Recl. Trav. Chim. Pays-Bas 111, 092-098 (1992)

Synthesis and spectroscopic characterization of the doubly locked 9E,11Z retinal model systems 7E,13E-11,19-10,20-dimethanoretinal and its 13Z isomer

M. Groesbeek, G. W. Robijn and J. Lugtenburg

Department of Organic Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands (Received August 29th, 1991)

Abstract. 7E,13E-11,19-10,20-dimethanoretinal (1) and its 13Z isomer 2 were prepared from β -ionone, using the novel synthon 2-(diethoxyphosphinyl)-5,5-dimethoxyhexanenitrile. This synthon was also used to prepare 7E,9E,13E-10,20-methanoretinal (3) and its 13Z isomer 4 in high yield, starting from β -ionone. Spectroscopic analysis (mass, ¹H and ¹³C NMR and UV/Vis) of these compounds is discussed. The introduction of the methano bridges leads to minimal steric and electronic changes. The photostationary state reached from 1 and 2 has the 13Z form 2 as the main constituent. This is one of the very few with a Z form as the main constituent of the photostationary state. 1 and 2 are very sensitive to acid-catalyzed isomerization of the 13-C=14-C double bond. The presence of the 11,19-methano bridge is responsible for this efficient Z-E isomerization.

Introduction

Visual pigments are intrinsic membrane proteins that play a central role in the transduction of light information into nerve action that allows the sense of vision^{1,2}. As a typical example, bovine rhodopsin has an 11Z retinylidene chromophore bound as a protonated Schiff base to lysine-296 in the active site^{3,4}. Rhodopsin is very light-sensitive, since its photoreaction is very efficient (quantum yield 0.67)⁵.

The main difference between the primary photoproduct bathorhodopsin and rhodopsin lies in the fact that the batho chromophore has a strained all-*E* retinylidene configuration⁶, as a result of light-induced $11Z \rightarrow 11E$ isomerization. Bathorhodopsin has a 32 kcal/mol higher energy content than rhodopsin^{7.8}. It decays via several intermediates into the apoprotein opsin and free all-*E* retinal^{9,10}.

Since visual pigments represent a class of G-proteinconnected receptor proteins¹¹, detailed information on their structure and molecular dynamics is of utmost importance not only to the field of vision but also to the understanding of certain patterns of signal transduction in general. The primary structures of several visual pigments have been established¹², but only indirect information exists about their secondary and tertiary structure. The best approach would be to analyse single crystals by X-ray diffraction;

however, membrane proteins such as rhodopsin do not crystallize easily. Recently, great progress has been made in crystallization of membrane complexes, such as the photosynthetic reaction center and porins, and exquisite structural information has become available from X-ray investigations of the crystallized reaction centers^{13,14}. In the case of rhodopsin, its extreme light sensitivity is one of the factors that seriously hampers crystallization attempts¹⁵ Recently, we have started a research program to prepare rhodopsins with a chemically modified chromophore that will lead to much lower or no light sensitivity. 10,20methanoretinal was prepared, in which 11Z-11E isomerization is prevented by the presence of a six-membered ring^{16,17} (Figure 1, compound 3). This retinal analogue binds efficiently to opsin to form 10,20-methanorhodopsin, which is very similar to native rhodopsin except that it is about 100 times less sensitive to light. The increase in light stability was not sufficient to allow crystallization, as the 10,20-methanorhodopsin is still light-sensitive, even though 11Z-11E isomerization is blocked. We think that this photoreaction is caused by double-bond Z-E isomerization, presumably around the 9-C=10-C double bond. Introduction of the 11,19-methano bridge will prevent this E-Zisomerization. 7E,13E-10,20-11,19-Dimethanoretinal (1 and 2, Figure 1) will be the retinal of choice in which both

Figure 1. Structure and numbering of 1, 2, 3, 4 and 5.

the isomerizations of the 9-C=10-C and the 11-C=12-C double bond are blocked. The methano bridges lock the chromophore in the native 10-s-trans, 12-s-trans conformation and 9-E, 11-Z configuration. The introduction of methano bridges induces only minimal steric and electronic changes compared to the native system.

In this paper, we describe an efficient synthesis for 7E, 13E-10, 20-11, 19-dimethanoretinal (1) and its 13Z isomer 2 and an improved synthesis of 7E, 9E, 13E-10, 20-dimethanoretinal (3) and its 13Z isomer 4. The spectroscopic characterization of 1, 2, 3 and 4 is described. The preparation and study of 10, 20-11, 19-dimethanorhodopsin will be the subject of a future publication.

Synthesis

For the synthesis of 1 and 2, we used the approach given in Scheme 1. Recently, we have found that β -ionone (6) can be selectively mono-alkylated at the methyl-ketone position¹⁸. The anion of β -ionone was prepared by treating **6** in THF with LDA. Treating this anion with 1.0 eq. of ethyl iodoacetate gave the γ -keto ester 8 as the main product, mixed with some dialkylated material and some starting β -ionone. SiO₂ column chromatography gave the pure γ -keto ester in 57% yield. For the next step, the novel synthon 2-(diethoxyphosphinyl)-5,5-dimethoxyhexanenitrile (9) was developed (vide infra). 5,5-Dimethoxyhexanenitrile (17) was added to a solution of 2.2 eq. of lithium diisopropylamide (LDA). One equivalent of LDA reacts to form the anion of the nitrile 17. Diethyl chlorophosphate (1.0 eq.) is then added. In an $S_N 2$ reaction, the phosphonate 9 is formed. The second equivalent of LDA reacts with 9 to form its anion. y-Keto ester 8 is then added. After this Horner-Emmons condensation, the isomeric nitriles 10 and 11 (formed in a ration of 4:1) were obtained in high yield (70% based on 8). The required E isomer 10 could be separated from 11 by SiO_2 column chromatography.

