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Cycloadditions that involve more than six π electrons are termed higher-order cycloadditions and are an excellent tool for
solving complex synthetic challenges, as they provide direct access to polycyclic scaffolds that contain medium-sized rings.
They have interesting synthetic potential for the discovery of new bioactive molecules and in natural product synthesis. It
is peculiar that stereocontrolled [8+2] and [6+4] cycloadditions have been largely neglected for the past 50 years. Here
we demonstrate a cross-dienamine activation of 2-cyclopentenone and the unprecedented endocyclic linear-dienamine
activation of 2-cyclohexenones and 2-cycloheptenones. These dienamine intermediates undergo aminocatalytic
stereoselective [8+2], [6+4] and formal [4+2] cycloadditions with various heptafulvenes. The periselectivities of the
cycloadditions are controlled based on the ring size of the 2-cycloalkenones and the substitution patterns of the
heptafulvenes. The chiral products obtained undergo various chemical and photochemical single-step transformations that
give access to other classes of all-carbon polycyclic scaffolds.

The seminal paper byWoodward and Hoffmann in 1965 stating
a simple set of rules for pericyclic reactions was the onset of a
new era in chemistry1. In addition to the [8+2] cycloaddition

reported in 1960, they proposed that [6+4] cycloadditions would
also be symmetry allowed2–4. Furthermore, based on the orbital
symmetry rules, the [6+4] cycloaddition was predicted to proceed
with exo-selectivity, whereas the [8+2] and [4+2] cycloadditions
should both be endo-selective. A proof of concept was provided
the following year when the first [6+4] cycloaddition was demon-
strated by the reaction of tropone with cyclopentadiene5.

Higher-order cycloadditions (cycloadditions that involve more
than six π electrons) often suffer from a lack of periselectivity as
several competitive reaction pathways are possible. For example,
tropone has been reported to react as a 2π component in [2+4]
(ref. 6) cycloadditions, a 4π component in [4+2] (refs 7–9) and
[4+6] (ref. 10) cycloadditions, a 6π component in [6+3] (refs 11–13),
[6+4] (refs 5,14–18) and [6+6] (ref. 19) cycloadditions, and as an
8π component in [8+2] (ref. 20) cycloadditions. Although no
general guidelines to control the reaction pathway of higher-order
cycloadditions are known, it is highly desirable to be able to
perform periselective reactions for synthetic applications.

Numerous examples of the thermally allowed [8+2] and [6+4]
cycloadditions have been reported over the past 50 years, but
there is a remarkable lack of their enantioselective equivalents. A
singular example of a catalytic intramolecular [6+4] cycloaddition
exists (80% yield, 40% e.e.)14,21, and a metal-catalysed enantioselective
aza-[8+2] cycloaddition was reported only recently22. In addition,
enantioselective versions of the [4+2] cycloadditions with
heptafulvenes have also received limited attention9.

The aminocatalytic activation of 2-cycloalkenones provides a
mixture of dienamine species that consists of a cross dienamine,
an endocyclic linear dienamine and an exocyclic linear dienamine
(only for 3-alkyl-2-cycloalkenones) (Fig. 1a). The thermodynamic
distribution of the dienamine mixtures lies in favour of the endo-
or exocyclic linear dienamines for 3-alkyl-2-cycloalkenones and
towards the endocyclic linear dienamine for 2-cycloalkenones,
whereas the cross dienamine is generally not observed or only

found in small quantities23–25. The thermodynamic distributions
of the dienamine mixtures are not reflected in the aminocatalytic
reactions and 3-alkyl-2-cycloalkenones react through either cross-
dienamine26–29 or exocyclic linear-dienamine intermediates29–31,
whereas 2-cycloalkenones are known to react through cross-diena-
mine intermediates27–29,32. In contrast, the catalytic γ functionaliza-
tion via an endocyclic linear dienamine is uncommon and has only
been observed for 3-phenyl-2-cyclopentenone33.

We envisioned that stereoselective [8+2], [6+4] and [4+2]
cycloadditions could be accessed via aminocatalysis34. The periselec-
tivities of these reactions are considered to be determined by the possi-
bility that 2-cycloalkenones can generate different catalytic dienamine
intermediates by reaction with an aminocatalyst. As outlined in
Fig. 1b, it is postulated that a cross-dienamine intermediate35 will
lead to a [6+4] cycloaddition, whereas a linear dienamine can
undergo either an [8+2] or formal [4+2] cycloaddition.

