HETEROCYCLES, Vol. 94, No. 10, 2017, pp. 1931 - 1939. © 2017 The Japan Institute of Heterocyclic Chemistry Received, 26th June, 2017, Accepted, 19th July, 2017, Published online, 1st August, 2017 DOI: 10.3987/COM-17-13773

A CONVENIENT SYNTHESIS OF ISOTELLURAZOLES VIA DEOXYGENATION OF ISOTELLURAZOLE *Te*-OXIDE OLIGOMERS BY USING A COMBINATION OF Ph₃P/I₂

Yusuke Taneichi, Kazuaki Shimada,* and Toshinobu Korenaga

Department of Chemistry and Biosciences, Faculty of Science and Engineering, Iwate University, Morioka, Iwate 020-8551, Japan; E-mail: shimada@iwate-u.ac.jp

Abstract – Ynones and ynals bearing a variety of substituent were converted into isotellurazole *Te*-oxide oligomers through a convenient procedure *via* formation and ring closure of β -(*N*,*N*-dimethylcarbamoyltellurenyl)alkenyl ketones or aldehydes, and the subsequent conversion of **A** into the corresponding isotellurazoles **B** was carried out efficiently by treating with Ph₃P/I₂ under a rather mild reaction condition.

Recently, hetero Diels-Alder reactions have been widely recognized as one of the most effective methods for the syntheses of various heterocycles, and especially, the thermal reactions of higher-row chalcogenazoles and isochalcogenaozles have been of great interest in line with the synthetic potentiality of these compounds,^{1,2} and especially isotellurazoles having a tellurium-bridged cisoid heterodiene along with a weak carbon-tellurium and nitrogen-tellurium bonds and the enhanced ring strain of the ring systems involving a tellurium atom with a large atomic radius. However, the synthetic methods of isotellurazoles have been strictly limited because of the difficulty in the preparation of suitable precursors. In the course of our synthetic research work on the synthesis of higher-row chalcogen-containing heteroaromatic compounds, we have previously reported a preparation of isoselenazoles and isotellurazoles through a four-step procedure starting from ynones and bis(N,N-dimethylcarbamoyl)diselenide or ditelluride, respectively.³ Especially, isotellurazole Te-oxides were formed in all cases by treating β -(*N*,*N*-dimethylcarbamoyltelluro)alkenyl ketones with NH₂OSO₃H, and deoxygenation of those products required the treatment with Ph_3P at rather high reaction temperature. In addition, treatment of isotellurazole *Te*-oxides with a variety of acetylenic dienophiles for hetero Diels-Alder reaction just gave substituted pyridines in much lower yields as the cycloadducts in all cases along with the formation of several byproducts in contrast to the cases using isotellurazoles as heterodienes.⁴ Recently, Vargas-Baca

reported the unique tetrameric and/or hexameric macrocyclic structures of **4** for isotellurazole *Te*-oxides (isotellurazole *N*-oxides) obtained through the similar procedure, ⁵ and this result suggested the disfavor in the synthetic use of isotellurazole *Te*-oxide oligomers **4** as the heterodienes for hetero Diels-Alder reaction in contrast to isotellurazoles. Through the requirement for the use of isotellurazoles **5** as reactive heterodienes for the synthesis of azafluorenone alkaloid skeletons, we attempted the modification of our previous procedure involving the deoxygenation of isotellurazole *Te*-oxide oligomers **4** by applying the combination of Ph₃P with an electrophilic activator in line with the previous reports on deoxygenation of isotellurazole *Te*-oxide oligomers **4** by treating with Ph₃P and I₂, and in this paper we would like to report the details of the efficient and convenient preparation of mono- and disubstituted isotellurazoles **5** involving the synthetic scope and limitation.