Compound 10 has the right functionalities and stereochemistry for conversion into the unsaturated hydroindenone derivative 14. First, the five-membered ring was formed via a Ziegler-Thorpe-type condensation by treating 10 with KtBuO. Treating this product with a slurry of SiO₂ and water resulted in hydrolysis of the cyclic imine to the corresponding β -keto ester 12 in the enol state. Saponification and decarboxylation of the β -keto ester was effected by treating 12 with excess KOH in refluxing methanol. The resulting ketone ketal was deprotected, giving diketone 13 which underwent aldol condensation in mild basic environment to form the required unsaturated ketone 14. This ketone is converted via a two-step procedure into a 1:1 mixture of 7*E*, 13*E*-11, 19-10, 20-dimethanoretinal (1) and its 13*Z* isomer 2. The first step is a Horner-Emmons reaction of 14 with (diethoxyphosphinyl)acetonitrile; the second step is DiBAl reduction of the nitrile to give 1 and 2. The isomeric mixture was separated into the pure 1 and 2 by HPLC. Each of the isomers was obtained in 2% overall yield based on β -ionone.

The phosphonate nitrile synthon 9 was prepared from commercial 5-chloro-2-pentanone (15) (see Scheme 2). 15 was first treated with trimethoxymethane in methanol with a catalytic amount of 4-toluenesulfonic acid to give the ketal chloride 16. 16 was treated with KCN in the presence of KI to give a clean substitution to the nitrile ketal 17. After distillation, pure 17 was obtained in 62% yield from 15. For conversion to the phosphonate nitrile 9, the nitrile 17 was dissolved in THF and treated with 2 equivalents of LDA followed by addition of 1 equivalent of diethyl chlorophosphate. This solution can be used directly for the Horner-Emmons reaction or after mild acidic work-up the phosphonate nitrile 9 is obtained.

It is clear that Horner-Emmons condensation with phosphonate 9 is the central reaction during the synthesis of 1 and 2 via Scheme 1. We realized that condensation of 9 with β -ionone could play a similar role in the preparation of 10,20-methanoretinals 3 and 4, whose preparation via a complicated procedure we have described before¹⁷. Addition of β -ionone to the solution of the anion of 9 in THF gave the isomeric nitriles 18 and 19 (Scheme 3). The all-E isomer 18 was separated from the 9-Z isomer 19 by SiO, column chromatography. DiBAl reduction of 18 converted the nitrile to the aldehyde function. The ketal protection was removed by acid treatment giving the all-E aldehyde ketone 20. Internal aldol condensation of 20 by KOH gave the ketone 21. Ketone 21 is obtained in the all-E form only, which means that, during the reactions starting with 18, no E-Z isomerization has taken place. To convert ketone 21 into the required aldehydes 3 and 4, 21 was submitted to a Horner-Emmons reaction with (diethoxyphosphinyl)acetonitrile and subsequent DiBAl reduction of the resulting

Scheme 1. Synthesis of 7E,13E-11,19-10,20-dimethanoretinal (1) and its 13Z isomer 2.

Scheme 2. Synthesis of phosphonate nitrile 9.

Scheme 3. Synthesis of 7E,9E,13E-10,20-methanoretinal (3) and its 13Z isomer 4.

nitriles. In this way, 7E,9E,13E-10,20-methanoretinal (3) and its 13Z isomer 4 were obtained in a ratio of 4:1. The aldehydes were separated via HPLC into their pure states. 3 and 4 were obtained in 34% and 9%, respectively, based on β -ionone.

Spectroscopic characterization

Mass spectroscopy

The double-focus mass spectra (EI at 70 eV) of 1 and 2 show the molecular ion as a parent peak at m/z 308.2143 and m/z 308.2137, respectively (calcd. for C₂₂H₂₈O: 308.2140) and the spectra of 3 and 4 show the molecular ion as a parent peak at m/z 296.2147 and m/z 296.2142, respectively (calcd. for C₂₁H₂₈O 296.2140).

The single-focus mass spectra of 1 and 2 (EI at 70 eV) did not differ significantly. The molecular ion at m/z 308 appeared as the base peak, a common feature in mass spectra of retinals¹⁹. Major peaks appeared at m/z 293, 252, 185, 172, 159 and 91. The fragment at m/z 91 may well arise from the tropylium ion. Many retinals show a fragment at $M^2 - 29$, corresponding to loss of the CHO group. In the spectrum of 1 and 2, this fragment is not present. The singlefocus mass spectra of 3 and 4 also did not differ significantly. Major peaks appear at m/z 279, 256, 177, 167, 165, 149, 147, 123, 121, 111, 109, 107, 105, 95 and 91. Again, no fragment at $M^{\ddagger} - 29$ is observed.

¹H NMR

The 400-MHz ¹H NMR spectrum of 1 (in CDCl₃), shown in Figure 2, is in complete agreement with its structure. In the high-field region of the spectrum, the signals of the trimethylcyclohexenyl moiety are present, as well as the signals of two AA'BB' sub-spectra. The AA'BB' subspectrum with $\delta 2.69$ and 2.73 ppm was assigned to the 19-CH₂ and 19a-CH₂ signals. The AA'BB' sub-spectrum of 20-CH₂ and 20a-CH₂ appears at $\delta 2.97$ and 2.60 ppm, respectively. In the low-field region, one AX and one AB pattern, and one broad singlet are present. 7-H and 8-H are assigned to the AB pattern of a *trans* ethene fragment ($\delta_{H7} 6.34$, $\delta_{H8} 6.45$ ppm, J 16.5 Hz), 14-H and 15-H give the AX pattern ($\delta_{H14} 5.81$, $\delta_{H15} 10.02$ ppm, J 8.2 Hz). 12-H appears as the broad singlet at $\delta 6.08$ ppm. Irradiation at the 15-H doublet gives a NOE effect at the signal at $\delta 2.97$, confirming its assignment to 20-CH₂ and confirming the

Figure 2. 400-MHz ¹H NMR spectrum of 2.

Table I ¹H NMR chemical-shift values of 1 and 2.

Н	1	2
2	1.50	1.50
3	1.63	1.63
4	2.06	2.05
7	6.34	6.34
8	6.45	6.43
12	6.08	6.95
14	5.81	5.67
15	10.02	10.12
16/17	1.06	1.05
18	1.77	1.76
19	2.69	2.67
19a	2.73	2.73
20	2.97	2.57
20a	2.60	2.57

13E structure. In Table I, the 1H NMR chemical-shift values of 1 are collected.

