

Available online at www.sciencedirect.com

Journal of Fluorine Chemistry 128 (2007) 1058-1064

www.elsevier.com/locate/fluor

Transformation of perfluorinated benzocycloalkenes and alkylbenzenes to their carbonyl derivatives under the action of CF₃COOH/SbF₅

Yaroslav V. Zonov, Victor M. Karpov*, Vyacheslav E. Platonov

N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Novosibirsk 630090, Russia Received 24 April 2007; received in revised form 23 May 2007; accepted 29 May 2007 Available online 3 June 2007

Dedicated to Professor L.M. Yagupolskii, on the occasion of his 85th birthday.

Abstract

Perfluorinated benzocycloalkenes (benzocyclobutene, indan, tetralin), alkylbenzocycloalkenes and alkylbenzenes react with CF_3COOH/SbF_5 at 20–50 °C giving the corresponding carbonyl derivatives.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Fluorinated; Benzocyclobutene; Indan; Tetralin; Alkylbenzene; Carbonyl derivatives; Trifluoroacetic acid; Antimony pentafluoride

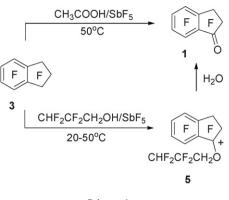
1. Introduction

Perfluoroindan-1-one (1) and perfluoro-3-ethylindan-1-one (2) undergo skeletal transformations under the action of antimony pentafluoride [1,2]. Ketone 1 for this investigation was synthesized in a good yield in the reaction of perfluoroindan (3) with SiO_2/SbF_5 at 70 °C [1]. At the same time perfluoro-1-ethylindan (4) heated with SiO_2/SbF_5 at 75 °C and then treated with water, gives 4-carboxyperfluoro-3-methylisochromen-1-one. The process proceeds through the intermediate formation of ketone 2, which was detected in the reaction mixture only in a small amount because ketone 2 undergoes skeletal transformations under the reaction conditions [2].

For the synthesis of compound **2** and other ketones, required for the investigation of their cationoid skeletal rearrangements, under milder conditions as compared with the reaction with SiO_2/SbF_5 it was worthwhile to try to replace SiO_2 by other sources of nucleophilic oxygen. For this purpose we have studied reactions of indan **3** with 2,2,3,3-tetrafluoropropanol, acetic and trifluoroacetic acids in the presence of SbF_5 . This work also describes reactions of ethylindan **4** and other aromatic fluorocarbons with CF₃COOH/SbF₅.

* Corresponding author. Fax: +7 3832 34 4752.

E-mail address: karpov@nioch.nsc.ru (V.M. Karpov).


2. Results and discussion

Reaction of indan **3** with 2,2,3,3-tetrafluoropropan-1-ol in an SbF₅ medium at 20–50 °C forms a solution of a salt of 1-(2,2,3,3-tetrafluoropropoxy)-perfluoroindan-1-yl cation (**5**). Hydrolysis of the latter gives indanon **1**. The reaction of compound **3** with CH₃COOH in the presence of SbF₅ at 50 °C forms ketone **1**. The reaction mixture also contains unchanged indan **3** (Scheme 1).

Compound **3** readily reacts with CF_3COOH in the presence of SbF₅ at room temperature to give indanone **1** in a high yield (Scheme 2). Reaction of compound **3** with CF_3COOH/SbF_5 at 50 °C gives ketone **1** together with perfluoroindan-1,3-dione (**6**). When the reaction temperature is raised to 95 °C perfluoro-3-methylenephthalide (**7**) is formed as a main product. The reaction mixture also contains ketone **1**, perfluoro-3-methylphthalide (**8**) and 4,5,6,7-tetrafluoro-3-trifluoromethylphthalide (**9**) (Scheme 2).

It is known that CF_3COOH in the presence of SbF_5 gives $H[SbF_5(OCOCF_3)]$ [3]. The formation of indanone 1 in the reaction of compound 3 with CF_3COOH/SbF_5 can be rationalized as shown in Scheme 2. Compound 3 with SbF_5 seems to generate perfluoroindan-1-yl cation (3c), which reacts with CF_3COOH to form perfluoro-1-acetoxyindan (10). Then perfluoro-1-acetoxyindan-1-yl cation (10c) produced from compound 10 is split into indanone 1 and the trifluoroacetyl cation. The latter adds fluoride anion to give trifluoroacetyl

^{0022-1139/\$ –} see front matter O 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2007.05.020

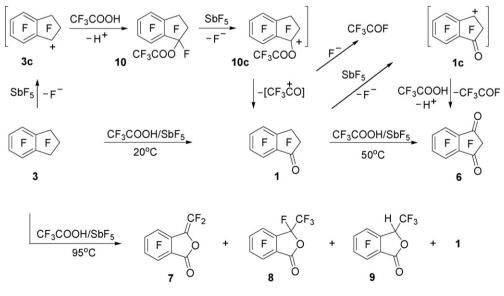
Scheme 1.

fluoride, which was trapped with sodium methylate as methyltrifluoroacetate.

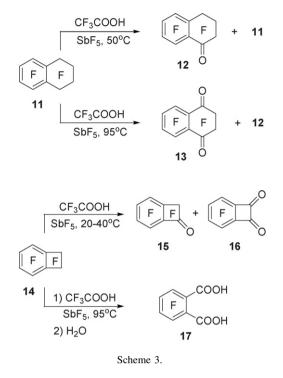
The formation of indandione **6** can be represented in a similar way through the intermediate generation of perfluoroindan-3-one-1-yl cation (**1c**) according to Scheme 2. Compounds **7**, **8** and **9** are the products of transformations of indandione **6** under the reaction conditions similar to indandione **6** transformations under the action of SbF_5 [1] or HF/SbF_5 [4].

