LETTERS TO THE EDITOR

Synthesis, Acid—Base and Complexing Properties of Tripotassium Tributyl [Nitrilotris(methylene)]tris(phosphonate)

A. R. Garifzyanov, I. D. Shurygin*, R. A. Cherkasov, K. A. Ivshin, and O. N. Kataeva

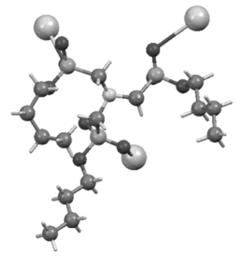
Kazan Federal University, ul. Kremlevskaya 18, Kazan, Tatarstan, 420008 Russia *e-mail: idshurygin@gmail.com

Received August 25, 2016

Keywords: phosphorylamines, acid–base properties, molecular structure, metal complexes

DOI: 10.1134/S1070363216120288

We previously demonstrated high efficiency of membrane extraction of lithium ions from their mixtures with other alkali metals using a new synergic aminophosphoryl carrier, a mixture of hexapentyl [nitrilotris(methylene)]tris(phosphonate) and O,O-bis-(2-ethylhexyl) hydrogen phosphorothioate [1]. Herein we report the results of studying acid-base and complexing properties toward transition metal ions of a new tris(phosphorylmethyl)amine, tripotassium tri-[nitrilotris(methylene)]tris(phosphonate) which was synthesized by alkaline hydrolysis of the corresponding hexabutyl tris-phoshonate 1 with aqueous potassium hydroxide (Scheme 1). The latter was prepared in turn by reaction of tris(butoxymethyl) amine with 3 equiv of dibutyl phosphonate according to the procedure described in [2].


The structure of tripotassium salt **2** was determined on the basis of ${}^{1}H$, ${}^{13}C-\{{}^{1}H\}$, and ${}^{31}P-\{{}^{1}H\}$ NMR and X-ray diffraction data (see figure). The ionization constants of tributyl [nitrilotris(methylene)]tris(hydrogen phosphonate) in water were determined by potentiometric titration of a solution of **2** with a 0.1 M solution of nitric acid: $pK_1 = 1.02$, $pK_2 = 1.29$, $pK_3 = 6.25$.

Salt 2 was found to form water-soluble complexes with manganese(II), cobalt(II), nickel(II), copper(II), and zinc(II) ions. The stability constants (log β) of the corresponding 1:1 complexes were estimated by potentiometric titration at 3.76, 4.96, 3.87, 7.25, and 6.37 for Mn(II), Co(II), Ni(II), Co(II), and Zn(II), respectively. This log β series is very consistent with the Irving–Williams series with the exception that the stability constant of the nickel complex is lower than the stability constant of analogous cobalt complex [3].

Hexabutyl [nitrilotris(methylene)]tris(phosphonate)

(1). An Arbuzov flask equipped with a thermometer, capillary, bent vacuum-distilling adapter, and graduated test tube receiver was charged with 0.17 mol (47.77 g) of tris(butoxymethyl)amine and 0.52 mol (100.98 g) of dibutyl phosphonate, four drops of saturated p-toluenesulfonic acid in toluene were added, and the mixture was heated for 3 h at 110°C at a residual pressure of 22 mm (until butan-1-ol no longer distilled off). The residue was a colorless viscous oil which was almost pure tris-phosphonate 1. Yield 96%, $n_D^{20} = 1.4515$. ¹H NMR spectrum (CDCl₃), δ , ppm (J, Hz): 0.95 t (18H, CH₃, $^3J_{\rm HH} = 7.4$), 1.36–1.46 m (12H, CH₂), 1.60–1.67

Scheme 1.

Structure of the molecule of tripotassium tributyl [nitrilotris-(methylene)]tris(phosphonate) (2) in crystal according to the X-ray diffraction data.

m (12H, CH₂), 3.31 d (6H, PCH₂N, ${}^{2}J_{PH}$ = 10.9), 4.02–4.09 m (12H, OCH₂). ${}^{31}P$ NMR spectrum: $δ_{P}$ 23.94 ppm.