Isotellurazole *Te*-oxide oligomers **4** were at first prepared through a three-step procedure starting from bis(*N*,*N*-dimethylcarbamoyl) ditelluride (**1**) [(1) NaBH₄ (2.2 equiv.), (2) ynone or ynal **2** bearing a variety of substituents at R¹ and an alkyl group or hydrogen atom for R², (3) NH₂OSO₃H (3.0 equiv.)], and compounds **4** were subsequently subjected to deoxygenation by treating with Ph₃P at high temperature in a sealed tube in order for the preparation of authentic isotellurazoles **5**.³ Our previous attempts for deoxygenation of isotellurzole *Te*-oxide oligomers **4** by using NaBH₄ reduction, Luche reduction, or the treatment of NH₂NH₂•H₂O were not successful at all except for the treatment with Ph₃P under the condition of high temperature in a sealed tube. Furthermore, isotellurazole *Te*-oxide oligomer **4b** bearing two alkyl substituents at the R¹ and R² positions was unexpectedly inactive toward Ph₃P reduction under the similar condition even after the prolonged reaction time, and this phenomenon just limited the synthetic use of isotellurazoles.

Me₂N´	O O └ └ NMe₂ 1	1) NaBH ₄ (2.2 equiv.) EtOH or DMF-EtOH -50 to -35 °C then 0 °C, 30 min 2) R ¹ rt, 7 h 2	$Me_2N \xrightarrow{\begin{array}{c} 0 \\ R^1 \\ Te \\ 0 \\ 3 \end{array}} R^2$	NH ₂ OSO ₃ H (3.0 equiv.) MeOH reflux, 1 h	$\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ $
-	Ynor	ne 2	Yield (
-	R ¹	R^2	3	4	
-	C_6H_5	Me	94 (3a)	81 (4a) ^a	
	$n-C_4H_9$	Me	75 (3b)	74 (4b)	
	$t-C_4H_9$	Me	92 (3 c)	98 (4c)	

 Table 1. Preparation of Isotellurazole Te-Oxide Oligomers 4

	l)
C_6H_5 H 69 (3e) 75 (4)	2)
Me H 93 (3f) 64 (4))

^aSee reference 3.

When a toluene solution of isotellurazole *Te*-oxide oligomer **4a** was treated with Ph₃P (2.2 equiv.) at refluxing temperature for 168 h, the corresponding isotellurazole **5a** was obtained as a sole product in moderate yield. However, the same reaction performed under 0 °C to room temperature only afforded the recovery of substrate **4a**. On the other hand, the reaction condition was dramatically improved by adding I₂ (1.2 equiv.) to the reaction mixture, and the starting compound **4a** underwent facile deoxygenation to afford isotellurazoles **5a** in medium yield even at 0 °C within one or two hours. After the attempts of optimization of the reaction condition, the yield of **5a** was finally raised up to 82% by treating Ph₃P (2.0 equiv.) and I₂ (1.0 equiv.), and the method was applicable to deoxygenation of other isotellurazole *Te*-oxide oligomers **4b-f** bearing a variety of R¹ and R² substituents involving aryl group, alkyl groups, and hydrogen. It is noteworthy that the combination of Ph₃P-CBr₄ and Ph₃P-BF₃•OEt₂, substrate **4a** was quantitatively recovered after the usual quenching procedure using an aqueous NaHCO₃ solution. All the results of deoxygenation of isotellurazole *Te*-oxide oligomers **4** by the combination of Ph₃P and an electrophilic activator are summarized in Table 2.

Table 2. Synthesis of Isotellurazoles 5 by Treating Isotellurazole *Te*-Oxide Oligomers 4 with Ph₃P and an Additive