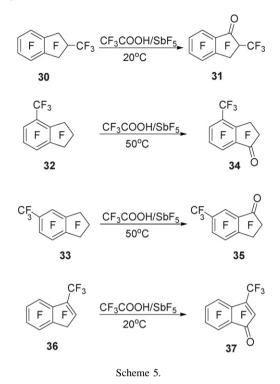
Taking into account the fact of higher reactivity of CF_3COOH/SbF_5 as compared with CH_3COOH/SbF_5 and $CHF_2CF_2CH_2OH/SbF_5$ in their reactions with indan **3** giving indanone **1**, for the synthesis of carbonyl derivatives of other perfluoroaromatic compounds, we have studied reactions of some aromatic fluorocarbons with CF_3COOH/SbF_5 .

Perfluorotetralin (11) heated with CF_3COOH/SbF_5 at 50 °C gives perfluorotetralin-1-one (12). The reaction mixture also contains small amount of unchanged tetralin 11. When the reaction temperature is raised to 95 °C, a mixture of ketone 12 and perfluorotetralin-1,4-dione (13) is obtained (Scheme 3).


The reaction of perfluorobenzocyclobutene (14) with CF₃COOH/SbF₅ proceeds readily at room temperature and gives perfluorobenzocyclobutenone (15) together with per-

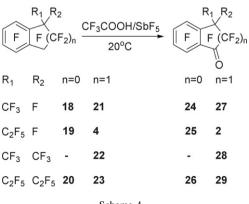
fluorobenzocyclobutendione (16). Selective formation of ketone 15 can be achieved by the use of stoichiometric amounts of trifluoroacetic acid, whereas excess of CF₃COOH and heating up to 40 °C facilitate production of diketone 16. When the reaction temperature is raised to 95 °C, after treatment of the reaction mixture with water, tetrafluorophthalic acid (17) is obtained as the only product (Scheme 3).


Perfluorinated 1-alkyl- and 1,1-dialkyl-benzocyclobutenes and indans also react with CF₃COOH/SbF₅ to give the corresponding benzocyclobutenones and indanones in a good yield. Thus, perfluorinated 1-methylbenzocyclobutene (**18**), 1-ethylbenzocyclobutene (**19**), 1,1-diethylbenzocyclobutene (**20**), 1-methylindan (**21**), 1-ethylindan (**4**), 1,1-dimethylindan (**22**), 1,1-diethylindan (**23**) are transformed to perfluorinated 2-methylbenzocyclobutenone (**24**), 2-ethylbenzocyclobutenone (**25**), 2,2-diethylbenzocyclobutenone (**26**), 3-methylindan-1-one (**27**), 3-ethylindan-1-one (**2**), 3,3-dimethylindan-1one (**28**), 3,3-diethylindan-1-one (**29**), respectively (Scheme 4). These transformations smoothly proceed at room temperature and are not complicated by further skeletal rearrangements, in contrast to the reaction of indan **4** with SiO₂/SbF₅ [2].


Perfluoro-2-methylindan (**30**) reacts with CF_3COOH/SbF_5 at room temperature to give perfluoro-2-methylindan-1-one (**31**). Perfluoromethylindans containing a CF_3 group in the aromatic ring, heated with CF_3COOH/SbF_5 at 50 °C, form perfluoromethylindanones with a carbonyl group in the position meta to the CF_3 group. Thus perfluoro-4-methylindan (**32**) and perfluoro-5-methylindan (**33**) are transformed to perfluoro-4methylindan-1-one (**34**) and perfluoro-6-methylindan-1-one (**35**), respectively. This is in accordance with the larger relative stability of the corresponding perfluoromethylindan-1-yl cations [5–7]. Perfluoro-3-methylindene (**36**) also reacts with CF_3COOH/SbF_5 to give perfluoro-3-methylinden-1-one (**37**) (Scheme 5).

The interaction of perfluorotoluene (38) and perfluoro-4methyltoluene (39) with CF₃COOH/SbF₅, after treatment of the reaction mixture with water, leads to the formation of

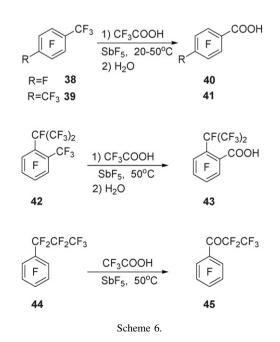
Scheme 2.



perfluorobenzoic (40) and perfluoro-4-methylbenzoic (41) acids, respectively, together with the starting compounds. Perfluoro-2-isopropyltoluene (42) heated with excess of CF₃COOH/SbF₅ at 50 °C with further treatment of the reaction mixture with water gives perfluoro-2-isopropyl-benzoic acid (43). Perfluoropropylbenzene (44) also reacts with trifluoroacetic acid in the presence of SbF₅ at 50 °C to give perfluoropropiophenone (45). The reaction mixture also contains unchanged compound 44 (Scheme 6).

The relative reactivity of perfluorobenzocycloalkenes in the reaction with CF_3COOH/SbF_5 , established by the method of competitive reactions, decreases in the following order: benzocyclobutene 14 > indan 3 > tetralin 11. This sequence is in accord with the order of decreasing of relative stabilities of corresponding perfluorobenzocycloalken-1-yl cations [5] generated at first stage of the reaction.

Indan 3 is more reactive than indene 36, although perfluoroindan-1-yl cation (3c) is less stable as compared with perfluoro-1-methylindenyl cation (36c) [5,8]. Analogously, the



Scheme 4.

reactivity of indan 3 is more than that of toluene 38 and the relative stabilities of ion 3c and perfluorobenzyl cation (38c) are inversed. The results indicate that in these cases the generation of cations 36c and 38c cannot be limiting stage of the reaction.