Tripotassium tributyl [nitrilotris(methylene)]tris (phosphonate) (2). A mixture of 108 g (0.17 mol) of tris-phosphonate 1 and 71 g of 50% aqueous potassium hydroxide (0.52 mol) in 25 mL of dioxane was heated for 6 h at 110°C. When the reaction was complete (³¹P NMR), the mixture was cooled, and the white plates were filtered off and recrystallized from ethanolacetone (1:2). Yield 57.3 g (51.2%), decomposition point 230°C. IR spectrum, v, cm⁻¹: 1215 (P=O), 1046 (P–O–C). ¹H NMR spectrum (D₂O), δ , ppm (J, Hz): 0.86 t (9H, CH₃, ${}^{3}J_{NH}$ = 7.4), 1.28–1.37 m (6H, CH₂), 1.52–1.58 m (6H, CH₂), 3.01 d (6H, PCH₂N, ${}^{2}J_{PH}$ = 11.1), 3.82-3.87 m (6H, OCH₂). $^{13}C-\{^{1}H\}$ NMR spectrum (D₂O), δ_{C_1} , ppm (J, Hz): 13.1 [(CH₂)₃CH₃], 18.4 [(CH₂)₂CH₂CH₃)], 32.3 d (CH₂CH₂CH₂CH₃, ${}^{3}J_{PC} = 5.6$), 52.5 d (PCH₂, ${}^{1}J_{PC} = 150.0$), 64.6 d [CH₂(CH₂)₂CH₃, ${}^{2}J_{PC} = 5.8$]. ${}^{31}P-\{{}^{1}H\}$ NMR spectrum (D₂O): $\delta_P 20.74$ ppm. Found, %: K 20.15. C₉H₂₁K₃NO₉P₃. Calculated, %: K 20.17.

The 1 H, 13 C– $\{^{1}$ H}, and 31 P– $\{^{1}$ H} NMR spectra were recorded on a Bruker AVANCE 400 spectrometer at 400, 100, and 160 MHz, respectively. The 1 H chemical shifts were measured relative to the residual proton signals of the deuterated solvents (CDCl₃, D₂O). The IR spectra were recorded on a Perkin Elmer UATR Two FT-IR Spectrometer (Spectrum Two). The melting (decomposition) points were determined with an accuracy of $\pm 1^{\circ}$ C with a Stuart SMP10 melting point apparatus. Potentiometic measurements were performed

at 25°C using an EKSPERT-001 instrument equipped with an ES-10603 glass electrode (measurement accuracy ± 0.001 pH unit; experimental error ± 0.005 pH unit) and an ESr-10108 silver chloride electrode. The results were processed using CPESSP software [4].

The X-ray diffraction data for compound 2 were acquired at 198(2) K on a Bruker AXS Kappa APEX Duo diffractometer (Cu K_{α} radiation, λ 1.54178 Å) using APEX2 [5], SAINT [6], SHELXS97 [7], and SADABS [8]. Orthorhombic crystal system, space group *Pbca*; $C_{13}H_{10}K_3N_3O_{11}P_3$, M 584.37; unit cell parameters: a =18.1114(7), b = 9.3665(4), c = 33.2472(13) Å; V 5640.1(4) Å³; Z = 8; $d_{calc} = 1.376$ g/cm³; $\mu =$ 6.365 mm⁻¹. Total of 52 285 reflection intensities were measured, including 5168 independent reflections $(R_{\rm int} = 0.0446)$ and 5125 reflections with $I \ge 2\sigma(I)$; 298 variables; R = 0.0575, $wR^2 = 0.1687$; maximum/ minimum residual electron density $1.183/-0.583 \ \bar{e}/\text{Å}^{-3}$. The crystallographic data for compound 2 were deposited to the Cambridge Crystallographic Data Centre (CCDC entry no. 1 489 195).

ACKNOWLEDGMENTS

This study was funded by the subsidy allocated to Kazan Federal University for the fulfillment of the project part of state assignment in the sphere of research activity.

REFERENCES

- Davletshina, N.V., Koshkin, S.A., Garifzyanov, A.R., Filimonova, M.A., Gainullin, A.Z., and Cherkasov, R.A., Russ. J. Gen. Chem., 2015, vol. 85, no. 9, p. 2198. doi 10.1134/S107036321509025X
- 2. Prishchenko, A.A., Livantsov, M.V., Novikova, O.P., Livantsova, L.I., and Petrosyan, V.S., *Heteroatom Chem.*, 2010, vol. 21, no. 6, p. 430. doi 10.1002/hc.20616
- 3. Irving, H. and Williams, R.J.P., *J. Chem. Soc.*, 1953, p. 3192. doi 10.1039/JR9530003192
- 4. Sal'nikov, Yu.I., Glebov, A.N., and Devyatov, Yu.I., *Poliyadernye kompleksy v rastvorakh* (Polynuclear Complexes in Solution), Kazan': Kazan. Gos. Univ., 1989.
- 5. Bruker. APEX2 Software Suite for Crystallographic Programs, Madison, USA: Bruker AXS, 2009.
- Bruker. Area Detector Control and Integration Software. Version 5.x. SMART and SAINT, Madison, USA: Bruker Analytical X-ray Instruments, 1996.
- Sheldrick, G.M., Acta Crystallogr., Sect. A, 2008, vol. 64, p. 112. doi 10.1107/S0108767307043930
- 8. Sheldrick, G.M., SADABS. Program for Absorption Corrections, Göttingen, Germany: Univ. of Göttingen, 1996.