The 400-MHz ¹H NMR spectrum of **2** shows that it is the 13Z isomer of 1. 14-H and 15-H form an AX pattern $(\delta_{H14} 5.67, \delta_{H15} 10.12 \text{ ppm}, J 8.2 \text{ Hz})$. Compared to the spectrum of 1, this is a 0.10 ppm downfield shift for 15-H and a 0.14 ppm upfield shift for 14-H, confirming the 13Z structure. 12-H appears as a broad singlet at δ 6.95 ppm, 0.87 ppm downfield compared to the 12-H resonance in the spectrum of 1, in agreement with the close proximity of the aldehyde function to 12-H in 2, again confirming the 13Z structure. The signals of 20-CH₂ and 20a-CH₂ give rise to a AA'BB' sub-spectrum at δ 2.57 ppm: this means that the 20-CH, resonance is 0.40 ppm upfield compared to the spectrum of 1, which agrees with the longer distance between 20-CH₂ and the aldehyde function in 2. 19-CH₂ and 19a-CH₂ appear as a AA'BB' spectrum, at δ 2.67 and δ 2.73, respectively. The signals of the cyclohexenvl end of **2** resemble the spectrum of 1 within 0.02 ppm. The ¹H NMR chemical-shift values of 2 are collected in Table I.

The ¹H NMR spectra of 3 and 4 are in complete agreement with their structure and identical to the spectra published earlier¹⁶. When 1 is compared to 3, major chemical-shift differences can be seen at 19-CH₂ (Δ 0.66 ppm), as a result of alkylation at the 19-methyl¹⁸. 7-H, 8-H and 20a-CH₂ show an upfield shift (Δ – 0.06, – 0.16 and – 0.09 ppm, respectively) indicating relief from steric interaction. At 12-H, 14-H and 15-H, upfield shifts (Δ – 0.17, – 0.07 and – 0.04, respectively) can also be seen. The other signals are the same within 0.02 ppm. Comparing 2 to 4, similar chemical-shift differences are observed.

¹³C NMR

In Table II, the ¹³C NMR chemical-shift values of 1, 2, 3 and 4 and their assignments are given. The 100-MHz ¹H-noise-decoupled ¹³C NMR spectrum of **1** shows 21 signals, in agreement with the 21 chemically different carbon atoms. In the sp³ region, the expected ten signals are present. These signals were easily assigned by comparison with both the ${}^{1}H - {}^{13}C$ correlated spectrum and the spectrum of 11Z-retinal²⁰. In the sp^2 region, the 11 vinylic carbon signals are present. 7-C, 8-C, 12-C, 14-C and 15-C were assigned by comparison with the ${}^{1}H - {}^{13}C$ correlated spectrum. 5-C and 6-C were assigned by comparison of their values with those of 11Z-retinal. The remaining four signals of the quaternary carbons 9-C, 10-C, 11-C and 13-C were assigned by comparison of their values with those of 3, the major shift to be expected on 11-C (a effect²¹). For 10-C and 13-C, no substancial differences are to be expected between the chemical-shift values of 1 and 3.

Table II ¹³C NMR chemical-shift values of 1, 2, 3 and 4.

С	1	2	3	4
1	34.2	34.2	34.2	34.2
2	39.7	39.6	39.6	39.6
3	19.1	19.1	19.2	19.2
4	33.3	33.3	33.2	33.1
5	131.6	131.5	130.4	130.3
6	137.7	137.7	138.2	138.2
7	132.5	132.4	130.9	130.9
8	126.6	126.5	131.4	131.3
9	136.3	136.3	134.8	134.7
10	133.6	133.6	130.2	130.7
11	146.6	146.5	135.6	135.3
12	119.0	111.8	128.6	121.0
13	157.7	157.7	156.1	156.1
14	123.4	121.1	125.4	123.8
15	190.3	190.0	190.6	189.8
16/17	29.0	29.0	29.0	29.0
18	21.8	21.8	21.9	21.9
19	28.2	28.2	13.7	13.7
19a	30.1	30.2	-	-
20	23.8	31.6	24.8	32.0
20a	21.0	21.5	24.7	25.2

The 100-MHz ¹H-noise-decoupled ¹³C NMR spectrum of **2** shows 21 signals, 10 signals in the sp^3 region and 11 in the sp^2 region. The ¹³C NMR spectrum of **2** resembles the spectrum of **1** very closely (within 0.5 ppm), except for the signals from 12-C, 14-C and 20-C, their $\Delta\delta$ being -7.2, -2.3 and 7.8 ppm, respectively.

The 100-MHz ¹H-noise-decoupled ¹³C NMR spectrum of 3 shows 20 signals, in agreement with the 20 different carbon atoms, 9 signals in the sp^3 region and 11 signals in the sp^2 region. The signals of the ¹H-bearing carbon atoms were identified by comparison with the ¹H – ¹³C COSY spectrum. The signals of the quaternary 1-C, 5-C, 6-C and 13-C carbons were identified by comparison to those of 11Z-retinal. The two remaining signals at 134.8 (9-C) and 130.2 ppm (10-C) were assigned by comparison to 11Z-retinal and 10,20-methanoretinoyl fluoride¹⁶.

The 100-MHz ¹H-noise-decoupled ¹³C NMR spectrum of 4 shows 20 signals, 9 signals in the sp^3 region and 11 signals in the sp^2 region. The signals were easily identified by comparison to the ¹H-¹³C COSY spectrum to the spectrum of 3. The spectra of 3 and 4 resemble each other within 0.8 ppm, the only deviations being the signals of 12-C, 14-C and 20-C, $\Delta\delta$ being -7.6, -1.6 and 7.2 ppm, respectively.