3. Experimental

Starting materials were obtained according to Refs.: **3**, **11**, **21**, **32**, **33** [9]; **4**, **19**, **20**, **23**, **46** [5]; **14**, **18** [10]; **22** [11]; **36** [12]; **42** [13]; **44** [14]; CF₃COOH and SbF₅ were obtained commercially. All reactions were carried out in glassware.

IR spectra were taken on a Bruker Vector 22 IR spectrophotometer. UV spectra were measured on a Hewlett Packard 8453 UV spectrophotometer. ¹⁹F NMR and ¹H spectra were recorded on Bruker WP-200 SY and Bruker AC-200 instrument (188.3 and 200 MHz, respectively). Chemical shifts are given in δ ppm from CCl₃F and TMS, *J* values in Hz; C₆F₆ (-162.9 ppm from CCl₃F) and (Me₃Si)₂O (0.04 ppm from TMS) were used as internal standards. The molecular masses of the compounds were determined by high-resolution spectrometry on a Finnigan Mat 8200 instrument (EI 70 eV). Contents (yields) of products in the reaction mixtures were established by GLC and ¹⁹F NMR spectroscopic data.

The structures of the compounds were established by HRMS and spectral characteristics. Assignment of signals in the ¹⁹F NMR spectra was made on the basis of chemical shifts of the signals, their fine structure and integral intensities. Compounds **1**, **8**, **29** [1], **6** [15], **7**, **9** [4], **12** [16], **15** [5], **16** [10], **24** [17], **37** [18], **45** [19] were identified by comparison of the ¹⁹F NMR data with data for authentic samples.

Assignment of signals in the ¹⁹F NMR spectrum of cation **5** (signals of bicyclic moiety were not well resolved) was made by analogy with that for 1-hydroxyperfluoroindan-1-yl cation [4].

3.1. Reaction of perfluoroindan (3) with 2,2,3,3tetrafluoropropan-1-ol in the presence of SbF_5

In an ampoule for recording NMR spectra, compound **3** (0.18 g), 2,2,3,3-tetrafluoropropan-1-ol (0.07 g) and SbF₅ (0.86 g) (molar ratio, 1:0.9:6.5) was placed. The mixture was stirred and then kept at 20 °C. The solution contained (¹⁹F NMR) cation **5** together with the initial compounds. The conversion of indan **3** amounted to 58% (26 h) and 67% (120 h). Then the mixture was heated at 50 °C for 12 h and ¹⁹F NMR spectrum of the solution was measured. The spectrum contained signals of cation **5** and the conversion of indan **3** raised to 90%. The solution was poured into 5% hydrochloric acid and extracted with CH₂Cl₂. The extract was dried over MgSO₄. The solvent was distilled off to give 0.16 g of mixture, which contained (¹⁹F NMR) 77% (yield 79%) of **1**, 8% (yield 8%) of **3** and 15% of 2,2,3,3-tetrafluoropropan-1-ol.

3.1.1. 1-(2,2,3,3-Tetrafluoropropoxy)-perfluoroindan-1-yl cation (**5**)

¹H NMR (SbF₅): δ 5.73 (t, 1H, ²*J*_{H-CF₂} = 53, CF₂H), 5.52 (t, 2H, ³*J*_{CH₂-CF₂} = 10, CH₂). ¹⁹F NMR (SbF₅): δ -90.1 (1F, F-5), -99.1 (1F, F-7), -103.5 (2F, CF₂-3), -110.3 (2F, CF₂-2), -121.1 (t, 2F, ³*J*_{CF₂-CH₂} = 10, CH₂CF₂), -126.2 (1F, F-4), -133.2 (1F, F-6), -134.4 (d, 2F, ²*J*_{CF₂-H} = 53, CF₂H).

3.2. Reaction of perfluoroindan (3) with CH_3COOH/SbF_5

A mixture of compound **3** (0.89 g), CH₃COOH (0.25 g) and SbF₅ (1.94 g) (molar ratio, 1:1.4:3) was stirred at 50 °C for 3.5 h. The mixture was poured into 5% hydrochloric acid and extracted with CH₂Cl₂. The extract was washed with aqueous solution of NaHCO₃ and dried over MgSO₄. The solvent was

distilled off to give 0.70 g of mixture, which contained (19 F NMR) compounds **1** and **3** in the ratio 47:53 (yield 38% and 42%).

3.3. Reaction of perfluoroindan (3) with CF_3COOH/SbF_5

- 1. A mixture of compound **3** (0.85 g), CF₃COOH (0.45 g) and SbF₅ (1.85 g) (molar ratio, 1:1.4:3) was kept at 20 °C for 2.5 h. The mixture was poured into 5% hydrochloric acid and extracted with CH₂Cl₂. The extract was dried over MgSO₄. The solvent was distilled off to give 0.52 g of ketone **1** (yield 88%).
- 2. A mixture of compound **3** (0.53 g, 1.78 mmol), CF₃COOH (0.48 g, 4.21 mmol) and SbF₅ (1.15 g, 5.3 mmol) was heated at 40 °C for 15 h. Then 0.56 g (2.58 mmol) of SbF₅ was added and the resulting mixture was heated for 8.5 h at 40 °C and for 11.5 h at 50 °C. The mixture was poured into 5% hydrochloric acid and extracted with ether. The solvent was distilled off and the residue was dissolved in CH₂Cl₂. The solution was dried over MgSO₄. The solvent was distilled off to give 0.36 g of mixture, which contained (¹⁹F NMR) compounds **1** and **6** in the ratio 50:50 (yield 38% and 38%).
- 3. A mixture of compound **3** (1.32 g), CF₃COOH (1.11 g) and SbF₅ (2.88 g) (molar ratio, 1:2.2:3) in a sealed ampoule was heated at 95 °C for 11 h. The mixture was treated with 5% hydrochloric acid and extracted with CH₂Cl₂. The extract was dried over MgSO₄. The solvent was distilled off to give 1.09 g of mixture, which contained (¹⁹F NMR) 10% (yield 9%) of **1**, 77% (73%) of **7**, 11% (10%) of **8** and 2% (2%) of **9**.
- 4. To a solution of CF₃COOH (1.1 g, 9.65 mmol) in SbF₅ (4.47 g, 20.6 mmol) compound **3** (2 g, 6.71 mmol) was dropped at 20 °C and gaseous product was absorbed by the solution of CH₃ONa prepared from Na (0.5 g, 21.74 mmol) and 15 ml of CH₃OH. After subsequent distillation the resulting CH₃OH solution contained 0.47 g (yield 54%, measured by ¹⁹F NMR, C₆H₅CF₃ was used as internal standard) of CF₃COOCH₃ (¹⁹F NMR, identified by adding of authentic sample). The reaction mixture of products with SbF₅ treated analogously to procedure (1) gave 1.74 g of ketone **1** (yield 94%).

