SYNTHESIS AND EPIMERIZATION OF 11b-SUBSTITUTED-INDOLIZINO-[8,7-b]INDOLE-5-CARBOXYLIC ACID METHYL ESTERS

Hajime IRIKAWA^{*} and Yasuaki OKUMURA Department of Chemistry, Faculty of Science, Shizuoka University, Oya 836, Shizuoka 422

The methoxide-catalyzed epimerization at C-5 of the llb-substitutedindolizino[8,7-b]indole-5-carboxylic acid methyl esters was in line with the stereochemical relationship of the substituent on C-11b and the methoxycarbonyl group on C-5.

In a previous paper, we reported the isolation of four carboxylic acids as the methyl esters (<u>lc</u> R= β -H, <u>lt</u> R= α -H, <u>2c</u> R= β -COOMe, and <u>2t</u> R= α -COOMe) from Clerodendron trichotomum Thunb. Epimerization of <u>1t</u> and <u>2t</u> gave the enantiomers of <u>1c</u> and <u>2c</u>, respectively. $^{1)}$ This paper describes the synthesis and methoxide-catalyzed epimerization at C-5 of the 11b-substituted-indolizino[8,7-b]indole-5-carboxylic acid methyl esters (3c,t-6c,t, 7t, and 8t).

The amides $\underline{3a}-\underline{8a}$ were prepared from L-tryptophan methyl ester and the corresponding γ -keto-carboxylic acids.²⁾ Treatment of $\underline{3a}-\underline{6a}$ with 13% HCl-MeOH afforded $\underline{3c}$ and $\underline{3t}$ (r.t., 20 h, in a ratio of 2:1), $\underline{4c}$ and $\underline{4t}$ (r.t., 20 h, 1:2), $\underline{5c}$ and $\underline{5t}$ (r.t., 20 h, 1:2), and $\underline{6c}$ and $\underline{6t}$ (reflux, 2 h, 1:20), which were separated by column chromatography, respectively.³⁾ Cyclization of $\underline{7a}$ and $\underline{8a}$ under the similar conditions yielded the respective $\underline{7t}$ and $\underline{8t}$. The stereoselective formation of $\underline{7t}$ and $\underline{8t}$ seems to be due to the interaction between the methoxycarbonyl and the R group in the cyclization intermediates.⁴⁾

As shown in Table 1, the ¹H NMR spectra of <u>lc-6c</u> indicated the signals at 5.23-5.48 ppm (1H, dd, J=6.6-8.1 and 1.5-2.1 Hz), which suggested the equatorial orientations of the C-5 proton in these compounds. On the other hand, the double doublet signals in <u>lt-8t</u> were observed at 3.88-4.51 ppm (1H, J=10.0-11.1 and 5.1-5.8 Hz), indicating the axial orientations of the C-5 proton. The characteristic ABX-signals observed for the C-5 and -6 protons in <u>lt-8t</u> were similar to those for the C-3 and -4 protons in the ¹H NMR spectra of the 1,3-cis-disubstituted-1,2,3,4-tetrahydro- β -carbolines.^{5,6}) The proton signals of the methoxycarbonyl group in <u>lc</u>-<u>6c</u> were found at higher-field than those in <u>lt-6t</u>, respectively.

The 13 C NMR signals for C-5 and -11b in <u>1c-6c</u> appeared at higher-field than those in the corresponding 1t-6t, indicating the axial orientations of the methoxy-

	5 -	5-H - OCH		OCH ₃	с-5		C-11b	
Compound	<u>c</u> ^{a)}	$\underline{t}^{b)}$	<u>c</u>	<u>t</u>	c	t	<u></u>	<u>t</u>
$\underline{1}$ R = H	5.34	4.12	3.63	3.82	49.5	54.7	52.5	56.3
$\underline{2}$ R = COOMe	5.48	4.39	3.59	3.83 ^{c)}	49.2	53.4	63.9	66.6
$\underline{3}$ R = Me	5.40	4.09	3.66	3.79	48.7	52.2	59.8	61.9
$\underline{4}$ R = Et	5.39	4.07	3.68	3.83	48.9	52.1	63.1	64.9
5 R = n - Pr	5.37	4.10	3.69	3.82	48.9	52.2	62.9	64.6
$\underline{6}$ R = Ph	5.23	3.88	2.89	3.74	48.3	52.1	64.4	68.1
$\frac{7}{2}$ R = i-Pr		4.15		3.81		51.8		67.7
$\frac{8}{8}$ R = t-Bu		4.51		3.78		53.9		70.5

Table 1. ¹H and ¹³C NMR spectral data (CDC1_z, δ -values)

a) Double doublet, J=6.6-8.1 and 1.5-2.1 Hz.
b) Double doublet, J=10.0-11.1 and
5.1-5.8 Hz.
c) Assignment may be interchangeable with the singlet at 3.87 ppm (3H).