UV/Vis spectroscopy

The electronic spectrum of 1 shows a broad Gaussiancurve-shaped absorption without vibrational fine-structure, with λ_{max} (EtOH) 397 nm and λ_{max} (*n*-hexane) 374 nm. The electronic spectrum of 2 is also a broad Gaussian-curveshaped absorption without vibrational fine-structure, with λ_{max} (EtOH) 389 nm and λ_{max} (*n*-hexane) 368 nm. The electronic absorption spectra of 3 and 4 are identical to the data published earlier¹⁶. Comparing the λ_{max} of 1 and 3 and the λ_{max} of 2 and 4 in both cases shows a bathochromic shift of 5 nm in ethanol and no observable shift in *n*-hexane. This result indicates no major influence of the additional fivemembered ring on the electronic absorption.

Photochemistry

The synthesis method gives an 1:1 mixture of 7E, 13E-11, 19-10, 20-dimethanoretinal (1) and its 13Z isomer 2. Irradia-

tion of pure 1 or 2 in acetonitrile with a 150-W tungsten lamp leads to the same photostationary state consisting of 7 10 of 2 and 3/10 of 1, whereas irradiation of 3 or 4 leads to a photostationary state with about equal amounts of 3, 9Z-3, 4 and 9Z-4. This shows that the presence of the additional five-membered ring has a profound effect on the photochemistry of the retinal. In retinal itself, the all-Eisomer is the main constituent in the photostationary state^{22,23} with appreciable amounts of the mono *cis* isomers (7Z, 9Z, 11Z, 13Z). The central six-membered ring leads to a photostationary state with the all-E(3), 9Z (9Z-3), $13\ddot{Z}$ (4) and the 9Z, 13Z (9Z-4) present. No formation of 7Z was observed. Introduction of the five-membered ring restricts the number of cis isomers. No 7Z was observed. In this system, the 13Z(2) contributes for 7/10 to the photostationary state. Only two other retinals are known in which a Z isomer is the main constituent of the photostationary state. One of these is 12,19-methanoretinal, described previously¹⁸; others have reported on its aromatic analogue²⁴.

Discussion

For the introduction of the hydroindenone system, we have developed the novel synthon 2-(diethoxyphosphinyl)-5,5--dimethoxyhexanenitrile (9). The Horner-Emmons reaction of this synthon with the alkylated β -ionone derivative 8 gave the compound that was easily converted into hydroindenone derivative 14. First, ring closure of 9 was effected by a Ziegler-Thorpe-type condensation to a cyclopentenone ester. The resistance of the β -keto ester to the usual mild saponification and decarboxylation methods^{25,26,27,28,29} is presumably due to the stability of the enol and enolate forms of this five-membered ring β -keto ester. Treatment with excess base in methanol/water led to efficient saponification and decarboxylation. Removal of the ketal protection gave a diketone that was cyclized efficiently to the hydroindenone system 14. It is to be expected that 9 will be extremely useful for the construction of many other not easily accessible cyclohexenone derivatives.

Comparison of 1 and 2 on the one hand, and 3 and 4 on the other, showed that the introduction of an additional fivemembered ring leads to only minor changes in the steric and electronic properties. 1 and 2 are sensitive to acidcatalysed isomerization; even traces of acid can effect their interconversion. This increased sensitivity can be explained by the presence of an electron-donating methylene group at 11-C in 1 and 2, which will stabilise the protonated form of 1 and 2, and this extra stabilization is not present in 3 and 4. The presence of the additional five-membered ring also has a profound influence on the photochemistry. In the photostationary state, the 13Z form 2 contributes much more than the all-*E* form 1.

The ${}^{13}C$ NMR spectra of 1 and 2 show only a small difference to those of 3 and 4, except for the signal of 11-C, which is the site of alkylation in 1 and 2. The UV/Vis spectra of 1 and 2 also show only a small difference to those of 3 and 4. These facts clearly indicate that the novel retinals 1 and 2 suffer from only minimal electronic and steric change as compared to 3 and 4.

Experimental

in hexanes, *n*-butyllithium (BuLi) as an 1.6M solution in hexanes. Chemicals were bought from Janssen Chimica (Belgium) or Aldrich (USA).

NMR spectra were run in CDCl₃ [with tetramethylsilane (δ 0 ppm) as internal standard] at a Jeol FX-200, a Bruker WM-300 or a Bruker MSL-400 (operating at 199.5 MHz, 300.1 and 400.1 MHz for ¹H and 50.1 MHz, 75.4 MHz and 100.4 MHz for ¹³C, respectively). UV/Vis spectra were run on a Varian DMS-200, using ethanol or *n*-hexane as solvent.

The electron-impact (EI) mass spectra were recorded at 70 eV and 15 eV on a V.G. Micromass ZAB-2HF mass spectrometer, an instrument with reverse geometry, fitted with a high-field magnet and coupled to a V.G. 1/250 data system. The samples were introduced via a direct insertion probe into the ion source. The ion-source temperature was generally 150° C. During the high-resolution EIMS measurements, a resolving power of 20000 (10% valley definition) was used.

Evaporation of solvents was performed *in vacuo* (20 mmHg). Purification was performed by flash column SiO₂ chromatography, using ether/petroleum ether as eluent, unless stated otherwise. Straightphase isocratic HPLC was performed on a Pharmacia LKB 2150/2151, with a Zorbax SiO₂ column (21.1 mm \times 25 cm; Dupont), using 25% ether/petroleum ether as eluent for the mixture of 1 and 2, and 10% ether/petroleum ether for 3 and 4.

1-Chloro-4,4-dimethoxypentane (16)

5-Chloro-2-pentanone (**15**, 50 g, 0.42 mol), MeOH (11 g, 0.42 mol), 4-toluenesulfonic acid hydrate (1 g) and trimethoxymethane (48.0 g, 0.45 mol) were stirred at room temperature for 6 h. Triethylamine (15 ml) was then added and the solids were filtered off. After evaporation of the solvents, a yield of 67.4 g (98%) was obtained. ¹H NMR (200 MHz): δ 1.28 ppm, s (5-CH₃); 1.68–1.84, m (2-CH₂ + 3-CH₂); 3.16, s (OCH₃); 3.56, t, J 7 Hz (1-CH₂).