*3.4. Reaction of perfluorotetralin (11) and perfluorobenzocyclobutene (14) with CF*₃*COOH/SbF*₅

- 1. A mixture of compound **11** (0.9 g), CF₃COOH (0.41 g) and SbF₅ (1.69 g) (molar ratio, 1:1.4:3) was stirred at 50 °C for 12 h. The mixture was poured into 5% hydrochloric acid and extracted with CH₂Cl₂. The extract was dried over MgSO₄. The solvent was distilled off to give 0.82 g of mixture, which contained (GLC) 2% of **11**, 97% (yield 94%) of **12** and 1% of **13**.
- 2. A mixture of compound **11** (0.92 g), CF₃COOH (0.72 g) and SbF₅ (2.87 g) (molar ratio, 1:2.4:5) in a sealed ampoule was heated at 95 °C for 28 h. The mixture was treated with 5% hydrochloric acid and extracted with

ether. The extract was dried over MgSO₄. The solvent was distilled off and the residue was sublimed (90 °C, 5 Torr) to give 0.81 g of mixture, which contained (¹⁹F NMR) compounds **12** and **13** in the ratio 36:64 (yield 35% and 62%, respectively).

- 3. Analogously to procedure (1), the reaction of compound **14** (0.67 g), CF₃COOH (0.31 g) and SbF₅ (1.75 g) (molar ratio, 1:1:3) gave (20 °C, 1.5 h) 0.53 g of mixture, which contained (¹⁹F NMR) compounds **15** and **16** in the ratio 96:4 (yield 84% and 3%, respectively).
- 4. Analogously to procedure (1), the reaction of compound **14** (0.87 g), CF₃COOH (0.56 g) and SbF₅ (2.29 g) (molar ratio, 1:1.4:3) gave (20 °C, 2 h) 0.67 g of mixture, which contained (¹⁹F NMR) compounds **15** and **16** in the ratio 84:16 (yield 72% and 14%, respectively).
- 5. A mixture of compound **14** (0.38 g, 1.53 mmol), CF₃COOH (0.18 g, 1.58 mmol) and SbF₅ (1 g, 4.61 mmol) was kept at 20 °C for 24 h. Then more CF₃COOH (0.24 g, 2.11 mmol) was added and the resulting mixture was heated for 24 h at 20 °C and for 6 h at 40 °C. The mixture was poured into 5% hydrochloric acid and extracted with CHCl₃. The solvent was distilled off to give 0.29 g of mixture, which contained (¹⁹F NMR) 18% (yield 16%) of **15**, 69% (63%) of **16** and 13% of unidentified impurities.
- 6. Analogously to procedure (2), the reaction of compound **14** (0.9 g), CF₃COOH (0.99 g) and SbF₅ (2.35 g) (molar ratio, 1:2.4:3) gave (95 °C, 28 h) after sublimation (150 °C, 2 Torr) 0.73 g of acid **17** (yield 85%).

3.5. Reaction of perfluorinated alkylbenzocycloalkenes with CF₃COOH/SbF₅

3.5.1. Perfluoro-1-methylbenzocyclobutene (18)

A mixture of compound **18** (2.67 g), CF₃COOH (1.43 g) and SbF₅ (5.82 g) (molar ratio, 1:1.4:3) was kept at 20 °C for 2 h. The mixture was poured into 5% hydrochloric acid and extracted with CH₂Cl₂. The extract was dried over MgSO₄. The solvent was distilled off to give 2.32 g of ketone **24** (yield 94%).

3.5.2. Perfluoro-1-ethylbenzocyclobutene (19)

A mixture of compound **19** (5.33 g), CF₃COOH (2.44 g) and SbF₅ (9.96 g) (molar ratio, 1:1.4:3) was kept at 20 °C for 2 h. The mixture was poured into 5% hydrochloric acid. Organic phase was separated and dried over MgSO₄ to give 4.86 g of ketone **25** (yield 97%).

3.5.2.1. Perfluoro-2-ethylbenzocyclobuten-1-one (25). Liquid. UV (hexane) λ_{max} , nm (lg ε): 213 (4.25), 247 (3.98), 273 (3.08). IR (CCl₄) ν , cm⁻¹: 1830, 1813 (C=O); 1522, 1483 [fluorinated aromatic ring (FAR)]. ¹⁹F NMR (CH₂Cl₂): δ -82.0 (3F, CF₃), -122.3 (2F, CF₂), -125.8 (1F, F-6), -132.2 (1F, F-3), -133.0 (1F, F-4), -140.4 (1F, F-5), -155.9 (1F, F-2); $J_{CF_3-CF_2} = 1$, $J_{CF_3-F(2)} = 11$, $J_{CF_3-F(3)} = 6$, $J_{CF_2-F(2)} = 12$, $J_{CF_2-F(3)} = 3$, $J_{2,3} = 4$, $J_{2,4} = 2$, $J_{2,5} = 5$, $J_{2,6} = 2$, $J_{3,4} = 19$, $J_{3,5} = 9$, $J_{3,6} = 25$, $J_{4,5} = 18$, $J_{4,6} = 12$, $J_{5,6} = 20$. HRMS *m/z*, 325.9795 (*M*⁺). Calcd for C₁₀F₁₀O = 325.9789.

