Synthesis and Fungicidal Activity of (*E*)-5-[1-(2-Oxo-1-oxaspiro[4,5]dec/non-3-en-3-yl)ethylidene]-2aminoimidazolin-4-one Derivatives

Bo Tang,^a Aiying Guan,^a Yu Zhao,^a Jiazhen Jiang,^a Mingan Wang,^{*,a} and Ligang Zhou^{*,b}

^a Department of Applied Chemistry, China Agricultural University, Beijing 100193, China ^b Department of Plant Pathology, China Agricultural University, Beijing 100193, China

The novel fungicidal agents, (*E*)-5-[1-(2-oxo-1-oxaspiro[4,5]dec/non-3-en-3-yl)ethylidene]-2-aminoimidazolin-4-one derivatives, were designed and synthesized in moderate to excellent yields in four steps using *a*-hydroxyketone and diketene as raw materials and characterized by HR-ESI-MS, ¹H NMR and X-ray diffraction. The preliminary bioassay showed that some of these compounds, such as **5e**, **6a**, **6e**, and **7h** exhibit 87.8%, 91.3%, 89.9% and 87.8% inhibition rates against *Sclerotinia scleotiorum*, **3b**, **3c**, **4c** and **7h** exhibit 96.4%, 92.5%, 90.3% and 76.9% inhibition rates against *Phytophthora capsici* at the concentration of 50 µg/mL, respectively. These compounds exhibited significant fungicidal activities against *S. scleotiorum* and *P. capsici* with EC₅₀ values of 2.56 $-11.60 \mu g/mL$, and compounds **6e** and **7h** exhibited weak inhibition against the spore germination of *S. scleotiorum*, while the spore germination of *P. capsici* was strongly inhibited by compound **7h** solution. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observation indicated that compound **7h** had a significant impact on the structure and function of the hyphal cell wall of *P. capsici* mycelium.

Keywords (*E*)-5-[1-(2-oxo-1-oxaspiro[4.5]dec/non-3-en-3-yl)ethylidene]-2-aminoimidazolin-4-one, synthesis, fungicidal activities

Introduction

In the development process of potential pesticides, some natural tetramic and tetronic acid derivatives were found to display fungicidal and herbicidal activities.^[1-3] the further modification in 5-position with spirocycles unexpectedly led to discovery of new class of insecticides such as spirodiclofen, spiromesifen and spirotetramat (Scheme 1), which indicated that the 5-spirotetramic and 5-spirotetronic acid moieties change the mode of action and improve the activities greatly. In recent years, much more attention was paid to the synthesis and biological activity evaluation of 5-spirotetramic and 5-spirotetronic acid derivatives.[4-11] Furthermore, the novel synthetic strategy of 2-aminoimidazolinone derivatives has been developed in several decades^[12-14] and provided the diversity of chemical structures and the possibility of discovery of new lead compounds, because various imidazolinone-containing compounds have been found in nature or synthesized and reported to display a wide range of biological activities such as fenamidone (Scheme 1) having antimicro-bial and fungicidal activities.^[15-18] In order to find new lead compounds of fungicidal agents, several 5-cyclohexylidene-2-aminoimidazolin-4-one and 5-(5,5-dimethylbutenolide-3-ethylidene)-2-aminoimidazolin-4-one derivatives have been prepared in our laboratory and showed significant fungicidal activities against several important agricultural phytopathgens.^[19] Based on the above results, we desired to introduce the spirocycle scaffold into the structure of 5-(butenolide-3-ethylidene)-2-aminoimidazolin-4-one and confirm if these novel types of chemicals can improve the fungicidal activity (Scheme 2). Continuing our pursuit of novel biologically active 2-aminoimidazolin-4-one heterocyclic compounds, a series of 5-(5-spirocyclicbutenolide-3-ethylidene)-2-aminoimidazolin-4-one derivatives were designed and synthesized (Scheme 3), and their fungicidal activities and the structure-activity relationships were explored.

Experimental

All reactions were performed with magnetic stirring under an N_2 atmosphere. Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. Organic solvents were concentrated under reduced pressure using a rotary

^{*} E-mail: wangma@cau.edu.cn, lgzhou@cau.edu.cn; Tel.: 0086-010-62734093 Received November 15, 2016; accepted January 4, 2017; published online XXXX, 2017.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/cjoc.201600794 or from the author.

Scheme 1 Typical insecticides of 5-spirotetramic and -tetronic acid derivatives and fungicide fenamidone

Scheme 2 Design strategy of novel spirocyclic 2-aminoimidazolin-4-one derivatives

Scheme 3 Synthetic route of 5-(5-spirocyclicbutenolide-3-ethylidene)-2-aminoimidazolin-4-one

evaporator or oil pump. Column chromatography was performed using Qingdao Haiyang flash silica gel (200-300 mesh). Melting points were measured on a Yanagimoto apparatus and uncorrected. IR (KBr plate) spectra were recorded on a Perkin Elmer FTS-40 in rotary strument. ¹H NMR spectra were obtained on a Bruker DPX 300 spectrometer with CDCl₃ or DMSO-*d*₆ as the solvent and TMS as the internal standard. High resolution mass spectral analysis was performed on an LTQ Orbitrap instrument. SEM observation was performed on a Hitachi S-3400N scanning electron microscope, and TEM observation on a JEOL-1230 transmission electron microscope.

Synthesis of 3-acetyl-4-methyl-5,5-spirobutenolide 2a-2c

The synthesis of the intermediates 2a-2c was carried out according to the literature protocols in two steps using ketone and vinyl ethyl ether as starting materials, and their spectral data were identical with those in the references.^[10,20]

2a: colorless solid, overall yield 51%; m.p. 98– 99 °C; ¹H NMR (CDCl₃, 300 MHz) δ : 2.57 (s, 3H), 2.33 (s, 3H), 1.81–1.22 (m, 10H).