5,5-Dimethoxyhexanenitrile (17)

16 (67.4 g, 0.40 mol), 53 g (0.79 mol) of KCN and 7.0 g (41 mmol) of KI in 150 ml of ethanol and 75 ml of water were refluxed for 72 h. The mixture was then extracted with petroleum ether. The combined organic layers were washed with brine and dried over MgSO₄ and the solvents were evaporated. Yield after distillation 40 g (63%); b.p. $50-51^{\circ}$ C at 0.15 mmHg. ¹H NMR (200 MHz): δ 3.18 ppm, s (OCH₃); 2.39, t, J 6.7 Hz (2-CH₂); 1.74, m (3-CH₂ + 4-CH₂); 1.28, s (6-CH₃). ¹³C NMR (50 MHz): δ 119.1 ppm (1-C); 100.4 (2-C); 47.5 (OCH₃); 35.0 (5-C); 20.4 (6-C), 20.2 (3-C); 16.7 (4-C). IR \tilde{v} 2830 (OCO stretch), 2250 (CN stretch), 1050 cm ⁻¹ (CO stretch).

Ethyl iodoacetate (7)

Dry sodium iodide (47 g, 0.32 mol) and 50 g (0.30 mol) of ethyl bromoacetate were dissolved in acetone and stirred overnight. The solids were filtered off and the solvent was evaporated. Crude yield 62.0 g (97%). ¹H NMR (200 MHz): δ 3.69 ppm, s (CH₂I); 4.20, q, J 7.2 Hz (OCH₂); 1.28, t, J 6.9 Hz (CH₃).

Ethyl 4-oxo-6-(2,6.6-trimethyl-1-cyclohexenyl)-5-hexenoate (8)

β-Ionone (6, 6.9 g, 36 mmol) in 10 ml of THF was added dropwise to 37 mmol of lithium diisopropylamide (prepared from 3.84 g of diisopropylamine and 37 mmol of BuLi) in 50 ml of THF at -70° C. After stirring for 30 min, 8.0 g (37 mmol) of 7 in 50 ml of THF were added dropwise at -70° C. The mixture was then allowed to warm to room temperature. After stirring for 3 h, the reaction was quenched with water. The water layer was extracted three times with ether and the combined organic layers were washed with brine and dried over MgSO₄ and the solvents were evaporated. The product was purified. Yield 2.04 g of β-ionone (recovery: 23%) 4.54 g of mono product 8 (57% at 77% conversion), 3.36 g of di-alkylated product (25%).

8. ¹H NMR (200 MHz): δ 7.35 ppm, d, J 16.4 Hz (7-CH)*; 6.16, d, J 16.4 Hz (8-CH); 4.15, q, J 7.2 Hz (OCH₂); 2.93, t, J 6.4 Hz (19-CH₂); 2.65, t, J 6.9 Hz (19a-CH₂); 2.07–2.03, m (4-CH₂); 1.77,

The following solvents were distilled prior to use: triethylamine (from CaH₂), tetrahydrofuran (THF; from LiAlH₄), diethyl ether (from P₂O₅), petroleum ether (b.p. 40-60°C; from P₂O₅). Reactions were generally carried out in a nitrogen atmosphere. Diisobutylaluminum hydride (DiBAI) was used as a 1.0M solution

^{*} Retinoid numbering for the sake of comparison.

s (18-CH₃); 1.66–1.59, m (3-CH₂); 1.50–1.45, m (2-CH₂); 1.27, t, J 6.9 Hz (OCCH₃); 1.07, s (16/17-CH₃). ¹³C NMR (50 MHz): δ 197.4; 172.3; 141.7; 135.7; 135.5; 129.7; 59.9; 39.4; 34.6; 33.6; 33.1; 28.4; 27.8; 21.3; 18.5; 13.8. IR \tilde{v} 1730 (C=O stretch ester), 1660 (C=O stretch α,β-unsat. ketone), 1600 (C=C stretch), 1200, 1160 (C-O stretch) cm⁻¹.

Dialkylated product. ¹H NMR (200 MHz): δ 7.49 ppm, d, J 16.4 Hz (7-CH); 6.28, d, J 16.4 Hz (8-CH); 4.14, q, J 8 Hz (2 × OCH₂); 3.67, q, J 7.9 Hz (19-CH); 2.46 + 2.78, dd, ²J 16.0, ³J 7.9 Hz (2 × 19a-CH₂); 2.07-2.03, m (4-CH₂); 1.80, s (18-CH₃); 1.66-1.59, m (3-CH₂); 1.50-1.45, m (2-CH₂); 1.25, t, J 8 Hz (2 × OCCH₃); 1.09, s (16,17-CH₃).

Ethyl (4E)-(10) and (4Z)-(11)-5-cyano-8,8-dimethoxy-4-/(E)-2-(2.6,6--trimethyl-1-cyclohexenyl)ethenyl/-4-nonenoate

Nitrile 17 (2.71 g, 17.3 mmol) was added dropwise at -50° C to 36 mmol of lithium diisopropylamide (from 3.94 g of diisopropylamine and 22.5 ml of BuLi) in 50 ml of THF. After stirring for 20 min, 2.97 g (17.3 mmol) of diethyl chlorophosphate in 5 ml of THF were added dropwise at -50° C. After stirring for 30 min, 4.00 g (14.4 mmol) of ketone 8 in 10 ml of THF were added at 0°C. The mixture was then stirred for 2 h at room temperature. Water was then added and the water layer was extracted three times with ether. The combined organic layers were washed with brine and dried over MgSO₄ and the solvents were evaporated. The product was purified. Yield 2.85 g 10 (57%) and 0.67 g 11 (13%). 10. ¹H NMR (300 MHz): δ 6.59 ppm, d, J 16.3 Hz (7-CH); 6.31, d,

10. ¹H NMR (300 MHz): δ 6.59 ppm, d, J 16.3 Hz (7-CH); 6.31, d, J 16.3 Hz (8-CH); 4.16, q, J 7.1 Hz (OCH₂); 3.18, s (2×OCH₃); 2.97–2.93, 2.53–2.49, 2.45–2.33 and 1.85–1.80, 4×m, (19/19a/10a/10b-CH₂); 2.06, m (4-CH₂); 1.85–1.80, m (CH₂); 1.72, s (18-CH₃); 1.63, m (2-CH₂); 1.52, m (3-CH₂); 1.30, s (O₂CCH₃); 1.27, t, J 7.1 Hz (OCCH₃); 1.04, s (16,17-CH₃).