We initiated our studies by investigating the reaction of 2-cyclopen-
tenone 2a with tropone 3A catalysed by cinchona alkaloid primary
amines 1 (ref. 36) (screening and optimization results are given in
Supplementary Table 1). With catalyst 1c the [6+4] cycloadduct
4aA was readily formed in 51% yield and excellent stereoselectivities
(95% e.e., >20:1 d.r.) and represents the first catalytic stereoselective
intermolecular [6+4] cycloaddition (Table 1, entry 1). Surprisingly,
no reaction was observed when heptafulvenes 3B and 3C were
applied under Conditions A (Table 1, footnotes); however, the [6+4]
cycloadduct 4aB was formed in 50% yield, >20:1 d.r. and 42% e.e.
after the tuning of several reaction parameters (Table 1, entry 2).

When cycloadditions between 2-cyclohexenone 2b with tropone
3A and dicyanoheptafulvene 3B were attempted, the formal inverse-
electron-demand [4+2] cycloadducts 6bA and 6bB were isolated
instead of the expected [6+4] cycloadducts (Table 1, entries 4 and 5).
This observation is notable, as 2-cyclohexenones are known to
react via cross-dienamine intermediates27–29,32, but the catalytic γ
functionalization via an endocyclic linear dienamine had not been
observed previously33. We hypothesized that the [4+2] cycloadducts
were formed by an initial [8+2] cycloaddition followed by a
rearrangement into the [4+2] cycloadducts (Fig. 2c)37. Thus, when

Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark. *e-mail: kaj@chem.au.dk

ARTICLES
PUBLISHED ONLINE: 19 DECEMBER 2016 | DOI: 10.1038/NCHEM.2682

NATURE CHEMISTRY | ADVANCE ONLINE PUBLICATION | www.nature.com/naturechemistry 1

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://www.nature.com/compfinder/10.1038/nchem.2682_comp4aA
http://www.nature.com/compfinder/10.1038/nchem.2682_comp4aB
http://www.nature.com/compfinder/10.1038/nchem.2682_comp6bA
http://www.nature.com/compfinder/10.1038/nchem.2682_comp6bB
mailto:kaj@chem.au.dk
http://dx.doi.org/10.1038/nchem.2682
http://www.nature.com/naturechemistry


the less electron-poor cyanoesterheptafulvene 3C was applied,
the [8+2] cycloadduct 5bC was isolated in good yield (58%) and
excellent stereoselectivities (98% e.e., 85:15 d.r.) (Table 1, entry 6).

2-Cycloheptenone 2c did not react with tropone 3A, whereas it
underwent an [8+2] cycloaddition with both heptafulvenes 3B
and 3C in 48–61% yield and excellent stereoselectivities (9:1 to
>20:1 d.r., 99 to >99% e.e.) (Table 1, entries 7–9). The only reaction
not being completely periselective was the reaction between 2-cyclo-
heptenone 2c and dicyanoheptafulvene 3B, which gave the [6+4]
cycloadduct 4cB as a by-product (Table 1, entry 8).

Whereas tropone 3A readily reacted with 2a and 2b under
Conditions A, only moderate results were obtained under
Conditions B (3A + 2a: 48% yield, >20:1 d.r., 65% e.e. and for

3A + 2b no reaction was observed). In addition, no reactions were
observed when Conditions A were applied to the reactions of
dicyanoheptafulvene 3B and cyanoesterheptafulvene 3C with the
2-cycloalkenones 2. In general, all the reactions reported in
Table 1 do not reach full conversion of the starting materials and
the products are only isolated in moderate-to-good yields.
Prolonged reaction times only led to degradation of the starting
materials without improvements in the yield of the reactions. No
or few by-products were observed by 1H NMR spectroscopy on
the crude reaction mixtures and the apparent disappearance of
the starting materials is ascribed to polymerization reactions.

At this point, the reaction pathways for the formation of the
products were not clear. The products might be formed by three
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Figure 1 | Aminocatalytic dienamine activation of 2-cycloalkenones and their applications in higher-order cycloadditions. a, Aminocatalytic activations of
enones provide mixtures of dienamine species. Reactivity is usually observed through the cross-dienamine or exocyclic linear-dienamine species. b, Work
presented herein; mixtures of 2-cycloalkenones and heptafulvenes can undergo various cycloadditions. 2-cyclopentenone reacts through a cross-dienamine
intermediate in a [6+4] cycloaddition, whereas reactions with 2-cyclohexenone and 2-cycloheptenone provide an [8+2] or formal [4+2] cycloadduct through
an endocyclic linear-dienamine intermediate. CatNH2, chiral primary amine catalyst.