٦

г

				- R ² Ph ₃ P, A	dditive		·R ²	
] n		Te-N 5		
Substrate / 4		Ph ₃ P	Additive	Solvent	Condition Y		Yield of 5	
\mathbb{R}^1	\mathbb{R}^2	4	(equiv.)	(equiv.)		Temp (°C)	Time (h)	(%)
C ₆ H ₅	Me	4 a	1.1	-	CHCl ₃	100	1	91 (5a) ^a
C_6H_5	Me	4 a	2.2	-	toluene	reflux	168	59 (5 a)
C_6H_5	Me	4 a	2.0	-	CCl ₄	reflux	2	33 (5 a)
C_6H_5	Me	4 a	1.2	CBr ₄ (1.2)	CH_2Cl_2	0	1	48 (5a)
C_6H_5	Me	4 a	2.0	CBr ₄ (1.0)	CH_2Cl_2	0	2	16 (5a)
C_6H_5	Me	4 a	1.2	$I_2(1.2)$	CH_2Cl_2	0	2	50 (5a)
C_6H_5	Me	4 a	2.0	$I_2(1.0)$	CH_2Cl_2	0	2	82 (5a)
C_6H_5	Me	4 a	2.0	BF ₃ •OEt ₂ (1.0)	CH_2Cl_2	0	2	0^{b}

C_6H_5	Me	4 a	2.0	TiCl ₄ (1.0)	CH_2Cl_2	0	1	51 (5a)
$n-C_4H_9$	Me	4 b	2.2	-	toluene	reflux	48	0^{c}
$n-C_4H_9$	Me	4 b	1.2	CBr ₄ (1.2)	CH_2Cl_2	0	1	43 (5b)
$n-C_4H_9$	Me	4 b	2.0	$I_2(1.0)$	CH_2Cl_2	0	3	91 (5b)
<i>t</i> -C ₄ H ₉	Me	4 c	2.0	I ₂ (1.0)	CH_2Cl_2	rt	12	73 (5c)
$n-C_4H_9$	Η	4 d	2.0	$I_2(1.0)$	CH_2Cl_2	-50	0.5	66 (5d)
C_6H_5	Н	4 e	2.0	I ₂ (1.0)	CH_2Cl_2	0	2	69 (5e)
Me	Н	4f	2.0	I ₂ (1.0)	CHCl ₃	0	1	80 (5f)

^aCarried out in a sealed tube. See reference 3c. ^bSubstrate **4a** was quantitatively recovered after the usual workup procedure. ^cStarting isotellurazole oxide oligomer **4b** was recovered.

Vargas-Baca recently reported that isotellurazole *Te*-oxide oligomers **4** undergo equilibration among a few oligomers in the solution, and therefore the monomeric forms of **4** are assumed to behave as the key intermediates for deoxygenation. The plausible reaction pathway of the deoxygenation of isotellurazole *Te*-oxide oligomers **4** could then be summarized as shown in Scheme 1 involving three step reactions: the primary reaction of Ph₃P-I₂ complex with **4** forming intermediates **A**, subsequent nucleophilic attack of iodide ion to the tellurium atom of **A**, and the final attack of Ph₃P to the iodine atom of intermediates **B** forming isotellurazoles **5** in an analogous manner to that of deoxygenation of sulfoxides.⁶ This pathway requires two molar amounts of Ph₃P and one molar amount of I₂ for deoxygenation of **4**, which would be consistent with the experimentally optimized ratio of these reagents.

Scheme 1. Plausible Pathway for Deoxygenation of Isotellurazole Te-Oxide Oligomers 4

It is assumed that the deoxygenation step would be accelerated by the facile fragmentation of isotellurazole *Te*-oxide oligomers **4** through the reaction with iodophosphonium ion (Ph_3P^+ -I) with the oxygen atom of monomeric isotellurazole *Te*-oxides **4** (n = 1) in the reaction mixture as well as the facile

elimination of $Ph_3P=O$ from the *in situ* generated intermediates **A** to form intermediates **B** through the strong $Te^+\cdots I^-$ interaction between the tellurium atom of **A** and iodide ion. However, all attempts to carry out the direct observation of plausible intermediates **A** or **B** through a ¹H NMR monitoring of the deoxygenation of **4** using Ph_3P-I_2 in a NMR tube was unsuccessful.

In conclusion, we could find a new procedure for deoxygenation of isotellurzole *Te*-oxide oligomers **4** by using the combination of Ph_3P and I_2 . We have already reported that isotellurazoles undergo hetero Diels-Alder reaction to afford substituted pyridines under rather mild conditions, and further synthetic application of alkyl-substituted isotellurazoles for the construction of polycyclic alkaloid skeletons are under way in our laboratory.