11. ¹H NMR (300 MHz): δ 6.62 ppm, d, J 16.3 Hz (8-CH); 6.51, d, J 16.3 Hz (7-CH); 4.16, q, J 7.1 Hz (OCH₂); 3.20, s (2×OCH₃); 2.79–2.74, m (CH₂); 2.46–2.34, m (2×CH₂); 2.06, m (4-CH₂); 1.90–1.84, m (CH₂); 1.74, s (18-CH₃); 1.63, m (2-CH₂); 1.52, m (3-CH₂); 1.32, s (O₂CCH₃); 1.27, t, J 7.1 Hz (OCCH₃); 1.04, s (16,17-CH₃).

Ethyl 3-(3,3-dimethoxybutyl)-2-hydroxy-4-[(E)-2-(2,6,6-trimethyl-1--cyclohexenyl)ethenyl]-1,3-cyclopentadiene-1-carboxylate (12)

t-BuOK (2.1 g, 19 mmol) was dissolved in 100 ml of t-BuOH at 30°C. After stirring for 30 min, 2.50 g (6.0 mmol) of 10 in 10 ml of t-BuOH were added dropwise. After stirring for 40 min, a slurry of 12 g of SiO, and 3 g of H₂O was added. The mixture was stirred for 1 h, then MgSO4 was added. The solids were filtered off and the product was purified to yield $2.12 \text{ g} (80^{\circ}_{o})$ of 12. ¹H NMR (300 MHz): δ 6.51 ppm, d, J 15.9 Hz (7-CH); 6.37, d, J 16.2 Hz (8-CH); 5.8-6.0, br. s (OH); 4.22, q, J 6.1 Hz (OCH₂); 3.34, s (19-CH₂); 3.17, s (2 × OCH₃); 2.36, m (10a-CH₂); 2.03, m (4-CH₂); 1.7-1.8, m (10b-CH₂); 1.73, s (18-CH₃); 1.71-1.55, m (2-CH₂); 1.52, m (3-CH₂); 1.33, s (CH₃); 1.02, s (16,17-CH₃).¹³C NMR (75 MHz): δ 14.8 ppm (2'-C), 15.2 (1-C), 18.7 (10a-C), 19.1 (3-C), 20.8 (10d-C), 21.8 (18-C), 28.9 (16-C + 17-C), 34.2 (10c-C), 35.2 (19-C), 36.0 (10b-C), 39.6 (2-C), 48.2 (OCH₃), 58.5 (1'-C), 125.7 (8-C), 130.1 (7-C), 166.7 (19b-C), 125.6, 130.6, 135.4, 137.7, 145.7 (5-C, 6-C, 9-C, 10-C, 11-C). UV/Vis: λ_{max} (EtOH): 1368, 261 nm. IR: \hat{v} 3340 (OH-stretch, free hydroxyl), 3340 (OH stretch, hydrogen-bridged hydroxyl), 1650 (C=O stretch) cm⁻¹. Mass spectrum (LCMS, 20°_{\circ} MeOH/80% water, discharge on 1 kV): m/z 403 (M - CH₃), 390 (McLafferty), $389 (M - C_2H_5)$, $387 (M - OCH_3)$, $373 (M - OC_2H_5)$, 368, 354 (base peak), 352, 308, 282, 280.

2-(3-Oxobutyl)-3-[(E)-2-(2,6,6-trimethyl-1-cyclohexenyl)ethenyl]-2--cyclopenten-1-one (13)

12 (920 mg, 2.21 mmol) was refluxed for 24 h in a 2:1 mixture of MeOH/H₂O to which 0.37 g (7 mmol) of KOH was added. The product was extracted with ether. After evaporation of the solvents, the residue was purified to give 343 mg of ketal (45%). The 343 mg ketal were added to 6 ml of MeOH, acidified with 1N HCl to pH 3, and stirred for 1 h to give, after purification, 273 mg of diketone 13 (42% based on 12). ¹H NMR (300 MHz): δ 6.77 ppm, d, J 16.2 Hz (7-CH); 6.68, d, J 16.4 Hz (8-CH); 2.73–2.41, 4×m (19/19a/10a/10b-CH₂); 2.13, s (OCCH₃); 2.08, m (4-CH₂); 1.79, s (18-CH₃); 1.62, m (3-CH₂); 1.52, m (2-CH₂); 1.08, s (16,17-CH₃).

IR: \hat{v} 1710, 1690 (C=O stretch), 1620 cm⁻¹ (C=C stretch). UV/Vis: λ_{max} (EtOH): 321 nm.

2,3,6,7-Tetrahydro-1-/(E)-2-(2,6,6-trimethyl-1-cyclohexenyl)ethenyl/-5H-inden-5-one (14)

13 (270 mg, 0.90 mmol) was dissolved in 10 ml MeOH and 0.15 g (2.7 mmol) of KOH was added and stirred at room temperature for 3 h. After extraction with ether, the combined organic layers were washed with brine and dried over MgSO₄. After purification, 183 mg (72%) of **14** were obtained. ¹H NMR (300 MHz): δ 6.44 ppm, s (7+8-CH); 5.84, s (12-CH); 2.77, m (19, 19a, 20a-CH₂); 2.49, t, J 7.3 Hz (20-CH₂); 2.06, m (4-CH₂); 1.77, s (18-CH₃); 1.60, m (3-CH₂); 1.51, m (2-CH₂); 1.06, s (16,17-CH₃). ¹³C NMR (50 MHz): δ 19.0 ppm, 20.6, 21.8, 28.1, 28.9, 30.3, 33.2, 34.1, 35.4, 39.5, 117.2, 126.2, 132.0, 134.0, 134.9, 137.4, 149.0, 171.0, 198.8. IR: \hat{v} 1650 (C=O stretch), 1585 cm ⁻¹ (C=C stretch). UV/Vis: λ_{max} (EtOH): 344 nm.