3.5.3. Perfluoro-1,1-diethylbenzocyclobutene (20)

To a solution of CF₃COOH (1 g, 8.77 mmol) in SbF₅ (4.1 g, 18.91 mmol) mixture (5.65 g, 12.61 mmol) containing compound **20** and perfluoro-1,2-diethylbenzocyclobutene (**46**) in the ratio 47:53 (¹⁹F NMR) was added. Resulting mixture was stirred at 20 °C for 21 h. Then upper phase (1.46 g) consisting of compound **46** was separated. The residue treated analogously to the previous procedure gave 3.99 g of mixture, which contained (GLC, ¹⁹F NMR) 62% (yield 98%) of **26** and 38% of **46**. The individual ketone **26** (0.31 g) was isolated from the mixture (0.9 g) by silica gel column chromatography (hexane as eluent).

3.5.3.1. Perfluoro-2, 2-diethylbenzocyclobuten-1-one (26). Liquid. UV (hexane) λ_{max} , nm (lg ε): 210 (4.15), 242 (3.96), 249 (4.00), 279 (2.85), 286 (2.85). IR (CCl₄) ν , cm⁻¹: 1834 (C=O); 1523, 1484 (FAR). ¹⁹F NMR (CH₂Cl₂): δ -81.5 (6F, m, 2CF₃), -111.6 (4F, m, 2CF₂), -125.6 (1F, F-6), -133.0 (1F, F-4), -133.4 (1F, m, F-3), -142.9 (1F, F-5); $J_{3,4} = 19$, $J_{3,5} = 8$, $J_{3,6} = 23$, $J_{4,5} = 17$, $J_{4,6} = 13$, $J_{5,6} = 20$. HRMS *m/z*, 425.9729 (*M*⁺). Calcd for C₁₂F₁₄O = 425.9725.

3.5.4. Perfluoro-1-methylindan (21)

Analogously to procedure (Section 3.5.1), the reaction of compound **21** (0.3 g), CF₃COOH (0.24 g) and SbF₅ (1 g) (molar ratio, 0.6:1.4:3) gave (20 $^{\circ}$ C, 3 h) 0.27 g of ketone **27** (yield 96%).

3.5.4.1. Perfluoro-3-methylindan-1-one (27). Liquid. UV (hexane) λ_{max} , nm (lg ε): 214 (4.13), 245 (3.98), 252 (4.02), 286 (3.18), 293 (3.20). IR (CCl₄) ν , cm⁻¹: 1776 (C=O); 1515 (FAR). ¹⁹F NMR (CH₂Cl₂): δ -76.1 (3F, CF₃), -118.0 (1F_A) and -126.9 (1F_B, CF₂-2), -132.1 (1F, F-7), -132.9 (1F, F-4), -134.9 (1F, F-5), -142.7 (1F, F-6), -177.3 (1F, F-3); $J_{CF_3-F(A)} = 2$, $J_{CF_3-F(B)} = 16$, $J_{CF_3-F(3)} = 10$, $J_{CF_3-F(4)} = 17$, $J_{A,B} = 285$, $J_{A,3} = 4$, $J_{B,3} = 4$, $J_{3,4} = 6$, $J_{3,6} = 4$, $J_{3,7} = 1$, $J_{4,5} = 20$, $J_{4,6} = 9$, $J_{4,7} = 18$, $J_{5,6} = 18$, $J_{5,7} = 13$, $J_{6,7} = 21$. HRMS m/z, 325.9782 (M^+). Calcd for C₁₀F₁₀O = 325.9789.

3.5.5. Perfluoro-1-ethylindan (4)

Analogously to procedure (Section 3.5.1), the reaction of compound **4** (1.25 g), CF₃COOH (0.5 g) and SbF₅ (2.05 g) (molar ratio, 1:1.4:3) gave (20 °C, 5 h) 1.16 g of ketone **2** (yield 98%).

3.5.5.1. *Perfluoro-3-ethylindan-1-one* (2). Liquid. UV (hexane) λ_{max} , nm (lg ε): 213 (4.20), 251 (4.00), 293 (3.24). IR (CCl₄) ν , cm⁻¹: 1783 (C=O); 1513 (FAR). ¹⁹F NMR (CHCl₃): δ –80.4 (3F, CF₃), –115.6 (1F_A) and –127.4 (1F_B, CF₂-2, $J_{A,B} = 278$), –118.5 (1F_A) and –120.9 (1F_B, **CF**₂CF₃, $J_{A,B} = 297$), ~–132. 4 (2F, F-4, F-7), –135.6 (1F, F-5); –142.8 (1F, F-6), –180.4 (1F, F-3). HRMS *m*/*z*, 375.9759 (*M*⁺). Calcd for C₁₁F₁₂O = 375.9757.

3.5.6. Perfluoro-1,1-dimethylindan (22)

Analogously to procedure (Section 3.5.1), the reaction of compound **22** (0.71 g), CF_3COOH (0.28 g) and SbF_5 (1.16 g)

(molar ratio, 1:1.4:3) gave (20 $^{\circ}$ C, 5.5 h) 0.66 g of ketone **28** (yield 98%).

3.5.6.1. Perfluoro-3,3-dimethylindan-1-one (**28**). Liquid. UV (hexane) λ_{max} , nm (lg ε): 213 (3.99), 244 (4.01), 251 (4.01), 293 (3.25). IR (CCl₄) ν , cm⁻¹: 1783 (C=O); 1515, 1507 (FAR). ¹⁹F NMR (CH₂Cl₂): δ –65.7 (6F, 2CF₃), -118.7 (2F, CF₂), ~-132.1 (2F, F-4, F-7), -135.5 (1F, F-5); -144.5 (1F, F-6). HRMS *m*/*z*, 375.9774 (*M*⁺). Calcd for C₁₁F₁₂O = 375.9757.