EXPERIMENTAL

The melting points were determined with a Barnstead International MEL-TEMP. ¹H NMR spectra were recorded on a Bruker DRX-400P (400 MHz) or Bruker AVANCE III 500 (500 MHz) spectrometer, and the chemical shifts of the ¹H NMR spectra are given in δ relative to internal tetramethylsilane (TMS). ¹³C NMR spectra were recorded on Bruker DRX-400P (101 MHZ) AVANCE III 500 (126 MHZ). ¹²⁵Te NMR Spectra were recorded on Bruker AVANCE III 500 (158 MHZ), and the chemical shifts of the ¹²⁵Te NMR are given in δ relative to Ph₂Te₂ (δ = 421 ppm). Mass spectra were recorded on a JEOL JMS-700T mass spectrometer with electron-impact ionization or electrospray ionization. High resolution mass spectra (HRMS) were also recorded on a JEOL JMS-700T spectrometer. IR spectra were recorded for thin film (neat) or KBr disks on a JASCO FT/IR-7300 spectrometer. Elemental analyses were performed using a Yanagimoto CHN corder MT-5.

Starting Materials. Bis(*N*,*N*-dimethylcarbamoyl) ditelluride (**1**) was prepared from elemental tellurium, sodium metal or sodium hydride, and *N*,*N*-dimethylformamide (DMF) according to our previous previous paper.^{3a,7} Ynones and ynals (**2**) were prepared through Friedel-Crafts type acylation of terminal acetylenic compounds or oxidation of substituted propargyl alcohols according to the previous papers.⁷ All other chemicals used in this study were commercially available.

Typical Procedure for Preparation of Isotellurazole Te-Oxide Oligomers 4 from A Bis(N,N-dimethylcarbamoyl) Ditelluride (1) and Ynones 2. To DMF or EtOH solution of bis(N,N-dimethylcarbamoyl) ditelluride (1, 398 mg, 1.00 mmol) was added EtOH solution (5 mL) of NaBH₄ (84 mg, 2.2 mol amt.) at -50 °C, and the reaction mixture was then treated with ynone 2 (2.2 mol amt.) at -50 °C to rt for 7 h. The reaction was quenched with aqueous NH₄Cl solution, and the reaction mixture was extracted with CH₂Cl₂. The organic layer was washed twice with water and was dried over anhydrous Na₂SO₄ powder. The organic solvent was removed in vacuo, and the residual crude products silica Te-alkenyl subjected to column chromatography on gel obtain were to

N,*N*-dimethyltellurocarbamates **3** in high to moderate yields as yellow oil. Then, MeOH solution (10 mL) of compounds **3** was treated with hydroxylamine-*O*-sulfonic acid (3.0 mol amt.) at reflux for 1 h. The reaction mixture was cooled to room temperature and was quenched with saturated aqueous NaHCO₃ solution, and the reaction mixture was subjected to suction filtration to obtain isotellurazole *Te*-oxide oligomers **4** as main products besides a small amount of isotellurazoles **5**.^{3c}

4a ($R^1 = C_6H_5$, $R^2 = Me$): Pale yellow powder, mp 210.5-211.4 °C (decomp.) (Lit., ^{3c} 210.3-211.8 °C (decomp.)).

4b ($\mathbb{R}^1 = n$ -C₄H₉, $\mathbb{R}^2 = Me$): Yellow needles, mp 131.8-132.5 °C; IR (KBr) 2954, 2927, 2900, 2868, 2855, 1575, 1475, 1464, 1426, 1374, 1232, 1139, 1092, 887, 829, 718, 579 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.89 (3H, t, *J* = 7.5 Hz), 1.36 (2H, sext, *J* = 7.5 Hz), 1.62 (2H, quint, *J* = 7.5 Hz), 2.10 (3H, s), 2.80 (2H, t, *J* = 7.5 Hz), 7.09 (1H, s); ¹³C NMR (126 MHz, CDCl₃) δ 14.1 (q), 16.0 (q), 22.5 (t), 34.1 (t), 36.1 (t), 124.8 (d), 155.7 (s), 156.9 (s); ¹²⁵Te NMR (158 MHz, CDCl₃) δ 1607. Anal. Calcd for C₈H₁₃NOTe: C, 36.01; H, 4.91; N, 5.25%. Found: C, 36.00, H; 4.90; N, 5.28%.

