearrangement. Treatment of 4a with ammonia in meth-
anol failed due to the low solubility of the starting materi-
al.6 Addition of DMF in the reaction mixture in order to
increase the solubility, unfortunately led to a partial con-
version even after three days and 5a9 was obtained in 46%
yield. By using THF instead of DMF, the reaction pro-
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ceeded in 48 hours affording 5a in 68% yield. Following
the same conditions, 4b and 4c gave 5b and 5c in 79–81%
yield. Without methanol, no reaction occurred and start-
ing material was recovered. According to the synthesis
described above, the preparation of several grams of 5a
was easily performed for further biological and methodol-
ogy studies.

Taking advantage of iodine on the indole ring, introduc-
tion of a substituent on the position C-11 by palladium
coupling reactions could be expected.

Scheme 3 Reagents and conditions: i) Method A: Pd(PPh3)4 (10
mol%), ArB(OH)2 (1.5 equiv), aq NaHCO3, toluene–EtOH, reflux, 15
h; Method B: Pd(PPh3)4 (5 mol%), ArB(OH)2 (1.1 equiv), Na2CO3,
DME–H2O, 85 °C, 3–5 h; Method C: 10% Pd/C, ArB(OH)2 (2.0
equiv), Na2CO3, DME–H2O, 85 °C, 4 h.

We first performed the Suzuki coupling reaction
(Scheme 3) between phenylboronic acid and our model
compound 5a in the presence of freshly prepared tet-
rakis(triphenylphosphine)palladium (10 mol%), aqueous
NaHCO3 in toluene–ethanol at reflux (Method A).10 Com-
pound 611 was isolated in 43% yield but the reaction was
not completed. We noticed that the substitution of phenyl-
boronic acid by 2-furanylboronic acid or 2-thienylboronic

acid afforded products 7 and 8, respectively, in 56% and
58% yield. We observed that the starting material 5a was
not totally soluble in the solvent system (toluene–ethanol)
used. Therefore, we decided to replace it by a mixture of
DME–H2O.12 In this case, we performed the coupling re-
action with tetrakis(triphenylphosphine)palladium (5
mol%), arylboronic acid (1.1 equiv) and Na2CO3 in
DME–H2O at 85 °C in 3–5 hours (Method B) leading to
11-aryl derivatives 6–9 in high yield (Scheme 3 and
Table 2).

We replaced Pd(PPh3)4 by 10% Pd/C described as a suit-
able alternative to the ‘classical’ homogeneous condi-

Table 1 Reaction Yields for Compounds 2–5

Compd R1 R2 Yield of 2 (%) Yield of 3 (%) Yield of 4 (%) Yield of 5 (%)

I2 NIS

1a H H 94 100 66 81 68

1b OMe H 94 96 –a 94 79

1c H OMe 88 98 15 67 81

a Not tested.

Scheme 2 Reagents and conditions: i) allylbromide (2.0 equiv), K2CO3, MeCN, reflux, 60 h (1a) or NaH, DMF, 0 °C to r.t., 15 h (1b,c); ii)
NaOH, EtOH–H2O, reflux, 1 h (2a) or LiOH·H2O, EtOH or MeOH, reflux, 18 h (2b,c); iii) I2 (2 equiv), aq NaHCO3, CHCl3–H2O, 0 °C, 90 min
or NIS (2.3 equiv), 2,6-lutidine (1.5 equiv), CH2Cl2, –20 °C, 3 h 30; iv) NH3 (g), MeOH–THF, r.t., 48 h for 5a and 24 h for 5b and 5c.
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Table 2 Suzuki Coupling Yields of Compounds 6–9

Method Compd Ar Yield (%)a

A 6 Ph 43

B 6 Ph 86

C 6 Ph 88

A 7 2-Furanyl 56

B 7 2-Furanyl 82

C 7 2-Furanyl 20

A 8 2-Thienyl 58

B 8 2-Thienyl 75

B 9 4-MeOC6H4 81

a Isolated yield.
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tions.13 In this case, ligands and additives are generally not
required for efficient transformations, and catalyst remov-
al is easily performed by simple filtration. Just changing
the Pd system, we carried out the reaction between 5a and
phenylboronic acid (Method C). The result was very en-
couraging because compound 6 was isolated in 88% yield.
Unfortunately, when we applied the same conditions to 2-
furanylboronic acid, the yield decreased from 82% to only
20% yield.

In a last part, other ‘classical’ palladium coupling reac-
tions were performed on 5a in order to obtain a large range
of functionalised derivatives (Scheme 4). Thus, Sono-
gashira coupling reaction on 5a was carried out with 1-
pentyne to produce 10 in 63% yield.14 Heck reaction of 5a
with an excess of methyl acrylate led to 11 in 87% yield.15

In spite of multiple attempts, the Stille reaction of 5a with
allyltributyltin failed.16

Scheme 4 Reagents and conditions: i) PdCl2(PPh3)2 (10 mol%), CuI
(10 mol%), 1-pentyne (7 equiv), Et3N, DMF, 45 °C, 4 h, 63%; ii)
Pd(OAc)2 (10 mol%), PPh3 (20 mol%), methyl acrylate (10 equiv),
Et3N, DMF, 90 °C, 5 h, 87%.

In summary, we developed an efficient and straightfor-
ward route to original 4-hydroxy-11-iodo-2,3,4,5-tetrahy-
dro[1,4]diazepino[1,2-a]indol-1-one derivatives. Several
substituents on position C-11 were introduced by Suzuki,
Sonogashira and Heck reactions. The compounds de-
scribed here are currently under evaluation for their ki-
nase-inhibitory activities and the biological results will be
reported in due course.
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