11,19-10,20-Dimethanoretinal (1 + 2)*

BuLi (0.30 mmol) was added to a solution of 108 mg (0.36 mmol) of (diethoxyphosphinyl)acetonitrile in 10 ml of THF at 0°C. After stirring for 30 min, 40 mg (0.14 mmol) of ketone **14** in 15 ml of THF was added dropwise. After stirring for $1\frac{1}{2}$ h, the mixture was poured into saturated NH₄Cl solution, the organic layer was separated and the water layer extracted three times with ether. The combined ethereal layers were washed with brine and dried over MgSO₄. The solids were filtered off, the solvents evaporated and the residue was purified, yielding 40 mg (93°_o) of a 13*E*/*Z* mixture of nitriles. ¹H NMR (200 MHz): δ 6.45 and 6.02 ppm, 2 × br. s (12-CH); 6.39-6.30, m (7 + 8-CH); 4.82 and 4.92, 2 × br. s (14-CH); 2.71-2.51, m (19/19a/20/20a-CH₂); 2.05, m 4-CH₂); 1.76, s (18-CH₃); 1.60, m (3-CH₂); 1.50, m (2-CH₂); 1.05, s (16,17-CH₃). UV/Vis: λ_{max} 364 nm.

At -60° C, 0.6 mmol of DiBAl was added via a syringe to a solution of 40 mg (0.13 mmol) of the nitriles in petroleum ether. After stirring of 30 min, a slurry of 0.4 g of SiO₂ and 0.11 g of water in diethyl ether was added. The mixture was stirred for 1 h at 0°C, then MgSO₄ was added. The solids were filtered off and the solvents were evaporated. After purification, 34 mg (85°_o) of an *E/Z* mixture was obtained, λ_{max} 294 nm. The isomers were separated using HPLC, yielding 17 mg of 1 and 17 mg of 2. The ¹H- and ¹³C-NMR characteristics are presented in Tables I and II. The UV/Vis and mass spectra are described in the section *spectroscopic characterization*.

(2 E, 4 E)-2-(3, 3-Dimethoxybutyl)-3-methyl-5-(2, 6, 6-trimethyl-1-cyclohexenyl)-2, 4-pentadienenitrile (18)

17 (1.95 g, 12.5 mmol) was added dropwise to 27 mmol of lithium diisopropylamide (from 3.0 g of diisopropylamine and 17 ml of BuLi) in 20 ml of THF at - 50°C. After stirring for 20 min, 2.42 g (14 mmol) of diethyl chlorophosphate in 5 ml of THF were added dropwise at - 50°C. After stirring for 30 min, 2.00 g (10.4 mmol) of β -ionone (6) in 10 ml of THF were added at 0°C. The mixture was then stirred for 2 h at room temperature. Water was then added and the water layer was extracted three times with ether. The combined organic layers were washed with brine and dried over MgSO4 and the solvents were evaporated. The product was purified and the isomers were separated using SiO₂ column chromatography. Yield 3.0 g (87%) of **18**. ¹H NMR (200 MHz): δ 6.56 ppm, d, J 16.5 Hz (7-CH); 6.43, d, J 15.9 Hz (8-CH); 3.19, s (2×OCH₃); 2.41-2.30, m (10a-CH₂); 2.21, s (19-CH₃); 2.05, m (4-CH₂); 1.87-1.79, m (10b-CH₂); 1.72, s (18-CH₃); 1.63, m (2-CH₂); 1.51, m (3-CH₂); 1.31, s (O₂CCH₃); 1.04, s (16,17-CH₃). IR: \tilde{v} 2200 (C \equiv N stretch), 1650, 1600 (C=C stretch), 1050 (C-O stretch), 980 cm⁻¹ (RHC=CHR wagging o.o.p.).

(2E,4E)-3-Methyl-2-(3-oxobutyl)-5-(2,6,6-trimethyl-1-cyclohexenyl)--2,4-pentadienal (20)

DiBAI (14 mmol) was added dropwise to 3.0 g (9.0 mmol) of 18 in 20 ml petroleum ether at -60 °C. After stirring for 1 h, a slurry of

^{*} IUPAC name: (E)- (1) and (Z)- (2) -[2,3,6,7-tetrahydro-1-[(E)-2--(2,6,6-trimethyl-1-cyclohexenyl)ethenyl]-5H-inden-5-ylidene]-acetaldehyde.

18 g silica gel and 4.5 g of water in ether/pet.-ether (1:1) was added and the mixture was stirred at 0°C for 1 h. After drying over MgSO₄ the solids were filtered off. Evaporation of the solvents yielded 2.68 g (89%) of the crude aldehyde. The aldehyde (2.68 g; 8.3 mmol) in 15 ml ethanol was brought to pH 3 with 1.3N HCl and stirred for 5 h at room temperature. Water was then added and the mixture was extracted three times with ether. The combined organic layers were washed with brine and dried over MgSO. After evaporation of the solvents, the crude product was purified, yielding 2.3 g (88%) of **20**. ¹H NMR (200 MHz): δ 10.23 ppm, s (CH=O); 6.78, d, J 15.1 Hz (7-CH); 6.60, d, J 16.5 Hz (8-CH); 2.70–2.50, t, J 8.0 Hz (10a-CH₂); 2.50–2.43, t, J 8.0 Hz (10b-CH₂); 2.33, s (19-CH₃); 2.14, s (O=CCH₃); 2.08–2.02, m (4-CH₂); 1.05, s (16,17-CH₃). ¹³C NMR (50 MHz): δ 207.3 ppm; 190.7; 149.6; 137.0; 135.2; 134.8; 131.7; 130.9; 42.7; 38.8; 33.6; 32.5; 29.0; 28.3; 21.2; 18.8; 18.4; 12.1.

(E)-4-[(E)-1-Methyl-3-(2,6,6-trimethyl-1-cyclohexenyl)-2-propenylidene]-2-cyclohexen-1-one (21)

0.3 g (5 mmol) of KOH was added to a solution of 270 mg (1.0 mmol) of **20** in 10 ml of methanol. The mixture was stirred for 40 minutes at room temperature and then extracted three times with ether. The combined organic layers were washed with brine and dried over MgSO₄. Evaporation of the solvents and purification yielded 210 mg (83%) of **21**. The product was spectroscopically identical to the material described earlier¹⁶.