2b: colorless solid, yield 61%; m.p. 36-37 °C; ¹H NMR (CDCl₃, 300 MHz) δ : 2.56 (s, 3H), 2.41 (s, 1.5H), 2.36 (s, 1.5H), 2.09-1.37 (m, 9H), 1.06 (d, J=6.0 Hz, 1.5H), 0.98 (d, J=6.0 Hz, 1.5H).

2c: colorless solid, yield 60%; m.p. 59–60 °C; ¹H NMR (CDCl₃, 300 MHz) δ : 2.57 (s, 3H), 2.35 (s, 3H), 2.05–1.86 (m, 8H).

Synthesis of 5-[4-methyl-5,5-spirobutenolide-3-ethylidene]-2-thiohydantoin 3a-3c

The synthesis of the intermediates 3a-3c was performed following the processes in our previous paper^[19] by reaction of 2a-2c with thiohydantoin.

3a: white solid, yield 72%; m.p. 295–297 °C; ¹H NMR (DMSO- d_6 , 300 MHz) δ : 12.11 (s, 1H), 11.96 (s, 1H), 2.02 (s, 3H), 1.85 (s, 3H), 1.82–1.24 (m, 10H); HR-ESI-MS calcd for C₁₅H₁₉O₃N₂S [M+H]⁺ 307.1111, found 307.1102.

3b: white solid, yield 54%; m.p. 273-275 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 12.20-12.12 (m, 1H), 11.96-11.71 (m, 1H), 2.22-1.23 (m, 15H), 1.03-0.92 (m, 3H); HR-ESI-MS calcd for C₁₆H₂₁O₃N₂S [M+H]⁺ 321.1267, found 321.1259.

3c: white solid, yield 56%; m.p. 265-267 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 12.08 (s, 1H), 11.73 (s, 1H), 2.24 - 1.67 (m, 14H); HR-ESI-MS calcd for C₁₄H₁₇O₃N₂S [M+H]⁺ 293.0954, found 293.0944.

Synthesis of 5-[4-methyl-5,5-spirobutenolide-3-ethylidene]-2-methylthioimidazo-4-one 4a-4c

The synthesis of the intermediates 4a-4c was performed according to the methods in our previous paper^[19] by reaction of 3a-3c with methyl iodide.

4a: white solid, yield 90%; m.p. 151-152 °C; ¹H NMR (CDCl₃, 300 MHz) δ : 10.04-9.79 (m, 1H), 2.62

 $-2.52\,$ (m, 3H), 2.46–2.36 (m, 3H), 1.88–1.22 (m, 13H); HR-ESI-MS calcd for $C_{16}H_{21}N_2O_3S\,\left[M\!+\!H\right]^+$ 321.1267, found 321.1257.

4b: white solid, yield 86%; m.p. 212-214 °C; ¹H NMR (CDCl₃, 300 MHz) δ : 9.97–9.65 (m, 1H), 2.62–2.52 (m, 3H), 2.46–2.37 (m, 3H), 2.07–1.47 (m, 12H), 1.06–0.97 (m, 3H); HR-ESI-MS calcd for C₁₇H₂₃N₂-O₃S [M+H]⁺ 335.1424, found 335.1414.

4c: white solid, yield 85%; m.p. 186-188 °C; ¹H NMR (CDCl₃, 300 MHz) δ : 10.02-9.76 (m, 1H), 2.62 -2.55 (m, 3H), 2.48-2.39 (m, 3H), 2.02-1.81 (m, 11H); HR-ESI-MS calcd for C₁₅H₁₉N₂O₃S [M+H]⁺ 307.1111, found 307.1102.

General procedure for the synthesis of compounds 5-7

To a stirred solution of 1.0 mmol of 4a-4c in 20 mL of acetic acid, the amines were added at ambient temperature and heated to reflux for 10-24 h. The reactions were monitored by TLC. After completion, the solvents were removed under reduced pressure. The residues were purified by silica gel chromatography using CH₂Cl₂/acetone as eluents to afford compounds 5-7.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4,5]dec-3-en-3-yl)ethylidene]-2-phenylamino-3,5-dihydro-4*H*-imidazol-4-one (**5a**): white solid, yield 95%; m.p. 202 – 204 °C; ¹H NMR (DMSO- d_6 , 300 MHz) δ : 10.41 (s, 1H), 9.66 (s, 1H), 7.71–6.99 (m, 5H), 2.11 (s, 3H), 1.99–1.25 (m, 13H); IR *v*: 3426, 3215, 3054, 2924, 1685, 1646, 1605, 1574, 1496 cm⁻¹; HR-ESI-MS calcd for C₂₁H₂₄N₃O₃ [M+H]⁺ 366.1812, found 366.1801.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4,5]dec-3-en-3-yl)ethylidene]-2-(4-flurophenyl)amino-3,5-dihydro-4*H*-imidazol-4-one (**5b**): white solid, yield 68%; m.p. 227-229 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.50 (s, 1H), 9.63 (s, 1H), 7.69-7.04 (m, 4H), 2.10 (s, 3H), 1.94-1.23 (m, 13H); IR *v*: 3435, 3216, 3034, 2938, 1688, 1654, 1602, 1575, 1498 cm⁻¹; HR-ESI-MS calcd for C₂₁H₂₃FN₃O₃ [M+H]⁺ 384.1718, found 384.1706.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4,5]dec-3-en-3-yl)ethylidene]-2-(4-methylphenyl)amino-3,5-dihydro-4*H*-imidazol-4-one (**5**c): white solid, yield 53%; m.p. 196–198 °C; ¹H NMR (DMSO- d_6 , 300 MHz) δ : 10.37 (s, 1H), 9.49 (s, 1H), 7.59–7.03 (m, 4H), 2.26 (s, 3H), 2.10 (s, 3H), 1.95–1.25 (m, 13H); IR *v*: 3431, 3210, 3045, 2945, 1680, 1651, 1607, 1578, 1492 cm⁻¹; HR-ESI-MS calcd for C₂₂H₂₆N₃O₃ [M + H] ⁺ 380.1969, found 380.1957.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4,5]dec-3-en-3-yl)ethylidene]-2-(4-methoxyphenyl)amino-3,5dihydro-4*H*-imidazol-4-one (**5d**): white solid, yield 58%; m.p. 235–237 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.39 (s, 1H), 9.46 (s, 1H), 7.62–6.90 (m, 4H), 3.73 (s, 3H), 2.09 (s, 3H), 1.94–1.24 (m, 13H); HR-ESI-MS calcd for C₂₂H₂₆N₃O₄ [M + H]⁺ 396.1918, found 396.1908.