Table 2. Equilibrations(%) at $C-5^{a}$

			<u>c</u>	<u>t</u>
1	R =	Н	>99	<1
2	R =	COOMe	90	10
3	R =	Ме	81	19
<u>4</u>	R =	Et	65	35
5	R =	n-Pr	70	30
6	R =	Ph	54	46
7	R =	i-Pr	~0 ^{b)}	≃100
8	R =	t-Bu	≃0 ^{b)}	≃100
a)	The	ratios	determined	by HPLC.

b) No isomer was detected.

carbonyl group on C-5 in 1c-6c and the equatorial orientations of that in 1t-6t.⁷⁾ In the ¹³C NMR spectra of 1,3-disubstituted-1, 2,3,4-tetrahydro- β -carbolines, the signals for C-1 and -3 in the trans-isomers were found at higher-field than those in the corresponding cis-isomers.⁸⁾

The proton signals of the methoxycarbonyl group in 1c-5c were observed at 3.59-3.69 ppm, while that in <u>6c</u> appeared at 2.89 ppm because of the magnetic anisotropic effect of the phenyl group on C-11b.⁶⁾ The proton signals for 5-H (3.88 ppm) in 6t were

found at higher-field than those in 1t-5t. The characteristic of the ¹H NMR spectra of 6c and 6t was in accord with the cis-relationships of the substituent on C-11b and the methoxycarbonyl group on C-5 in 1c-6c, and the trans-relationships of those in 1t-8t.

In order to examine the 11b-substituent effect on the epimerization at C-5, each compound <u>lc-6c</u>, <u>lt-8t</u> was treated with 0.1 M NaOMe in MeOH at room temperature for a few days, and the ratio of cis/trans isomers at equilibrium was determined by HPLC, JASCO Fine SIL-5 (CHC1₂-hexane). The results are shown in Table 2. The compound \underline{lc} was thermodynamically more stable than \underline{lt} , and existed to the extent of more than 99%. Assuming the cis-fusion of the indolizinone ring, $^{9)}$ the conformer c might be assigned to 1c-6c and the conformer t to the epimerization isomers of 1c-6c6c, respectively. The compound 1t seems to be destabilized by the interaction between the amido carbonyl and the methoxycarbonyl group on C-5 as shown in the conformer \underline{t} . Epimerization at C-5 in 2c-6c seems to be affected by the interaction between the bulky 11b-substituent and the methoxycarbonyl group on C-5. No epimerization isomers of <u>7t</u> and <u>8t</u> were detected either by ¹H NMR or HPLC.

The equilibrations shown in Table 2 were in line with the stereochemical assignments of 1c-6c and 1t-8t.

References

- 1) Y. Toyoda, H. Kumagai, H. Irikawa, and Y. Okumura, Chem. Lett., 1982, 903.
- 2) Satisfactory elemental analyses were obtained for all compounds reported herein.
- 3) The figures <u>3c,t</u>, <u>4c,t</u>, and <u>6c,t</u> show the relative configurations of the methoxycarbonyl and the R group because of the epimerization at C-5.
- F. Ungemach, M. DiPierro, R. Weber, and J. M. Cook, J. Org. Chem., <u>46</u>, 164 (1981).
- 5) K. T. D. DeSilva, D. King, and G. N. Smith, J. Chem. Soc., Chem. Commun., <u>1971</u>, 908.
- 6) F. Hamaguchi, T. Nagasaka, and S. Ohki, Yakugaku Zasshi, <u>94</u>, 351 (1974).
- N. K. Wilson and J. B. Stothers, "Topics in Stereochemistry," ed by E. L.
 Eliel and N. L. Allinger, J. Wiley & Sons, New York (1974), Vol. 8, p. 26.
- F. Ungemach, D. Soerens, R. Weber, M. DiPierro, O. Campos, P. Mokry, J. M. Cook, and J. V. Silverton, J. Am. Chem. Soc., <u>102</u>, 6976 (1980).
- 9) E. Wenkert, S. Garratt, and K. G. Dave, Can. J. Chem., 42, 489 (1964).

(Received April 26, 1983)