10.20-Methanoretinal (3 + 4)*

BuLi (0.32 ml, 0.51 mmol) was added to a solution of 100 mg (0.56 mmol) of (diethoxyphosphinyl)acetonitrile in 10 ml of THF at 0°C. After stirring for 30 min, 100 mg (0.37 mmol) of **21** in THF were added dropwise. After stirring for 1 h at room temperature, water was added and the product was extracted with ether. The combined organic layers were washed with brine and dried over MgSO₄ and the solvents were evaporated. After purification, 90 mg (83%) of the retinonitrile was obtained as a mixture of isomers.

90 mg (0.3 mmol) of the nitriles were dissolved in petroleum ether at -60° C and 0.6 ml of DiBAl was added dropwise. After stirring for 1 h, a slurry of 1 g silica gel and 0.2 g water in ether was added and the mixture was stirred for 1 h. After drying over MgSO₄, the solids were filtered off. After evaporation of the solvents and purification, 80 mg (88%) of 10,20-methanoretinal was obtained as a 4:1 mixture of isomers. 3 and 4 were separated into their isomerically pure states by HPLC, yielding 63 mg of 3 (69%) and 17 mg of 4 (19%). 3 and 4 were spectroscopically identical to the material described earlier¹⁶. The ¹³C chemical-shift parameters are collected in Table II. The mass spectra are described in the section *spectroscopic characterization*.

* IUPAC name: (E)- (3) and (Z)- (4) -[(E)-4-[(E)-1-methyl-3--(2,6,6-trimethyl-1-cyclohexenyl)-2-propenylidene]-2-cyclohexenylidene]acetaldehyde.

Acknowledgements

We want to thank R. H. Fokkens from University of Amsterdam for recording the mass spectra. We are grateful to Drs. C. Erkelens and A. W. M. Lefeber for recording the NMR spectra. The manuscript was read by Mrs. Drs. K. van der Hoef.

References

- ¹ L. Stryer, Ann. Rev. Neurosci. 9, 87 (1986).
- ² Y. Koutalis and T. G. Ebrey, Photochem. Photobiol. 44, 809 (1987).
- ³ T. Yoshizawa and G. Wald, Nature 197, 1279 (1963).
- ⁴ P. A. Hargrave, Retina 1, 207 (1986).
- ⁵ T. Suzuki and R. H. Callender, Biophys. J. 34, 261 (1981).
- ⁶ I. Palings, J. A. Pardoen, E. M. M. van den Berg, C. Winkel, J.
- Lugtenburg and R. A. Mathies, Biochemistry 26, 2544 (1987).
- ⁷ A. Cooper, Nature **282**, 531 (1979). ⁸ G. A. Schick, T. M. Cooper, R. A. Holloway, L. P. Murray and
- *R. R. Birge*, Biochemistry **26**, 2556 (1987).
- ⁹ M. Ottolenghi, Adv. Photochem. 12, 97 (1980).
- ¹⁰ G. Eyring, B. Curry, R. A. Mathies, R. Fransen, I. Palings and J. Lugtenburg, Biochemistry 19, 2410 (1980).
- ¹¹ H. G. Dohlman, M. G. Caren and R. J. Lefkowitz, Biochem. 26, 2657 (1987).
- ¹² M. L. Applebury and P. A. Hargrave, Vision Res. 12, 1881 (1986).
- ¹³ *R. MacColl*, Photochem. Photobiol. 35, 899 (1982).
- ¹⁴ H. Michel, Trends Biochem. Sci. 8, 56 (1983).
- ¹⁵ S. L. Bonting, W. J. de Grip and F. J. M. Daemen, Proc. Workshop "Protein single crystal growth under microgravity", ESA SP-1067, 9 (1984).
- ¹⁶ R. van der Steen, M. Groesbeek, L. J. P. van Amsterdam, J. Lugtenburg, J. van Oostrum and W. J. de Grip, Recl. Trav. Chim. Pays-Bas 108, 20 (1989).
- ¹⁷ W. J. de Grip, J. van Oostrum, P. H. M. Bovee-Geurts, R. van der Steen, L. J. P. van Amsterdam, M. Groesbeek and J. Lugtenburg, Eur. J. Biochem. **191**, 211 (1990).
- ¹⁸ M. Groesbeek, R. van der Steen, J. C. van Vliet, L. B. J. Vertegaal and V. Lugtenburg, Recl. Trav. Chim. Pays-Bas 108, 427 (1989).
- ¹⁹ R. L. Lin, G. R. Waller, E. D. Mitchell, K. S. Yang and E. C. Nelson, Analytical Biochemistry 35, 435 (1970).
- ²⁰ R. Rowan and B. D. Sykes, J. Am. Chem. Soc. 96, 7000 (1974).
- ²¹ G. Englert, Helvetica Chimica Acta 58, 2367 (1975).
- ²² A. D. Broek, M. Muradin-Szweykowska, J. M. L. Courtin and J. Lugtenburg, Recl. Trav. Chim. Pays-Bas 102, 46 (1983).
- ²³ R. S. H. Liu and A. E. Asato, Tetrahedron 40, 1931 (1984).
- ²⁴ E. Kolling, W. Garnter, D. Oesterhelt and L. Emst, Angew. Chem. Int. Ed. Engl. 23, 81 (1984).
- ²⁵ A. P. Krapcho, Synthesis 893 (1982).
- ²⁶ D. F. Taber, J. C. Amedio, Jr. and F. Culino, J. Org. Chem. 54, 3474 (1989).
- ²⁷ A. P. Krapcho, J. F. Weimaster, J. M. Eldridge, E. G. E. Jahngen, Jr., A. J. Lovey and W. P. Stephens, J. Org. Chem. 43, 138 (1978).
- ²⁸ P. Muller and B. Siegfried, Tetrahedron Lett. 37, 3565 (1973).
- ²⁹ F. Elsinger, J. Schreiber and A. Eschenmoser, Helv. Chim. Acta 43, 113 (1960).