(E)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4,5]dec-3-en-

3-yl)ethylidene]-2-(2-flurophenyl)amino-3,5-dihydro-4*H*-imidazol-4-one (**5e**): yellow solid, yield 76%; m.p. 159–161 °C; ¹H NMR (DMSO- d_6 , 300 MHz) δ : 10.50 (s, 1H), 9.53 (s, 1H), 7.24–7.06 (m, 4H), 2.12 (s, 3H), 1.93 – 1.23 (m, 13H); HR-ESI-MS calcd for C₂₁H₂₃FN₃O₃ [M+H]⁺ 384.1718, found 384.1706.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4,5]dec-3-en-3-yl)ethylidene]-2-(2-chlorophenyl)amino-3,5-dihydro-4*H*-imidazol-4-one (**5f**): yellow solid, yield 50%, m.p. 213-215 °C; ¹H NMR (DMSO- d_6 , 300 MHz) δ : 10.69 (s, 1H), 9.54 (s, 1H), 7.44-7.01 (m, 4H), 2.09 (s, 3H), 1.95 - 1.24 (m, 13H); HR-ESI-MS calcd for C₂₁H₂₃ClN₃O₃ [M+H]⁺ 400.1422, found 400.1411.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4,5]dec-3-en-3-yl)ethylidene]-2-(2-methylphenyl)amino-3,5-dihydro-4*H*-imidazol-4-one (**5g**): pink solid, yield 63%; m.p. 216—218 °C; ¹H NMR (DMSO- d_6 , 300 MHz) δ : 10.37 (s, 1H), 9.54 (s, 1H), 7.59—6.99 (m, 4H), 2.22 (s, 3H), 2.08 (s, 3H), 1.90—1.24 (m, 13H); HR-ESI-MS calcd for C₂₂H₂₆N₃O₃ [M+H]⁺ 380.1969, found 380.1957.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4,5]dec-3-en-3yl)ethylidene]-2-(2-methoxyphenyl)amino-3,5-dihydro-4*H*-imidazol-4-one (**5h**): yellow solid, yield 61%; m.p. 167—169 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.15 (s, 1H), 9.09 (s, 1H), 7.07—6.95 (m, 4H), 3.89 (s, 3H), 2.13 (s, 3H), 1.94—1.22 (m, 13H); HR-ESI-MS calcd for C₂₂H₂₆N₃O₄ [M+H]⁺ 396.1918, found 396.1904.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4,5]dec-3-en-3-yl)ethylidene]-2-(3-trifluromethylphenyl)amino-3,5dihydro-4*H*-imidazol-4-one (**5i**): white solid, yield 65%; m.p. 210-212 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.72 (s, 1H), 9.95 (s, 1H), 8.34-7.30 (m, 4H), 2.12 (s, 3H), 1.99-1.30 (m, 13H); HR-ESI-MS calcd for C₂₂H₂₃F₃N₃O₃ [M+H]⁺ 434.1686, found 434.1673.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4,5]dec-3-en-3yl)ethylidene]-2-benzylamino-3,5-dihydro-4*H*-imidazol-4-one (**5j**): white solid, yield 69%; m.p. 146–148 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.58 (s, 1H), 9.84 (s, 1H), 7.35–7.26 (m, 5H), 4.50 (s, 2H), 2.13 (s, 3H), 1.97 – 1.24 (m, 13H); HR-ESI-MS calcd for C₂₂H₂₆N₃O₃ [M+H]⁺ 380.1969, found 380.1958.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4,5]dec-3-en-3-yl)ethylidene]-2-(4-flurobenzyl)amino-3,5-dihydro-4*H*imidazol-4-one (**5**k): yellow solid, yield 58%; m.p. 141-143 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.76 (s, 1H), 9.89 (s, 1H), 7.37-7.13 (m, 4H), 4.48 (s, 2H), 2.12 (s, 3H), 1.97-1.25 (m, 13H); HR-ESI-MS calcd for C₂₂H₂₅FN₃O₃ [M+H]⁺ 398.1874, found 398.1862.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4,5]dec-3-en-3yl)ethylidene]-2-(4-chlorobenzyl)amino-3,5-dihydro-4*H*imidazol-4-one (**5**I): yellow solid, yield 58%; m.p. 240-242 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.58 (s, 1H), 9.89 (s, 1H), 7.48-7.29 (m, 4H), 4.54 (s, 2H), 2.08 (s, 3H), 1.95-1.31 (m, 13H); HR-ESI-MS calcd for C₂₂H₂₅ClN₃O₃ [M + H] ⁺ 414.1579, found 414.1566.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4,5]dec-3-en-3-yl)ethylidene]-2-(4-methoxybenzyl)amino-3,5-dihydro-

