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Abstract A facile route toward the synthesis of pentaleno(1,2-b)in-
doles via multicomponent reaction of indole, aldehyde, and pentaful-
vene is realized. The reaction proceeds through Lewis acid catalyzed
[3+2] cycloaddition of in situ generated indolylmethanol and pentaful-
vene. This methodology provides an easy access to biologically relevant
indole derivatives.
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Ring-fused indoles, ubiquitous to many structurally
complex natural products and bioactives, have acquired
considerable scientific attention over the years (Figure 1).12
A number of synthetic procedures including Friedel-Crafts
reactions,’ transition-metal*/Lewis/Brgnsted acid catalysis®
and catalytic asymmetric synthetic strategies® have been
developed for such fused indole scaffolds. The 3- or 2-indo-
lylmethanols formed by the acid-catalyzed condensation of
indole and aldehyde were utilized as the three-carbon syn-
thons in a variety of [3+2], [3+3], and [4+3] intermolecular
cycloaddition reactions providing fused indole derivatives.®
In line with the report of Yonemitsu on the three-compo-
nent reaction of indole, aldehydes, and meldrums acid, di-
verse indole scaffolds, in particular, 2,3-disubstituted/ring-
fused indoles were synthesized.” Inspired by the report of
Winne et al. on the [4+3] cycloaddition reaction of furfuryl
cations to 1,3-diene, Wu and co-workers adopted a similar
protocol for the gallium(Ill)-catalyzed regio- and diastereo-
selective three-component [4+3] cycloaddition reaction of
in situ generated indolyl methanol to 1,3-diene toward the
synthesis of cyclohepta[blindoles (Figure 2, a).# Motivated
by these results and our continuing interest in the chemis-
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try of cross-conjugated trienes,® we were intrigued to study
the reaction outcome by replacing the diene component of
the reaction by replacing it with pentafulvene.
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Figure 1 Biologically important fused indole derivatives’
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Pentafulvenes have been utilized as a valuable synthons
for the synthesis of many natural products and biologically
active molecules'® due to its ability to act as a 2m,!! 4'2, or
671'3 component in diverse cycloaddition reactions. New en-
docyclic ring functionalization of fulvenes based on transi-
tion-metal or FLP system mediated reactions have also
emerged.'# Very recently, we have utilized pentafulvene as
an unsymmetrical alkene for the Lewis acid catalyzed regi-
oselective hydroheteroarylation reaction (Figure 2, b).1
Herein we report a Lewis acid catalyzed three-component
cycloaddition reaction involving indole, aldehyde, and pen-
tafulvene in which one of the endocyclic double bonds of
pentafulvene acts as a 2m component towards the synthesis
of cyclopenta-annulated indole derivatives (Figure 2, c).
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(a) Previous work by Wu and co-workers
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Figure 2 New strategy toward the synthesis of cyclopentaleno[1,2-
blindoles

Anticipating a three-component cycloaddition reaction,
we initiated our experiments by treating an equimolar mix-
ture of indole 1a, aldehyde 2a, and diphenylfulvene 3a in
MeCN at room temperature in the presence of catalytic
amount of Sc(OTf); for 12 hours (Scheme 1). Interestingly,
the reaction afforded the [3+2] cycloadduct 4aa in 40% yield
(instead of the established [3+4] cycloaddition product for
other dienes (Figure 2, a) along with minor amounts of hy-
droheteroarylated product (4aa?) and indolyl methanol
(4aa?). The structural assignment of the fused indole scaf-
fold 4aa was done with the aid of various spectroscopic
techniques such as "H NMR and *C NMR spectroscopy and
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Scheme 1 Multicomponent reaction of indole, aldehyde, and diphenyl
fulvene

HRMS. Furthermore, the stereochemistry of compound 4ad
was unambiguously confirmed by single-crystal X-ray anal-
ysis (Figure 3).

Figure 3 Single-crystal X-ray structure of 4ad (CCDC 1488241)'®

We then turned our attention to optimize the reaction
conditions with 1a, 2a, and 3a as substrates. Lewis acids
such as Sc(OTf);, Cu(OTf),, Fe(OTf);, BF;-OEt,, and Sn(OTf),
were able to furnish the desired product 4aa along with
4aa’' and 4aa?. The expected cycloaddition product 4aa was
not observed with Yb(OTf);, Zn(OTf),, and La(OTf);, and in
these cases the reaction was found to halt at the stage of the
intermediate indolyl methanol 4aa’. However, the AgOTf-
catalyzed reaction was found to furnish the hydroheteroa-
rylated product 4aa? in addition to 4aa'. To determine the

Table 1 Optimization studies

Entry Catalyst Solvent Yield (%)
4aa 4aa’ 4aa?
12 Sc(OTf), MeCN 40 15 18
2 Cu(OTf), MeCN 45 12 20
3 La(OTH), MeCN - 45 -
4 Yb(OTF), MeCN - 43 -
50 Zn(OTf), MeCN - 52 -
6 Ag(OTf) MeCN - 32 23
7 Fe(OTf), MeCN 35 18 2
8? AlCl; MeCN 43 - 15
9? BF;-OEt, MeCN 45 14 18
100 Sn(0Tf), MeCN 52 12 8
112 TfOH MeCN 10 - 15
125 Sn(OTf), CH,Cl, 35 - 14
130 Sn(0Tf), DCE 35 - 8
140 Sn(0Tf), THF - 35 -
15b Sn(QTf), toluene - 33 25
16b Sn(OTf), DMF - 31 32
17b¢ Sn(OTf), MeCN 62 trace trace

2 All reactions were carried out with 2 mol% catalyst, 1 equiv of 1a, 1 equiv
of 2a, 1 equiv of 3ain 2 mL of solvent at r.t. for 4 h.

b Equivalents of 2a and 3a increased to 1.5 equiv in 2 mL of toluene at r.t.
for2 h.