4c ($\mathbb{R}^1 = t$ -C₄H₉, $\mathbb{R}^2 = Me$): Pale Yellow Powder, mp 217.0-217.5 °C (decomp.); IR (KBr) 2952, 2908, 2866, 1564, 1465, 1363, 1125, 967, 897, 697, 451 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.41 (9H, s), 2.14 (3H, s), 7.00 (1H, s); ¹³C NMR (126 MHz, CDCl₃) δ 16.1 (q), 32.3 (q), 41.5 (s), 122.5 (d), 155.6 (s), 168.1 (s). (Lit., ^{5c} 180-185 °C (decomp.), IR (KBr) 2953, 2912, 2865, 1565, 1466, 1424, 1389, 1370, 1361, 1337, 1243, 1231, 1202, 1125, 1030, 1001, 967, 896, 842, 828, 794, 760, 756, 697 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.96 (1H, s), 2.17 (3H, s), 1.42 (9H, s); ¹³C DEPTq NMR (125.8 MHz, CD₂Cl₂) δ 16.0, 32.1, 41.5, 122.7, 156.4, 168.9. HRMS calcd. for C₈H₁₄ON¹²⁹Te: *m/z* 270.0138 (M⁺-H). Found: *m/z* 270.0122.)

4d (R¹ = *n*-C₄H₉, R² = H): Yellow oil; MS (*m/z*) 255 (M⁺; bp, ¹³⁰Te), 253 (M⁺; 92%, ¹²⁸Te), 251 (M⁺; 56%, ¹²⁶Te), 250 (M⁺; 22%, ¹²⁵Te), 249 (M⁺; 14%, ¹²⁴Te), 247 (M⁺; 7%, ¹²²Te); IR (neat) 2954, 2868, 2857, 1561, 1477, 1103, 1081, 744 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.90 (3H, t, *J* = 7.5 Hz), 1.38 (2H, sext, *J* = 7.5 Hz), 1.63 (2H, quint, *J* = 7.5 Hz), 2.86 (2H, t, *J* = 7.5 Hz), 7.12 (1H, d, *J* = 4.0 Hz), 8.31 (1H, d, *J* = 4.0 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 14.1 (q), 22.4 (t), 34.1 (t), 36.3 (t), 120.9 (d), 148.3 (d), 159.8 (s); ¹²⁵Te NMR (158 MHz, CDCl₃) δ 1639. HRMS Calcd for C₇H₁₁NOTe: *m/z* 254.9903. Found: *m/z* 254.9902.

4e (R¹ = C₆H₅, R² = H): Pale yellow powder, mp 217.8-218.1 °C (decomp.); MS (FAB⁺, *m/z*) 274 (M⁺-1; ¹³⁰Te, 29%), 272(M⁺-1; ¹²⁸Te, 18%); IR (KBr) 1658, 1618, 1399, 1305, 1098, 1021, 836, 718, 694 cm⁻¹. Anal. Calcd for C₉H₇NOTe: C, 39.63; H, 2.59; N, 5.14%. Found: C, 39.62; H, 2.70; N, 5.13%. **4f** (R¹ = Me, R² = H): Gravish powder, mp 203.4-203.7 °C (decomp.); IR (KBr) 1563, 1479, 1139, 1103,

41 (K = Me, K = H). Grayish powder, hip 203.4-203.7 °C (decomp.), iK (KB1) 1303, 1479, 1139, 1103, 1037, 801, 732 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.55 (3H, s), 7.12 (1H, d, *J* = 3.5 Hz), 8.32 (1H, dd, *J*

= 3.5, 1.5 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 23.5 (q), 122.1 (d), 148.9 (d), 154.3 (s); ¹²⁵Te NMR (157 MHz, CDCl₃) δ 1654. HRMS Calcd for C₄H₅NOTe: *m/z* 212.9433. Found: *m/z* 212.9432.