3

FULL PAPER

4*H*-imidazol-4-one (**5m**): yellow solid, yield 61%; m.p. 211-213 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.55 (s, 1H), 9.90 (s, 1H), 7.49-6.89 (m, 4H), 4.43 (s, 2H), 3.73 (s, 3H), 2.08 (s, 3H), 1.99-1.25 (m, 13H); HR-ESI-MS calcd for C₂₃H₂₈N₃O₄ [M + H] ⁺ 410.2074, found 410.2062.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4,5]dec-3-en-3-yl)ethylidene]-2-(2-flurobenzyl)amino-3,5-dihydro-4*H*imidazol-4-one (**5n**): white solid, yield 66%; m.p. 210– 213 °C; ¹H NMR (DMSO- d_6 , 300 MHz) δ : 10.57 (s, 1H), 9.83 (s, 1H), 7.45–7.17 (m, 4H), 4.52 (s, 2H), 2.07 (s, 3H), 1.91–1.20 (m, 13H); HR-ESI-MS calcd for C₂₂H₂₅FN₃O₃ [M+H]⁺ 398.1874, found 398.1864.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4,5]dec-3-en-3-yl)ethylidene]-2-(2-methoxybenzyl)amino-3,5-dihydro-4*H*-imidazol-4-one (**50**): yellow solid, yield 54%; m.p. 138–140 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.50 (s, 1H), 9.77 (s, 1H), 7.57–6.91 (m, 4H), 4.46 (s, 2H), 3.83 (s, 3H), 2.10 (s, 3H), 1.94–1.24 (m, 13H); HR-ESI-MS calcd for C₂₃H₂₈N₃O₄ [M + H] ⁺ 410.2074, found 410.2062.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4,5]dec-3-en-3-yl)ethylidene]-2-(3-trifluromethylbenzyl)amino-3,5dihydro-4*H*-imidazol-4-one (**5p**): white solid, yield 54%; m.p. 138–140 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.56 (s, 1H), 9.95 (s, 1H), 8.02–7.57 (m, 4H), 4.54 (s, 2H), 2.10 (s, 3H), 1.92–1.24 (m, 13H); HR-ESI-MS calcd for C₂₃H₂₅F₃N₃O₃ [M+H]⁺ 448.1843, found 448.1832.

(*E*)-5-[1-(4,8-Dimethyl-2-oxo-1-oxaspiro[4,5]dec-3en-3-yl)ethylidene]-2-phenylamino-3,5-dihydro-4*H*imidazol-4-one (**6a**): pink solid, yield 48%; m.p. 217– 219 °C; ¹H NMR (DMSO- d_6 , 300 MHz) δ : 10.43 (s, 1H), 9.67 (s, 1H), 7.69–6.99 (m, 5H), 2.11 (s, 3H), 1.99–0.93 (m, 15H); IR v: 3442, 3225, 3058, 2944, 1690, 1656, 1601, 1575, 1498 cm⁻¹; HR-ESI-MS calcd for C₂₂H₂₆N₃O₃ [M+H]⁺ 380.1969, found 380.1957.

(*E*)-5-[1-(4,8-Dimethyl-2-oxo-1-oxaspiro[4,5]dec-3en-3-yl)ethylidene]-2-(4-flurophenyl)amino-3,5-dihydro-4*H*-imidazol-4-one (**6**b): yellow solid, yield 60%; m.p. 208-210 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.52 (s, 1H), 9.64 (s, 1H), 7.70-7.13 (m, 4H), 2.09 (s, 3H), 2.00-0.93 (m, 15H); IR *v*: 3436, 3223, 3057, 2934, 1685, 1647, 1603, 1573, 1495 cm⁻¹; HR-ESI-MS calcd for C₂₂H₂₅FN₃O₃ [M+H]⁺ 398.1874, found 398.1865.

(*E*)-5-[1-(4,8-Dimethyl-2-oxo-1-oxaspiro[4,5]dec-3en-3-yl)ethylidene]-2-(4-methylphenyl)amino-3,5dihydro-4*H*-imidazol-4-one (**6c**): yellow solid, yield 38%; m.p. 210-212 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.39 (s, 1H), 9.62 (s, 1H), 7.59-7.11 (m, 4H), 2.26 (s, 3H), 2.10 (s, 3H), 2.00-0.93 (m, 15H); IR *v*: 3423, 3235, 3066, 2938, 1687, 1644, 1606, 1575, 1497 cm⁻¹; HR-ESI-MS calcd for C₂₃H₂₈N₃O₃ [M+H]⁺ 394.2125, found 394.2113.

(*E*)-5-[1-(4,8-Dimethyl-2-oxo-1-oxaspiro[4,5]dec-3en-3-yl)ethylidene]-2-(4-methoxyphenyl)amino-3,5dihydro-4*H*-imidazol-4-one (**6d**): yellow solid, yield 61%, m.p. 197-199 °C; ¹H NMR (DMSO- d_6 , 300 MHz) δ : 10.40 (s, 1H), 9.61 (s, 1H), 7.62–6.90 (m, 4H), 3.73 (s, 3H), 2.08 (s, 3H), 1.94–0.93 (m, 15H); HR-ESI-MS calcd for C₂₃H₂₈N₃O₄ [M + H] ⁺ 410.2074, found 410.2061.