Table 1 | Organocatalytic enantioselective reaction of 2-cycloalkenones 2a–2c with heptafulvenes 3A–3C.
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distinct cycloadditions, or by interconversion of the cycloadducts;
for example, interconversion of [6+4] and [8+2] cycloadducts via
a [3,3]-sigmatropic rearrangement/oxy-Cope rearrangement38,39,
or interconversion of [8+2] and [4+2] cycloadducts via zwitterionic
intermediates37,40. In an attempt to elucidate the reaction pathways,
racemic samples of the [8+2] cycloadduct 5bB and [6+4] cyclo-
adduct 4bA were prepared (we were unable to obtain 4bB and
5bA) because their respective [4+2] cycloadducts 6bA and 6bB
have lower potential energies (vide infra). Under Conditions A,
used for the formation of the [4+2] cycloadduct 6bA, the racemate
of the [6+4] cycloadduct 4bA was converted into the [4+2] cyclo-
adduct 6bA with similar stereoselectivities as for the reaction
between 2-cyclohexenone 2b and tropone 3A (Fig. 2a).
Furthermore, unreacted [6+4] cycloadduct 4bA was recovered in a
high optical purity (the e.e. of the recovered 4bA was dependent
on the reaction time), which indicates a resolution of the racemic
starting material. These results show that the organocatalyst is
involved in a retro [6+4] cycloaddition of 4bA followed by the for-
mation of the cycloadduct 6bA. To investigate the [8+2] to [4+2]
interconversion, a racemic sample of [8+2] cycloadduct 5bB,
which was not observed in the organocatalytic reaction (Table 1,
entry 5), was subjected to Conditions B used for the formation of
the [4+2] cycloadduct 6bB (Fig. 2b). The reaction was significantly

faster (ten minutes) compared with the reaction of 2-cyclohexenone
2bwith dicyanoheptafulvene 3B (18 hours) and yielded the enantio-
mer of 6bB with a very low 7% e.e. In addition, the interconversion
of racemic 5bB to ent-6bB was completely retarded in the absence
of the aminocatalyst. These results show that the aminocatalyst is
involved in the interconversion of the [8+2] cycloadduct 5bB into
the [4+2] cycloadduct 6bB and that the interconversion does not
proceed via 2-cyclohexenone 2b and dicyanoheptafulvene 3B. The
results are summarized in Fig. 2c.

In accordance with the results in Table 1 and the proposed reaction
pathway in Fig. 2c, both 2-cyclohexenone 2b and 2-cycloheptenone
2c underwent an initial [8+2] cycloaddition with the heptafulvenes
3A–3C through a linear-dienamine intermediate (Table 1, entries
4–9). All the reactions with cyanoesterheptafulvene 3C were found
to give the [8+2] cycloadducts, whereas both tropone 3A and dicyano-
heptafulvene 3B produced [4+2] cycloadducts with 2-cyclohexenone
2b through an unobserved [8+2] cycloadduct intermediate.