3.5.7. Perfluoro-1,1-diethylindan (23)

Analogously to procedure (Section 3.5.2), the reaction of compound **23** (1.42 g), CF₃COOH (0.45 g) and SbF₅ (1.86 g) (molar ratio, 1:1.4:3) gave (20 °C, 7.5 h) 1.34 g of ketone **29** (yield 99%).

3.5.8. Perfluoro-2-methylindan (30)

A solution of compound **30** in SbF₅ was prepared by heating of compound **19** (1.8 g, 5.17 mmol) with SbF₅ (6.06 g, 27.95 mmol) in a nickel bomb at 130 °C for 12 h [20]. Then CF₃COOH (1.43 g, 12.54 mmol) was added to the solution. The resulting mixture, analogously to procedure (Section 3.5.1), gave (20 °C, 20 h) 1.6 g of mixture, which contained (GLC, ¹⁹F NMR) 88% (yield 84%) of compound **31**. An analytical sample of product **31** was prepared by short-path distillation (80 °C, 40 Torr).

3.5.8.1. Perfluoro-2-methylindan-1-one (**31**). Liquid. UV (hexane) λ_{max} , nm (lg ε): 214 (4.13), 244 (3.96), 251 (4.02), 285 (3.17), 293 (3.17). IR (CCl₄) ν , cm⁻¹: 1771 (C=O); 1516 (FAR). ¹⁹F NMR (CH₂Cl₂): δ -74.8 (3F, CF₃), -99.6 (1F_A) and -107.0 (1F_B, CF₂-3), -132.6 (1F, F-7), -134.8 (1F, F-5), -136.6 (1F, F-4), -142.4 (1F, F-6), -181.3 (1F, F-2); $J_{CF_3-F(2)} = 11$, $J_{CF_3-F(A)} = 2$, $J_{CF_3-F(B)} = 15$, $J_{2,A} = 1$, $J_{2,B} = 4$, $J_{2,5} = 1$, $J_{2,6} = 1$, $J_{A,B} = 277$, $J_{A,4} = 5$, $J_{A,5} = 1$, $J_{A,6} = 3$, $J_{B,4} = 9$, $J_{B,5} = 1$, $J_{B,6} = 2$, $J_{B,7} = 2$, $J_{4,5} = 20$, $J_{4,6} = 9$, $J_{4,7} = 18$, $J_{5,6} = 18$, $J_{5,7} = 13$, $J_{6,7} = 20$. HRMS *m/z*, 325.9791 (*M*⁺). Calcd for C₁₀F₁₀O = 325.9789.

3.5.9. Perfluoro-4-methylindan (32)

Analogously to procedure (Section 3.5.1), the reaction of compound **32** (2.07 g), CF₃COOH (0.95 g) and SbF₅ (3.87 g) (molar ratio, 1:1.4:3) gave (50 °C, 3 h) 1.79 g of ketone **34** (yield 92%). An analytical sample of compound **34** was prepared by short-path distillation (90 °C, 40 Torr) and then additionally purified by silica gel column chromatography (CHCl₃ as eluent).

3.5.9.1. Perfluoro-4-methylindan-1-one (**34**). Liquid. UV (hexane) λ_{max} , nm (lg ε): 208 (4.51), 241 (4.00), 276 (2.64). IR (CCl₄) ν , cm⁻¹: 1785, 1768 (C=O); 1517, 1472 (FAR). ¹⁹F NMR (CH₂Cl₂): δ -57.7 (3F, CF₃), -106.7 (2F, CF₂-3), -110.9 (1F, F-5), -122.4 (1F, F-7), -125.2 (2F, CF₂-2), -144.6 (1F, F-6); $J_{\text{CF}_3-\text{F}(3)} = 16$, $J_{\text{CF}_3-\text{F}(5)} = 20$, $J_{2,3} = 2$, $J_{3,6} = 2$, $J_{5,6} = 19$, $J_{5,7} = 23$, $J_{6,7} = 21$. HRMS *m/z*, 325.9790 (*M*⁺). Calcd for C₁₀F₁₀O = 325.9789.

3.5.10. Perfluoro-5-methylindan (33)

Analogously to procedure (Section 3.5.1), the reaction of compound **33** (2.24 g), CF₃COOH (1.03 g) and SbF₅ (4.18 g) (molar ratio, 1:1.4:3) gave (50 °C, 3 h) 1.95 g of ketone **35** (yield 93%). An analytical sample of compound **35** was prepared by short-path distillation (90 °C, 20 Torr) and then additionally purified by crystallization.

3.5.10.1. Perfluoro-6-methylindan-1-one (**35**). mp 42–43 °C (hexane). UV (hexane) λ_{max} , nm (lg ε): 216 (4.15), 244 (3.93), 250 (3.92), 285 (3.53), 294 (3.62), 354 (2.56). IR (CCl₄) ν , cm⁻¹: 1782, 1765 (C=O); 1506 (FAR). ¹⁹F NMR (CH₂Cl₂): δ –57.5 (3F, CF₃), –107.8 (1F, F-7), –110.7 (2F, CF₂-3), –113.7 (1F, F-5), –125.3 (2F, CF₂-2), –137.7 (1F, F-4); $J_{CF_3-F(5)} = 22$, $J_{CF_3-F(7)} = 23$, $J_{2,3} = 3$, $J_{3,4} = 7$, $J_{4,5} = 20$, $J_{4,7} = 22$, $J_{5,7} = 6$. HRMS *m*/*z*, 325.9787 (*M*⁺). Calcd for C₁₀F₁₀O = 325.9789.