(*E*)-5-[1-(4,8-Dimethyl-2-oxo-1-oxaspiro[4,5]dec-3en-3-yl)ethylidene]-2-(4-trifluromethylphenyl)amino-3,5-dihydro-4*H*-imidazol-4-one (**6e**): yellow solid, yield 49%; m.p. 198–200 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.66 (s, 1H), 9.97 (s, 1H), 7.87–7.60 (m, 4H), 2.09 (s, 3H), 1.99–0.93 (m, 15H); HR-ESI-MS calcd for C₂₃H₂₅F₃N₃O₃ [M + H] ⁺ 448.1843, found 448.1834.

(*E*)-5-[1-(4,8-Dimethyl-2-oxo-1-oxaspiro[4,5]dec-3en-3-yl)ethylidene]-2-(2-chlorophenyl)amino-3,5dihydro-4*H*-imidazol-4-one (**6f**): yellow solid, yield 51%; m.p. 174–176 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.67 (s, 1H), 9.54 (s, 1H), 7.44–7.01 (m, 4H), 2.16 (s, 3H), 1.94–0.94 (m, 15H); HR-ESI-MS calcd for C₂₂H₂₅ClN₃O₃ [M + H] ⁺ 414.1579, found 414.1568.

(*E*)-5-[1-(4,8-Dimethyl-2-oxo-1-oxaspiro[4,5]dec-3en-3-yl)ethylidene]-2-(2-methoxyphenyl)amino-3,5dihydro-4*H*-imidazol-4-one (**6g**): yellow solid, yield 61%; m.p. 185–187 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.15 (s, 1H), 9.82 (s, 1H), 7.07–6.82 (m, 4H), 3.89 (s, 3H), 2.13 (s, 3H), 1.99–0.92 (m, 15H); HR-ESI-MS calcd for C₂₃H₂₈N₃O₄ [M + H] ⁺ 410.2074, found 410.2061.

(*E*)-5-[1-(4,8-Dimethyl-2-oxo-1-oxaspiro[4,5]dec-3en-3-yl)ethylidene]-2-(3-trifluromethylphenyl)amino-3,5-dihydro-4*H*-imidazol-4-one (**6h**): yellow solid, yield 43%; m.p. 209–211 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.73 (s, 1H), 9.90 (s, 1H), 8.43–7.34 (m, 4H), 2.12 (s, 3H), 1.96–0.93 (m, 13H); HR-ESI-MS calcd for C₂₃H₂₅F₃N₃O₃ [M + H] ⁺ 448.1843, found 448.1833.

(*E*)-5-[1-(4,8-Dimethyl-2-oxo-1-oxaspiro[4,5]dec-3en-3-yl)ethylidene]-2-benzylamino-3,5-dihydro-4*H*imidazol-4-one (**6i**): yellow solid, yield 56%; m.p. 143-145 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.58 (s, 1H), 9.83 (s, 1H), 7.34-7.26 (m, 5H), 4.51 (s, 2H), 2.12 (s, 3H), 1.95-0.92 (m, 15H); HR-ESI-MS calcd for C₂₃H₂₈N₃O₃ [M+H]⁺ 394.2125, found 394.2113.

(*E*)-5-[1-(4,8-Dimethyl-2-oxo-1-oxaspiro[4,5]dec-3en-3-yl)ethylidene]-2-(4-chlorobenzylamino-3,5-dihydro-4*H*-imidazol-4-one (**6j**): yellow solid, yield 56%; m.p. 143-145 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.64 (s, 1H), 9.91 (s, 1H), 7.42-7.27 (m, 4H), 4.50 (s, 2H), 2.12 (s, 3H), 1.91-0.93 (m, 15H); HR-ESI-MS calcd for C₂₃H₂₇ClN₃O₃ [M + H] ⁺ 394.2125, found 394.2113.