¢ Trace amount of the byproduct alcohol was observed.
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effect of Bronsted acid on the present reaction, a reaction
was performed with catalytic amounts of HOTf, from which
the product 4aa was obtained in poor yield. We then
checked the feasibility of various solvents for the exclusive
formation of the cycloaddition product. The use of solvents
such as toluene, CH,Cl,, DCE, and THF was less effective in

delivering the expected product. Finally, MeCN turned out
as the best reaction medium for the present multicompo-
nent reaction. The use of Sn(OTf), as Lewis acid in MeCN (2
mL) decreased the reaction time to two hours with a better
yield of cycloaddition product 4aa (62%).'®17 In addition,
the yield of the reaction was found to improve with the in-
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Scheme 2 Scope of the reaction with various indoles and aldehydes. All reactions were carried out with 2 mol% catalyst, indole (1 equiv), aldehyde (1.5

equiv), pentafulvene (1.5 equiv) in 2 mL of toluene at r.t. for 2 h.
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crease in the equivalents of fulvene and aldehyde (Table 1,
entry 17). From the detailed optimization, the standard
conditions for the reaction was found to be a combination
of indole (1 equiv), aldehyde (1.5 equiv), fulvene (1.5 equiv),
and Sn(OTf), (2 mol %) affording [3+2] cycloaddition prod-
uct 4aa in 62% yield in MeCN within two hours.

Under the optimal reaction conditions, the scope of the
reaction was explored with various aldehydes and ketones.
Aromatic aldehydes bearing electron-withdrawing groups
(R? = (l, Br, F) were tolerated well under the reaction condi-
tions, and afforded the cycloaddition products 4aa-ag in
moderate to good yields. However, aldehydes with elec-
tron-rich substituents (R® = 2,4-OMe, Me) were unable to
take part in the cycloaddition reaction.

In addition, aliphatic aldehydes and ketones also failed
to undergo multicomponent [3+2] cycloaddition reaction
resulting in a complex reaction mixture. Pentafulvenes
with alkyl, dialkyl, and unsymmetrical substituents at the
exocyclic position did not afford the expected products 4aa,
instead hydroarylated and polymerized products were
formed as evident from 'H NMR analysis of the reaction
mixture. The scope of the reaction was then explored with
6,6'-diaryl pentafulvene 3b (derived from 4,4’-dimethyl-
benzophenone), which afforded the product 5aa-ad in
moderate yields. Further reactions were performed to ex-
tend the scope of reaction to indole substrates bearing elec-
tron-donating and electron-withdrawing substituents; all
of which afforded the corresponding products in good
yields (Scheme 2).

Scheme 3 delineates the scope of the reaction with re-
spect to the substituents on the indole nitrogen. The reac-
tions with N-methyl indole delivered the expected fused in-
dole derivatives 4ea in good yield (70%) compared to the
unprotected indoles. On the other hand, electron-deficient
N-protecting groups (Boc, Bz, Ts) failed to afford the desired
cyclopentalenoindole derivatives.

A mechanistic proposal for the Lewis acid catalyzed
three-component reaction on the basis of our experimental
results and previous reports is shown in Scheme 4.2 The
process involves an intial Lewis acid catalyzed formation of
carbocation intermediate A or the vinyliminium intermedi-
ate B from indole 1 and aldehyde 2 which can undergo ei-
ther a concerted or a stepwise reaction to realize the cy-
cloadduct. The initial [2+2] cycloaddition of the intermedi-
ate A/B with the pentafulvene 3 is followed by a ring
expansion, by 1,2-migration analogous to the mechanism
proposed for [3+2] cycloaddition reported by Moody et al.
furnishing cyclopentalenoindoles III in a concerted man-
ner.% The stepwise pathway involves endocyclic functional-
ization of fulvene 3, with the indole core A/B to deliver the
intermediate C in a regioselective manner and followed by
proton loss to yield cyclopentalenoindole III from the inter-
mediate D.%"
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Scheme 3 Scope of the reaction with various N-substituted indoles. All
reactions were carried out with 2 mol% catalyst, indole (1 equiv), alde-
hyde (1.5 equiv), pentafulvene (1.5 equiv) in 2 mL of toluene at r.t. for 2 h.

In conclusion, we have developed a Lewis acid mediated
three-component reaction for the synthesis of fused poly-
cyclic indole skeleton in which fulvene acts as a 2m cycload-
dition partner. This Schlenk-free strategy tolerates a variety
of aryl aldehydes and indoles to furnish various pentale-
no[1,2-blindoles. Studies on the scope of the reaction with
pentafulvenes other than diphenylfulvenes and various 3
components are currently under way.
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148.0, 146.3, 143.6, 143.4, 142.9, 141.4, 136.8, 135.1, 134.8,
130.2, 129.7, 128.6, 127.9, 127.7, 126.9, 126.8, 126.7, 125.3,
124.3, 122.3, 121.1, 119.7, 118.9, 1114, 61.5, 51.6, 50.8. ESI-
HRMS: m/z calcd for C,3H,sN [M + HJ*: 436.20652; found:
436.20610.
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