3.6. Reaction of perfluoro-3-methylindene (36) with CF_3COOH/SbF_5

A mixture of compound **36** (0.79 g), CF₃COOH (0.41 g) and SbF₅ (1.66 g) (molar ratio, 1:1.4:3) was kept at 20 °C for 5.5 h. The solution contained compound **37** (¹⁹F NMR, identified by adding of authentic sample). The solution treated analogously to procedure (Section 3.5.1) gave 0.71 g of ketone **37** (yield 98%).

3.7. Reaction of perfluorinated alkylbenzenes with CF₃COOH/SbF₅

3.7.1. Perfluorotoluene (38)

- 1. A mixture of compound **38** (1.01 g), CF₃COOH (0.68 g) and SbF₅ (2.79 g) (molar ratio, 1:1.4:3) was stirred at 20 °C for 5.5 h. The mixture was poured into 5% hydrochloric acid and extracted with ether. The extract was dried over MgSO₄. The solution contained compounds **38** and **40** in the ratio 30:70 (¹⁹F NMR). The mixture was spontaneously evaporated in the air to dryness and the residue was sublimed (120 °C, 10 Torr) to give 0.54 g of acid **40** (yield 60%).
- 2. Analogously to the previous procedure, the reaction of compound **38** (1.35 g), CF₃COOH (0.91 g) and SbF₅ (3.73 g) (molar ratio, 1:1.4:3) gave (50 °C, 11 h) solution, which contained (¹⁹F NMR) compounds **38** and **40** in the ratio 14:86 and then 0.93 g of acid **40** (yield 76%).

3.7.2. Perfluoro-4-methyltoluene (39)

- 1. Analogously to procedure (1 of Section 3.7.1), the reaction of compound **39** (1.08 g), CF₃COOH (0.6 g) and SbF₅ (2.45 g) (molar ratio, 1:1.4:3) gave (20 °C, 8.5 h) solution, which contained (¹⁹F NMR) compounds **39** and **41** in the ratio 34:66 and then 0.56 g of acid **41** (yield 57%).
- 2. Analogously to procedure (1 of Section 3.7.1), the reaction of compound **39** (0.98 g), CF₃COOH (0.55 g) and SbF₅ (2.24 g) (molar ratio, 1:1.4:3) gave (50 °C, 11 h) solution, which contained (¹⁹F NMR) compounds **39** and **41** in the ratio 16:84 and then 0.65 g of acid **41** (yield 72%).

3.7.3. Perfluoro-2-isopropyltoluene (42)

Analogously to procedure (1 of Section 3.7.1), the reaction of compound **42** (0.24 g), CF₃COOH (0.21 g) and SbF₅ (0.84 g) (molar ratio, 0.5:1.4:3) gave (50 °C, 4 h) after sublimation (110 °C, 5 Torr) 0.19 g of acid **43** (yield 84%).

3.7.3.1. Perfluoro-2-isopropylbenzoic acid (43). mp 136– 136.5 °C (hexane–CH₂Cl₂, in a sealed capillary). UV (hexane) λ_{max} , nm (lg ε): 215 (3.79), 255 (3.57). IR (KBr) ν , cm⁻¹: 1740 (C=O); 1530, 1481, 1430 (FAR). ¹H NMR (CCl₄): δ 10.62 (s, OH). ¹⁹F NMR (ether): δ –74.4 (6F, 2CF₃), –132.0 (1F, F-3), –139.4 (1F, F-6), –147.5 (1F, F-5), –153.0 (1F, F-4), –172.3 (1F, F-2); $J_{CF_3-F(2)} = 5$, $J_{CF_3-F(3)} = 26$, $J_{2,3} = 2$, $J_{2,4} = 4$, $J_{3,4} = 20$, $J_{3,5} = 9$, $J_{3,6} = 10$, $J_{4,5} = 20$, $J_{4,6} = 5$, $J_{5,6} = 22$. HRMS m/z, 361.9805 (M^+). Calcd for C₁₀HF₁₁O₂ = 361.9801.

3.7.4. Perfluoropropylbenzene (44)

A mixture of compound **44** (0.99 g), CF₃COOH (0.47 g) and SbF₅ (1.91 g) (molar ratio, 1:1.4:3) was stirred at 50 °C for 7.5 h. The mixture was poured into 5% hydrochloric acid and extracted with CH₂Cl₂. The extract was dried over MgSO₄. The solvent was distilled off to give 0.94 g of mixture, which contained (¹⁹F NMR) compounds **44** and **45** in the ratio 48:52 (yield 47% and 51%, respectively).

3.8. Competitive reactions of compounds 3, 11, 14, 36 and 38 with CF_3COOH/SbF_5

3.8.1. Perfluoroindan (3) and perfluorobenzocyclobutene (14)

A mixture of indan **3** (0.46 g), compound **14** (0.38 g), CF₃COOH (0.17 g) and SbF₅ (1.99 g) (molar ratio, 0.5:0.5:0.5:3) was stirred at 20 °C for 3.5 h. The mixture was poured into 5% hydrochloric acid and extracted with CH₂Cl₂. The extract was dried over MgSO₄. The solvent was distilled off to give 0.65 g (yield 82%) of mixture, which contained (¹⁹F NMR) 8% of **1**, 42% of **3**, 45% of **15** and 5% of **16**.

3.8.2. Perfluoroindan (3) and perfluorotetralin (11)

Analogously to the previous procedure, the reaction of indan **3** (0.45 g), compound **11** (0.52 g), CF₃COOH (0.17 g) and SbF₅ (1.95 g) (molar ratio, 0.5:0.5:0.5:3) gave (20 °C, 4 h) 0.85 g (yield 90%) of mixture, which contained (¹⁹F NMR) 45% of **1**, 3% of **3**, 50% of **11** and 2% of **12**.