(*E*)-5-[1-(4,8-Dimethyl-2-oxo-1-oxaspiro[4,5]dec-3en-3-yl)ethylidene]-2-(2-methoxybenzyl)amino-3,5dihydro-4*H*-imidazol-4-one (**6**k): yellow solid, yield 52%; m.p. 137-139 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.43 (s, 1H), 9.76 (s, 1H), 7.20-6.92 (m, 4H), 4.48 (s, 2H), 3.83 (s, 3H), 2.12 (s, 3H), 1.95-0.92 (m, 15H); HR-ESI-MS calcd for C₂₄H₃₀N₃O₄ [M+H]⁺ 424.2231, found 424.2216.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4.5]non-3-en-3-yl)ethylidene]-2-phenylamino-3,5-dihydro-4*H*-imidazol-4-one (**7a**): pink solid, yield 46%; m.p. 244 – 246 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.43 (s, 1H), 9.66 (s, 1H), 7.71–6.99 (m, 5H), 2.13 (s, 3H), 2.08–1.46 (m, 11H); IR *v*: 3441, 3225, 3059, 2944, 1688, 1642, 1606, 1575, 1493 cm⁻¹; HR-ESI-MS calcd for C₂₀H₂₂N₃O₃ [M+H]⁺ 352.1656, found 352.1644.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4.5]non-3-en-3-yl)ethylidene]-2-(4-flurophenyl)amino-3,5-dihydro-4*H*-imidazol-4-one (**7b**): yellow solid, yield 38%; m.p. 174–176 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.71 (s, 1H), 9.64 (s, 1H), 7.68–7.10 (m, 4H), 2.12 (s, 3H), 2.03–1.44 (m, 11H); IR *v*: 3446, 3233, 3052, 2937, 1685, 1649, 1602, 1571, 1498 cm⁻¹; HR-ESI-MS calcd for C₂₀H₂₁FN₃O₃ [M+H]⁺ 370.1561, found 370.1549.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4.5]non-3-en-3-yl)ethylidene]-2-(4-methylphenyl)amino-3,5-dihydro-4*H*-imidazol-4-one (**7c**): yellow solid, yield 36%; m.p. 176–178 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.56 (s, 1H), 9.61 (s, 1H), 7.54–6.97 (m, 4H), 2.27 (s, 3H), 2.12 (s, 3H), 2.08–1.45 (m, 11H); IR *v*: 3436, 3227, 3061, 2944, 1692, 1656, 1603, 1582, 1497 cm⁻¹; HR-ESI-MS calcd for C₂₁H₂₄N₃O₃ [M + H] ⁺ 366.1812, found 366.1802.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4.5]non-3-en-3-yl)ethylidene]-2-(4-methoxyphenyl)amino-3,5-dihydro-4*H*-imidazol-4-one (**7d**): yellow solid, yield 71%; m.p. 190–192 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.41 (s, 1H), 9.61 (s, 1H), 7.62–6.81 (m, 4H), 3.73 (s, 3H), 2.10 (s, 3H), 2.05–1.48 (m, 11H); IR *v*: 3438, 3237, 3060, 2948, 1690, 1658, 1601, 1583, 1492 cm⁻¹; HR-ESI-MS calcd for C₂₁H₂₄N₃O₄ [M + H] ⁺ 382.1761, found 382.1750.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4.5]non-3-en-3-yl)ethylidene]-2-(2-flurophenyl)amino-3,5-dihydro-4*H*-imidazol-4-one (7e): yellow solid, yield 54%; m.p. $160-162 \ ^{\circ}C; ^{1}H \ NMR \ (DMSO-d_{6}, 300 \ MHz) \ \delta: 10.46$ (s, 1H), 9.67 (s, 1H), 7.84–6.95 (m, 4H), 2.09 (s, 3H), 2.00 - 1.43 (m, 11H); HR-ESI-MS calcd for $C_{20}H_{21}FN_{3}O_{3} \ [M+H]^{+} \ 370.1561$, found 370.1550.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4.5]non-3-en-3-yl)ethylidene]-2-(2-chlorophenyl)amino-3,5-dihydro-4*H*-imidazol-4-one (**7f**): yellow solid, yield 50%: m.p. $168-170 \ ^{\circ}C$; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.68 (s, 1H), 9.64 (s, 1H), 7.44-7.01 (m, 4H), 2.12 (s, 3H), 2.02 - 1.43 (m, 11H); HR-ESI-MS calcd for $C_{20}H_{21}ClN_3O_3 [M+H]^+$ 386.1266, found 386.1254.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4.5]non-3-en-3yl)ethylidene]-2-(2-methoxyphenyl)amino-3,5-dihydro-4*H*-imidazol-4-one (**7g**): orange solid, yield 40%; m.p. 175–177 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.18 (s, 1H), 9.89 (s, 1H), 7.69–6.97 (m, 4H), 3.83 (s, 3H), 2.12 (s, 3H), 2.08–1.45 (m, 11H); HR-ESI-MS calcd for C₂₁H₂₄N₃O₄ [M+H]⁺ 382.1761, found 382.1750.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4.5]non-3-en-3-yl)ethylidene]-2-(3-trifluromethylphenyl)amino-3,5dihydro-4*H*-imidazol-4-one (**7h**): yellow solid, yield 91%; m.p. 159–161 °C; ¹H NMR (DMSO- d_6 , 300 MHz) δ : 10.74 (s, 1H), 9.92 (s, 1H), 8.32–7.31 (m, 4H), 2.14 (s, 3H), 2.04–1.43 (m, 11H); HR-ESI-MS calcd for C₂₁H₂₁F₃N₃O₃ [M + H] ⁺ 420.1530, found 420.1518.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4.5]non-3-en-3-yl)ethylidene]-2-benzylamino-3,5-dihydro-4*H*-imidazol-4-one (**7i**): yellow solid, yield 33%; m.p. 115–117 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.03 (s, 1H), 9.44 (s, 1H), 7.41–7.25 (m, 5H), 4.50 (s, 2H), 2.14 (s, 3H), 1.99–1.42 (m, 11H); HR-ESI-MS calcd for C₂₁H₂₄-N₃O₃ [M+H]⁺ 366.1812, found 366.1802.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4.5]non-3-en-3-yl)ethylidene]-2-(4-chlorobenzylamino-3,5-dihydro-4*H*-imidazol-4-one (**7j**): yellow solid, yield 45%; m.p. 199–201 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.63 (s, 1H), 9.88 (s, 1H), 7.42–7.28 (m, 4H), 4.48 (s, 2H), 2.13 (s, 3H), 2.01–1.43 (m, 11H); HR-ESI-MS calcd for C₂₁H_{23Cl}N₃O₃ [M + H] ⁺ 400.1422, found 400.1412.

(*E*)-5-[1-(4-Methyl-2-oxo-1-oxaspiro[4.5]non-3-en-3-yl)ethylidene]-2-(2-methoxybenzyl)amino-3,5-dihydro-4*H*-imidazol-4-one (**7k**): yellow solid, yield 48%; m.p. 128–130 °C; ¹H NMR (DMSO-*d*₆, 300 MHz) δ : 10.40 (s, 1H), 9.70 (s, 1H), 7.27–6.91 (m, 4H), 4.47 (s, 2H), 3.83 (s, 3H), 2.12 (s, 3H), 2.00–1.44 (m, 11H); HR-ESI-MS calcd for C₂₂H₂₆N₃O₄ [M + H] ⁺ 396.1918, found 396.1910.