To investigate the influence of the electronic properties of the
2-cyclohexenone on the periselectivity of the reaction, a series of
substituted 2-cyclohexenones 7 was prepared and reacted with
tropone 3A, dicyanoheptafulvene 3B and cyanoesterheptafulvene
3C (Fig. 3). It was observed that 3A did not react with 7 under
either Conditions A or B, whereas a formal [4+2] cycloaddition
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Figure 2 | Elucidating the reaction pathway. a, Equilibration of 4bA to the thermodynamically most stable cycloadduct 6bA. b, Equilibration of 5bB to the
thermodynamically most stable cycloadduct 6bB. c, The reaction pathways in accordance with the equilibration experiments. Cross-dienamine activation of a
2-cycloalkenone leads to a [6+4] cycloaddition with the heptafulvene, whereas-linear dienamine activation leads to an [8+2] cycloaddition. The formal [4+2]
cycloadducts were formed by an initial [8+2] cycloaddition followed by a rearrangement to give the formal [4+2] cycloadducts. Conditions A and B are
given in the footnotes to Table 1.
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proceeded with dicyanoheptafulvene 3B to yield the cycloadduct 8b
under Conditions B (27% yield, 10:1 d.r., 49% e.e.). Improvements
in yield and enantioselectivity were found when (–)-CSA (CSA,
camphorsulfonic acid) was used as the acid additive to form 8b
(53% yield, 10:1 d.r., 69% e.e.). In the reactions to generate the
[4+2] cycloadducts 8, yields and stereoselectivities were found to
be dependent on the electronic properties of the substituents in 7.
Improvements in yield and enantioselectivity were observed when
the 2-cyclohexenone 7 is more electron rich (Fig. 3, top reaction).
When the 2-cyclohexenones 7 were reacted with cyanoesterhepta-
fulvene 3C under Conditions B an [8+2] cycloaddition was realized
in all cases (Fig. 3, bottom reaction). For this reaction path the
different substituents did not have any significant influence on the
enantioselectivities (99 to >99% e.e.), but resulted in variations of
the diastereoselectivities (4:1 to >20:1). These results demonstrate
that the periselectivity of the cycloaddition reactions of 2-cyclohex-
enones depends solely on the nature of the heptafulvene 3 and not
on the electronic properties of the 2-cyclohexenone.

The moderate-to-good enantioselectivities for the formation of
the [4+2] cycloadducts 8 (Fig. 3, top reaction) can be rationalized
based on the reaction pathway in Fig. 2c. The catalyst performs
the [8+2] to [4+2] rearrangement most rapidly for the minor enan-
tiomer of the [8+2] cycloadduct, which rearranges to 8 (extrapolated
from Fig. 2b). As the [8+2] cycloaddition is assumed to be revers-
ible, the decreased nucleophilicities of the linear dienamines from
7 compared with the linear dienamines from 2b (80 °C for reactions
of 7 versus 60 °C for reactions of 2b) lead to a deterioration of the
enantioselectivity of the reaction when 7 becomes less electron
rich because of a slower [8+2] to [4+2] rearrangement.

To obtain a better understanding of the periselectivity of these
higher-order cycloadditions, the potential energies of all classes of
products 4, 5 and 6 were calculated relative to their respective start-
ing compounds. Figure 4a displays the relative potential energies of
the possible products obtained from the reactions of 2-cycloalke-
nones 2a–2c with heptafulvenes 3A–3C and the observed products
are marked within dotted boxes (see Supplementary Table 2 for
specific values). For 2-cyclopentenone 2a the [6+4] cycloadditions
are more exothermic (∼20 kJ mol–1) compared with the [6+4]
cycloadditions with 2-cyclohexenone 2b and 2-cycloheptenone 2c.
The two [6+4] cycloaddition products obtained are lower in

potential energy relative to the [8+2] cycloaddition products, but
are in the same range as the formal [4+2] cycloaddition products.
Thus, the calculations predict the formation of a mixture of [6+4]
and [4+2] cycloadducts under thermodynamic conditions.
Interestingly, only the [6+4] cycloadducts were observed, which
suggests a kinetic preference for this reaction. In two cases, the for-
mation of the [4+2] cycloadducts was observed. These [4+2]
cycloadducts were formed under the thermodynamic conditions
shown in Fig. 2 and also supported by the calculations (>20 kJ mol–1

preference for the [4+2] cycloadducts over the [6+4] and [8+2]
cycloadducts). Finally, the observed [8+2] cycloadducts 5bC, 5cB
and 5cC were calculated to have lower relative potential energies
than their respective [6+4] cycloadducts (>20 kJ mol–1). These [8+2]
cycloadducts are thermodynamically less stable or similar in energy
to the [4+2] cycloadducts. As the [4+2] cycloadducts were not observed
in these reactions, the activation barrier for the [8+2] to [4+2]
cycloadduct rearrangement is predicted to be too high to proceed
under the reaction conditions.

To sum up, the periselectivity of the cycloadditions can be
explained as follows: for cases in which the activation barrier for
the [8+2] to [4+2] cycloadduct rearrangement is too high to
proceed under the reaction conditions, the [6+4] or [8+2]
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cycloadduct with the lowest relative potential energy is formed,
whereas when the [8+2] to [4+2] cycloadduct rearrangement
readily proceeds, the thermodynamically most stable [6+4], [8+2]
or [4+2] cycloadduct is formed.