3.8.3. Perfluoroindan (**3**) *and perfluoro-3-methylindene* (**36**)

Analogously to procedure (Section 3.8.1), the reaction of compound **3** (0.53 g), indene **36** (0.55 g), CF₃COOH (0.21 g) and SbF₅ (2.3 g) (molar ratio, 0.5:0.5:0.5:3) gave (20 °C, 3 h) 0.95 g (yield 93%) of mixture, which contained (¹⁹F NMR) 49% of **1**, 4% of **3**, 11% of **36** and 36% of **37**.

3.8.4. Perfluoroindan (3) and perfluorotoluene (38)

Analogously to procedure (Section 3.8.1), the reaction of indan 3 (0.58 g), compound 38 (0.46 g), CF_3COOH (0.22 g)

and SbF₅ (2.55 g) (molar ratio, 0.5:0.5:3) gave (20 $^{\circ}$ C, 3.5 h) 0.89 g (yield 91%) of mixture, which contained (¹⁹F NMR) 50% of **1**, 30% of **38** and 20% of **40**.

Acknowledgement

We gratefully acknowledge the Russian Foundation for Basic Researches (project no. 06-03-32170) for financial support.

References

- [1] Ya.V. Zonov, V.M. Karpov, V.E. Platonov, J. Fluorine Chem. 126 (2005) 437–443.
- [2] Ya.V. Zonov, V.M. Karpov, V.E. Platonov, J. Fluorine Chem. 128 (2007) 1065–1073.
- [3] M.G. Harriss, J.B. Milne, Can. J. Chem. 49 (1971) 2937-2942.
- [4] Ya.V. Zonov, V.M. Karpov, V.E. Platonov, T.V. Rybalova, Yu.V. Gatilov, J. Fluorine Chem. 127 (2006) 1574–1583.
- [5] V.M. Karpov, T.V. Mezhenkova, V.E. Platonov, G.G. Yakobson, J. Fluorine Chem. 28 (1985) 121–137.
- [6] Yu.V. Pozdnyakovich, V.D. Shteingarts, J. Fluorine Chem. 4 (1974) 283– 296.
- [7] G.A. Olah, C.U. Pittman, J. Am. Chem. Soc. 88 (1966) 3310-3313.
- [8] V.M. Karpov, V.E. Platonov, I.P. Chuikov, L.N. Shchegoleva, Zh. Org. Khim. 35 (1999) 87–91;
 V.M. Karpov, V.E. Platonov, I.P. Chuikov, L.N. Shchegoleva, Russ. J. Org.
- V.M. Karpov, V.E. Platonov, I.P. Chuikov, L.N. Snchegoleva, Russ. J. Org Chem. 35 (1999) 80–84 (English translation).
- [9] N.G. Malyuta, V.E. Platonov, G.G. Furin, G.G. Yakobson, Tetrahedron 31 (1975) 1201–1207.
- [10] V.E. Platonov, T.V. Senchenko, G.G. Yakobson, Zh. Org. Khim. 12 (1976) 816–821;
 V.E. Platonov, T.V. Senchenko, G.G. Yakobson, J. Org. Chem. USSR 12
- (1976) 818–823 (English translation).
 [11] V.M. Karpov, T.V. Mezhenkova, V.E. Platonov, Izv. Akad. Nauk. SSSR Ser. Khim. (1990) 645–652;
 V.M. Karpov, T.V. Mezhenkova, V.E. Platonov, Bull. Acad. Sci. USSR Div. Chem. Sci. 39 (1990) 566–572 (English translation).
- [12] V.M. Karpov, V.E. Platonov, I.P. Chuikov, G.G. Yakobson, J. Fluorine Chem. 22 (1983) 459–473.
- [13] V.M. Karpov, T.V. Mezhenkova, V.E. Platonov, G.G. Yakobson, Bull. Soc. Chim. Fr. (1986) 980–985.
- [14] V.M. Karpov, T.V. Mezhenkova, V.E. Platonov, Zh. Org. Khim. 35 (1999) 1204–1208;
 V.M. Karpov, T.V. Mezhenkova, V.E. Platonov, Russ. J. Org. Chem. 35 (1999) 1176–1181 (English translation).
- [15] V.M. Karpov, L.S. Klimenko, V.E. Platonov, G.G. Yakobson, Zh. Org. Khim. 11 (1975) 2372–2383 (Russ.);
 V.M. Karpov, L.S. Klimenko, V.E. Platonov, G.G. Yakobson, Chem. Abstr. 84 (1976) 59001.
- [16] V.V. Bardin, G.G. Furin, G.G. Yakobson, J. Fluorine Chem. 14 (1979) 455–466.
- T.V. Senchenko, V.E. Platonov, G.G. Yakobson, Izv. Sib. Otd. Akad. Nauk. SSSR. Ser. Khim. Nauk. 1 (1978) 129–133 (Russ.);
 T.V. Senchenko, V.E. Platonov, G.G. Yakobson, Chem. Abstr. 89 (1978) 42855a.
- [18] I.P. Chuikov, V.M. Karpov, V.E. Platonov, Izv. Akad. Nauk Ser. Khim. (1992) 1412–1419;
 I.P. Chuikov, V.M. Karpov, V.E. Platonov, Bull. Russ. Acad. Sci. Div. Chem. Sci. 41 (1992) 1104–1110 (English translation).
- [19] G.G. Furin, G.G. Yakobson, Izv. Sib. Otd. Nauk. Akad. SSSR. Ser. Khim. Nauk. 1 (1974) 78–81 (Russ.);

G.G. Furin, G.G. Yakobson, Chem. Abstr. 80 (1974) 120457c.

[20] V.M. Karpov, T.V. Mezhenkova, V.E. Platonov, G.G. Yakobson, J. Fluorine Chem. 28 (1985) 115–120.