Bioassay

Fungicidal activities of the compounds against S. scleotiorum, A. solani, B. cinerea, R. solani, F. gra*minearum* and *P. capsici* were evaluated using the mycelial growth rate and spore germination tests.^[19,21] The culture media with known concentration of the test compounds were obtained by mixing the solution in DMSO with potato dextrose agar (PDA), on which fungus cakes were placed. The blank test was made using DMSO and chlorothalonil, carbendazim and fenamidone were used as the positive control. The culture was incubated at (25 ± 0.5) °C. Three replicates were performed. After the mycelia in the blank grew completely, the diameter of the mycelia was measured, and the inhibition rate was calculated according to the formula in reference^[19] from the three replicates. The EC_{50} values were determined from the inhibition rates of five different concentrations based on the statistics method for the compounds which had more than 70% inhibition rates.

Scanning electron microscopy (SEM)

P. capsici mycelial tips (5 mm) of an actively growing colony on PDA medium amended with 0, 10, 50, and 100 µg/mL compound **7h** were cut from the edge of the colony cultured for 96 h. The tips were treated with 2% glutaraldehyde at 4 $^{\circ}$ C, followed by rinsing with 0.1 mol•L⁻¹ phosphate buffer (pH 7.3) and fixed with 1.0

FULL PAPER

 $g \cdot mL^{-1}$ osmium tetraoxide solution. Rinsed with 0.1 $mol \cdot L^{-1}$ phosphate buffer three times, the mycelial tips were dehydrated using a series of ethanol solutions in the order of concentration 30%, 50%, 70%, 80%, 90% and 100%. The processes of drying at critical point, mounting, and gold spraying were completed at last and examined with a Hitachi S-3400N scanning electron microscope with an accelerating voltage of 18–20 kV.

Transmission electron microscopy (TEM)

The mycelial tips were prepared according to the method given above. After dehydrating with acetone and embedding in SPURR resin, thin sections were cut with LEICAUCi machine, and double-stained with uranyl acetate and lead citrate. The grids were examined with a JEOL-1230 transmission electron microscope.

Results and Discussion

As shown in Scheme 3, the intermediates 2a, 2b and **2c** were prepared in two steps by one-pot manner fol-lowing the literature procedures^[22,23] by the reaction of cycloketone with vinyl ethyl ether to afford α -hydroxyketone, followed by reacting with diketene in 50%-60% overall yields. The intermediates 2a-2c reacted with thiohydantion catalyzed by 2-aminoethanol to afford 3a-3c in 54%-72% yields, respectively,^[19] then methylations of 3a-3c with methyl iodide were carried out at ambienent temperature to give the key intermediates 4a-4c in 85%-90% yields.^[19,20] Finally, the intermediates 4a - 4c reacted with anilines or benzyl amines under reflux to produce the target compounds 5a 5p, 6a-6k and 7a-7k in moderate to excellent vields.^[19] In the ¹H NMR spectra, the chemical shifts of the methyl groups in compounds 2a-2c and 3a-3cwere easily assigned, while the complex peaks of the methyl signals and broad active NH proton peaks were observed due to the existance of tautomerism isomers of the 2-aminoimidazolin-4-one moiety in the solution after they transfered into compounds 4a-4c and 5-7. The ¹H NMR spectra of 5a-5p, 6a-6k and 7a-7kwere similar to those of compounds in the literatures.^[19,20] In the previous papers, the configuration of C =C double bond for title compounds was not ascertained.^[19] Now, good crystal solid suitable for X-ray diffraction analysis was obtained, and the X-ray structure of compound 5g was unambiguously confirmed and depicted in Figure 1, which indicated that one methanol molecule was bonded with 5g molecule via hydrogen bond.^[24] The X-ray structure of compound **5g** clearly indicated that the configuration of C=C double bond for this class of compounds was E-configuration, which was the same as that reported in literatures.^[20,25] The parent skeleton of imidazolinone moiety was determined to be 2-amino-1,5-dihydro-4H- imidazolin-4-one (A), rather than 2-amino-3,5-dihydro-4H-imidazolin-4-one (B) and 2-iminoimidazolidin-4-one (C) as shown in Figure 2, in which the parent structure of 2-amino3,5-dihydro-4*H*-imidazol-4-one was consistent with X-ray structures of the other similar compounds in literatures.^[12,26]

Figure 1 The X-ray structure of compound 5g.

Figure 2 Two possible configurations of C=C double bond and three parent skeleton structures.

The data in Table 1 showed that the intermediates **3b**, 3c and 4c exhibited excellent activities against P. capsici with 96.4%, 92.5% and 90.3% inhibition rates in vitro evaluation while they had no significant inhibition against S. scleotiorum, R. solani, A. Solani, B. cinerea and F. graminearum. So further structure modification was performed with reaction of 4a-4c with various amines to afford novel 2-aminoimidazolin-4-one derivatives 5-7 with spirocyclic scaffold. The data in Table 1 indicated that these 2-aminoimidazolin-4-one derivatives have significant fungicidal activities against S. scleotiorum, A. solani, B. cinerea and P. capsici compared with those of the intermediates 4a-4c, but no activities against R. Solani and F. graminearum. In comparison with the results in the previous paper,^[19c] most of the compounds, such as 5e, 6a, 6d, 6e, 6f, 6g, 6h, 6j, 7f, 7g and 7h, exhibited excellent inhibitory activities against S. scleotiorum, but not against R. Solani, this probably means the spirocyclic part in butenolide scaffold changes target fungi and improves the activities greatly, and the aromatic amine derivatives have much better fungicidal activities against S. scleotiorum than the benzyl amine derivatives. At the same time, only compound 7h showed excellent inhibitory activities against P. capsici. These results indicated that the electron-withdrawing groups at othro-, meta- and