A Typical Procedure for Deoxygenation of Isotellurazole *Te*-Oxide Oligomer 4a ($\mathbb{R}^1 = \mathbb{C}_6\mathbb{H}_5$, $\mathbb{R}^2 = \mathbb{M}_6$) by Treating with Ph₃P and I₂. A CH₂Cl₂ solution of Ph₃P (183 mg, 0.698 mmol, 2.0 equiv.) was treated with I₂ (89 mg, 0.349 mmol, 1.0 equiv.) at 0 °C for 30 min, and then isotellurazole *Te*-oxide oligomer 4a ($\mathbb{R}^1 = \mathbb{C}_6\mathbb{H}_5$, $\mathbb{R}^2 = \mathbb{M}_6$, 100 mg, 0.349 mmol) was treated with the reaction mixture at 0 °C for 3 h. The reaction was then quenched by addition of saturated aqueous Na₂SO₃ solution, and the reaction mixture was extracted with CHCl₃. The organic layer was washed with water and was dried over anhydrous Na₂SO₄ powder. After removing the organic solvent *in vacuo*, the crude product was subjected to purification by using column chromatograph on silica gel to isolate isotellurazole 5a (77 mg, yield 82%) as pale yellow solid.

5a ($R^1 = C_6H_5$, $R^2 = Me$): Pale yellow needles, mp 147.6-148.0 °C (Lit., <u>2b,3c</u> 147.5-148.0 °C).

5b (R¹ = *n*-C₄H₉, R² = Me): Pale yellow oil; MS (*m/z*) 253 (M⁺; bp, ¹³⁰Te), 251 (M⁺; 93%, ¹²⁸Te), 249 (M⁺; 57%, ¹²⁶Te), 248 (M⁺; 22%, ¹²⁵Te), 247 (M⁺; 14%, ¹²⁴Te), 245 (M⁺; 7%, ¹²²Te); IR (neat) 2954, 2862, 1552, 1454, 1328, 831 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.95 (3H, t, *J* = 7.5 Hz), 1.44 (2H, sext, *J* = 7.5 Hz), 1.66 (2H, quint, *J* = 7.5 Hz), 2.43 (3H, s), 2.96 (2H, td, *J* = 7.5 Hz, 1.0 Hz), 7.62 (1H, t, *J* = 1.0 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 14.1 (q), 22.3 (t), 23.2 (q), 34.5 (t), 38.4 (t), 128.9 (d), 171.8 (s), 182.4 (s); ¹²⁵Te NMR (158 MHz, CDCl₃) δ 1610. HRMS calcd for C₈H₁₃NTe: *m/z* 253.0110. Found: *m/z* 253.0110.

5c (R¹ = *t*-C₄H₉, R² = Me): Colorless needles; mp 55.5-56.0 °C; MS (*m/z*) 253 (M⁺; bp, ¹³⁰Te), 251 (M⁺; 92%, ¹²⁸Te), 249 (M⁺; 56%, ¹²⁶Te), 248 (M⁺; 22%, ¹²⁵Te), 247 (M⁺; 14%, ¹²⁴Te), 245 (M⁺; 8%, ¹²²Te); IR (KBr) 2955, 2923, 2854, 1552, 1455, 1361, 1317, 833, 712, 565 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.39 (9H, s), 2.42 (3H, s), 7.60 (1H, s); ¹³C NMR (126 MHz, CDCl₃) δ 25.9 (q), 33.8 (q), 39.8 (s), 132.7 (d), 176.8 (s), 188.5 (s); ¹²⁵Te NMR (158 MHz, CDCl₃) δ 1642; HRMS Calcd for C₈H₁₃NTe: *m/z* 253.0110. Found: *m/z* 253.0106.