The mechanistic aspects of the reactions catalysed by cinchona
alkaloid primary amines 1 have been investigated recently by Houk
and co-workers41,42. Based on these mechanistic investigations, we
are able to propose transition-state models for the [6+4] and [8+2]
cycloadditions that rationalize the results presented in Table 1 (Fig. 4b).

The [6+4] cycloaddition is initiated by the condensation of
2-cyclopentenone 2a with the aminocatalyst 1. This intermediate,
in its protonated form, is set up for hydrogen bonding to tropone
3A as it places the 6π component of tropone for the exo-selective
interactions with the 4π component of the cross-dienamine inter-
mediate (Fig. 4b, I). Spatial considerations of the transition state
account for the stereochemical outcome of the reaction, which is
in accordance with the absolute configuration obtained by X-ray
analysis of the [6+4] cycloadduct. Whereas tropone 3A can easily
be placed in close proximity to the cross dienamine in an exo-tran-
sition state when being activated and directed through hydrogen
bonding to the catalyst, dicyanoheptafulvene 3B does not fit this
model well, as hydrogen bonding to the cyano group places the hep-
tafulvene moiety too far away from the cross dienamine (Fig. 4b, II).
These different approaches are reflected in the high (95% e.e.) and
low (42% e.e., 52% e.e.) enantioselectivities of the reactions
(Table 1, entries 1, 2 and 8).

The [8+2] and [4+2] cycloadducts are formed through reactions
of a linear dienamine intermediate (Fig. 2c). As the catalyst directs
the approach of the heptafulvene 3B or 3C through hydrogen
bonding to the cyano group, the 8π component of the heptafulvene
and the 2π component of linear dienamine are placed in an endo-
transition state (Fig. 4b, III). This provides a rationale for the absol-
ute configuration of the cycloadducts obtained. For reactions that
take place via a linear dienamine, the nucleophilic double bond of
the dienamine is placed further away from the catalyst compared
with that of the cross dienamine. Hydrogen bonding between the
catalyst and the cyano group of 3B and 3C places the heptafulvene
in an optimal spatial orientation towards an endo-selective [8+2]
cycloaddition (Fig. 4b, III), whereas tropone is moved too close to
the catalyst and away from the nucleophilic double bond on hydrogen
bonding to the catalyst (Fig. 4b, IV). These considerations are
reflected in the stereoselectivities of the reactions (Table 1, entries 4–9).

To demonstrate the synthetic potential of these cycloadducts,
selected transformations were performed to show the ease with
which they can be turned into other molecular scaffolds.
Cycloheptatrienes can co-exist in equilibrium with small amounts
of their norcaradiene tautomer through a thermally allowed 6π
disrotatory electrocyclization. The norcaradiene tautomer of 9d
could be trapped through a Diels–Alder reaction with triazolinedione
10 to form the hexacyclic compound 11 (Fig. 5a). The [4+2] cyclo-
adduct 6bAwas found to undergo a photochemical [3,3]-sigmatropic
shift to form a ketene intermediate that could be trapped with metha-
nol to form 12 (Fig. 5b). Alternatively, in the absence of a nucleophile,
product 13 was formed through the less efficient 1,3-acyl shift.

The absolute configurations of 11, tribrominated 4aA and mono-
brominated 6bB were unambiguously determined by single-crystal
X-ray diffraction and the configurations of all the remaining pro-
ducts were assigned by analogy (Supplementary Information).

In conclusion, we have developed novel and unprecedented orga-
nocatalytic asymmetric higher-order cycloaddition reactions exem-
plified by intermolecular [8+2], [6+4] and formal [4+2]
cycloadditions. The reactions proceed with excellent stereoselectiv-
ities for 2-cycloalkenones that reacted with heptafulvenes in the
presence of cinchona alkaloid primary amines as catalysts. The
periselectivity can be controlled by the ring size of the 2-cycloalke-
nones and the substitution pattern of the heptafulvenes. This set of
reactions provides an easy set-up for the generation of a variety of
polycyclic scaffolds from commercial or readily available starting
materials. In addition, it was demonstrated that the products from
the cycloaddition reactions can undergo simple one-step transform-
ations to give access to other all-carbon polycyclic compounds.

Data availability
X-ray crystallographic data for compounds 4aA, 11, 15 and 16 are
freely available from the Cambridge Crystallographic Data Centre
(CCDC 1434123, 1469731, 1457777 and 1470038, respectively).
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