5d (R¹ = *n*-C₄H₉, R² = H): Colorless needles; mp 44.5-45.0 °C; MS (*m/z*) 239 (M⁺; bp, ¹³⁰Te), 237 (M⁺; 91%, ¹²⁸Te), 235 (M⁺; 58%, ¹²⁶Te), 234 (M⁺; 22%, ¹²⁵Te), 233 (M⁺; 15%, ¹²⁴Te), 231 (M⁺; 8%, ¹²²Te); IR (KBr) 2928, 2881, 2863, 1548, 1461, 1444, 1418, 1246, 792, 532 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.95 (3H, t, *J* = 7.5 Hz), 1.45 (2H, sext, *J* = 7.5 Hz), 1.68 (2H, quint, *J* = 7.5 Hz), 3.03 (2H, td, *J* = 7.5, 1.0 Hz), 7.64 (1H, dt, *J* = 2.0, 1.0 Hz), 9.71 (1H, d, *J* = 2.0 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 13.9 (q), 22.4 (t), 36.0 (t), 36.5 (t), 134.8 (d), 168.5 (d), 176.9 (s); ¹²⁵Te NMR (158 MHz, CDCl₃) δ 1677; HRMS Calcd for C₇H₁₁NTe: *m/z* 238.9954. Found: *m/z* 238.9953.

5e ($R^1 = C_6H_5$, $R^2 = H$): Pale yellow Powder, mp 134.8-135.5 °C; IR (KBr) 1534, 1441, 1420, 1261, 815, 751, 684, 565, 407 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.41 (3H, m), 7.48-7.50 (2H, m), 8.03 (1H,

s), 9.95 (1H, s); ¹³C NMR (101 MHz, CDCl₃) δ 127.9 (d), 129.4 (d), 129.5 (d), 132.2 (d), 138.1 (s), 169.3 (d), 173.1 (s). Anal. Calcd for C₉H₇NTe: C, 42.10; H, 2.75; N, 5.46%. Found: C, 42.08; H, 2.90; N, 5.46%.

5f (R¹ = Me, R² = H): Colorless needles; mp 99.0-99.5 °C (decomp.); MS (*m/z*) 198 (M⁺+1; bp, ¹³⁰Te); IR (KBr) 1549, 1433, 1253, 1128, 796 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.75 (3H, d, *J* = 1.0 Hz), 7.62 (1H, dq, *J* = 2.0, 1.0 Hz), 9.68 (1H, d, *J* = 2.0 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 22.0 (q), 137.1 (d), 168.1 (s), 168.4 (d); ¹²⁵Te NMR (158 MHz, CDCl₃) δ 1712. HRMS calcd for C₄H₆NTe: *m/z* 197.9562 (M+H⁺). Found: *m/z* 197.9563.

REFERENCES AND NOTES

- (a) V. Bertini and F. Lucchesini, <u>Synthesis</u>, 1982, 681; (b) R. Neidlein and D. Knecht, <u>Helv. Chim.</u> <u>Acta</u>, 1987, 70, 1076; (c) T. Chivers, X. Gao, and M. Parvez, <u>Inorg. Chem.</u>, 1996, 35, 9; (d) E. H. Morkved, M. V. Lakshmikantham, and M. P. Cava, <u>Tetrahedron Lett.</u>, 1996, 37, 9149; (e) K. Badyal, M. Herr, W. R. McWhinnie, T. A. Hamor, and K. Paxton, <u>Phosphorus, Sulfur Silicon Relat. Elem.</u>, 1998, 141, 221; (f) D. Rajagopal, M. V. Lakshmikantham, E. H. Morkved, and M. P. Cava, <u>Org. Lett.</u>, 2002, 4, 1193; (g) A. F. Cozzolino, I. Vargas-Baca, S. Mansour, and A. H. Mahmoudkhani, <u>J. Am.</u> <u>Chem. Soc.</u>, 2005, 127, 3184; (h) A. F. Cozzolino and I. Vargas-Baca, <u>J. Organomet. Chem.</u>, 2007, <u>692, 2654</u>; (i) K. Shimada, Science of Synthesis, Knowledge Updates, 2010, 2010/1, 405, and the references cited therein.
- (a) F. Lucchesini and V. Bertini, <u>Synthesis</u>, <u>1983</u>, <u>824</u>; (b) F. Lucchesini, V. Bertini, and A. De Munno, <u>Tetrahedron</u>, <u>1984</u>, <u>40</u>, <u>931</u>; (c) F. Lucchesini, V. Bertini, A. De Munno, M. Pocci, N. Picci, and M. Liguori, <u>Heterocycles</u>, <u>1987</u>, <u>26</u>, <u>1587</u>; (d) W. D. Pfeiffer, *Science of Synthesis*, 2002, <u>11</u>, 1005, and the references cited therein; (e) K. Shimada, *Science of Synthesis, Knowledge Updates*, 2010, <u>2010/1</u>, 467, and the references cited therein.
- (a) K. Shimada, S. Oikawa, and Y. Takikawa, <u>*Chem. Lett.*</u>, 1992, 1389;
 (b) K. Shimada, S. Oikawa, H. Nakamura, and Y. Takikawa, <u>*Chem. Lett.*</u>, 1995, 135;
 (c) K. Shimada, A. Moro-oka, A. Maruyama, H. Fujisawa, T. Saito, R. Kawamura, H. Kogawa, M. Sakuraba, Y. Takata, S. Aoyagi, Y. Takikawa, and C. Kabuto, <u>*Bull. Chem. Soc. Jpn.*</u>, 2007, **80**, 567.
- K. Shimada, Y. Takata, Y. Osaki, A. Moro-oka, H. Kogawa, M. Sakuraba, S. Aoyagi, Y. Takikawa, and S. Ogawa, <u>*Tetrahedron Lett.*</u>, 2009, 50, 6651.
- (a) J. Kuebel, P. J. Elder, H. A. Jenkins, and I. Vargas-Baca, <u>J. Chem. Soc., Dalton Trans., 2010, 39, 11126</u>; (b) P. C. Ho, L. M. Lee, H. Jenkins, J. F. Britten, and I. Vargas-Baca, <u>Can. J. Chem., 2016, 94</u>, 453; (c) P. C. Ho, P. Szydlowski, J. Sinclair, P. J. Elder, J. Kübel, C. Gendy, L. M. Lee, H. Jenkins, J. F. Britten, D. R. Morim, and I. Vargas-Baca, <u>Nat. Commun., 2016, 7, 11299</u>.

- (a) G. A. Olah, B. Gupta, and S. C. Narang, <u>Synthesis</u>, <u>1978</u>, <u>137</u>; (b) Z. Paryzek and R. Wydra, <u>Tetrahedron Lett.</u>, <u>1984</u>, <u>25</u>, <u>2601</u>; (c) X.-Y. Lu and X.-C. Tao, <u>Youji Huaxue</u>, 1987, <u>5</u>, 376; (d) S. Kikuchi, H. Konishi, and Y. Hashimoto, <u>Tetrahedron</u>, <u>2005</u>, <u>61</u>, <u>3587</u>; (e) T. Sideris and P. Ioannou, <u>Phosphorus</u>, <u>Sulfur Silicon Relat. Elem.</u>, <u>2006</u>, <u>181</u>, <u>1017</u>; (f) K. Bahrami and Md. M. Khodaei, <u>Chem.</u> <u>Lett.</u>, <u>2007</u>, <u>36</u>, <u>1324</u>; (g) Y. Jang, K.-T. Kim, and H.-B. Jeon, <u>J. Org. Chem.</u>, <u>2013</u>, <u>78</u>, <u>6328</u>.
- K. Shimada, S. Oikawa, H. Nakamura, A. Moro-oka, M. Kikuchi, A. Maruyama, T. Suzuki, H. Kogawa, Y. Inoue, Y. Gong, S. Aoyagi, and Y. Takikawa, *Bull. Chem. Soc. Jpn.*, 2005, 78, 899.