Table 1Fungicidal activities of compounds 3-7 against phy-
topathogens (inhibitory rate/%, 50 µg/mL)^a

Compd.	m	\mathbb{R}^1	S.S	R.S	A.S	B.C	<i>P.C</i>	F.G
3a			7.4	8.4	39.0	6.8	50.4	17.8
3b			13.8	0.0	0.0	26.2	96.4	32.4
3c			6.6	5.4	0.0	0.0	92.5	16.4
4 a			19.0	18.6	39.6	35.6	58.8	43.1
4b			50.6	15.6	21.9	40.5	48.0	35.7
4c			0.0	0.0	0.0	9.8	90.3	7.1
5a	0	Н	34.6	3.6	22.6	27.3	34.6	31.6
5b	0	4- F	49.9	7.0	35.6	41.2	49.9	50.9
5c	0	4-CH ₃	21.2	13.0	0.0	48.5	39.6	13.0
5d	0	4-OCH_3	46.8	1.8	24.4	39.8	50.3	29.2
5e	0	2 - F	87.8	21.9	36.4	45.0	57.1	62.2
5f	0	2-Cl	56.8	30.9	26.4	36.0	20.6	54.5
5g	0	2-CH ₃	37.4	3.6	50.1	33.3	37.2	16.5
5h	0	2-OCH ₃	46.3	24.9	37.6	22.5	0.0	54.0
5i	0	3-CF ₃	41.3	14.7	29.8	45.9	35.6	33.2
5j	1	Н	67.0	12.2	0.0	0.0	3.2	33.8
5k	1	4 - F	0.0	0.0	4.3	24.5	27.3	30.1
51	1	4-C1	1.7	7.6	62.6	39.9	20.9	28.7
5m	1	4-OCH ₃	24.4	2.7	17.5	34.1	53.1	22.6
5n	1	2 - F	36.7	13.8	21.3	40.5	32.3	14.8
50	1	2-OCH ₃	17.6	0.0	31.5	21.9	23.5	35.5
5р	1	3-CF ₃	31.1	3.6	8.9	20.3	8.9	12.1
6a	0	Н	91.3	12.0	33.4	59.4	60.5	62.6
6b	0	4- F	40.6	0.0	15.5	48.6	30.8	40.2
6c	0	4-CH ₃	60.4	3.1	29.2	47.6	36.8	39.6
6d	0	4-OCH ₃	73.6	28.6	56.4	47.6	46.9	63.5
6e	0	3-CF ₃	89.9	6.1	72.6	46.0	63.0	35.5
6f	0	2-Cl	83.5	28.6	53.6	40.3	47.7	55.5
6g	0	2-OCH ₃	83.3	8.3	8.2	69.2	61.9	58.2
6h	0	3-CF ₃	73.6	1.5	8.8	57.1	23.8	40.2
6i	1	Н	30.3	10.3	3.7	7.1	45.1	34.9
6j	1	4-C1	79.1	2.3	31.6	14.5	42.2	22.6
6k	1	2-OCH ₃	17.0	0.0	0.0	7.1	43.9	36.1
7a	0	Н	13.0	3.8	0.0	21.2	17.2	36.4
7b	0	4 - F	30.5	6.8	69.9	31.5	9.5	19.4
7c	0	4-CH ₃	32.5	4.6	19.4	9.4	8.7	16.1
7d	0	4-OCH ₃	5.3	7.6	14.9	29.9	20.9	33.7
7e	0	2-F	67.4	10.3	0.0	16.0	0.8	47.3
7f	0	2-Cl	72.6	19.3	11.6	19.3	7.1	38.4
7g	0	2-OCH ₃	74.5	18.7	4.4	21.3	0.0	45.2
7h	0	3-CF ₃	87.8	29.7	0.8	45.6	76.9	47.3
7i	1	Н	55.3	10.9	0.0	0.0	0.0	39.2
7j	1	4-C1	10.3	7.6	29.8	36.0	21.4	23.2
7k	1	2-OCH ₃	26.4	14.9	3.7	0.0	0.0	37.3
Chlorothalonil (CT)			100	99.9	100	100	99.1	95.8
Carbendazim (CD)			81.0	100	100	4.2	34.7	100
Fenamidone (FA)			<u>9</u> 7.8	96.4	93.5	57.1	<u>79</u> .8	71.9

^a S.S: Sclerotinia scleotiorum; R.S: Rhizoctonia solani; A.S: Alternaria Solani; B.C: Botrytis cinerea; P.C: Phytophthora capsici; F.G: Fusarium graminearum. *para*-positions in the benzene ring of aromatic amines would be beneficial to improve the activities of this class of compounds.

The EC₅₀ values were determined further for these compounds having inhibition rates more than 70% in Table 2. For S. scleotiorum, the EC_{50} values of seven compounds were smaller than that of carbendazim and those of five compounds were smaller than that of fenamidone, especially 6a, 6e, 6f, 6g and 6h exhibited remarkable fungicidal activities with EC₅₀ values of 2.56 $-3.65 \,\mu$ g/mL. For A. solani, only **6e** with EC₅₀ value of 3.20 µg/mL had almost equal inhibitory activity with fenamidone (EC₅₀ 1.99 µg/mL). For P. capsici, compound 7h was the only one which showed much better activity (EC₅₀ 6.50 μ g/mL) than those of carbendazim $(EC_{50}$ 77.80 µg/mL) and fenamidone $(EC_{50}$ 9.32 µg/mL), also the intermediates **3b** (EC₅₀ 2.45 μ g/mL), **3c** $(EC_{50}7.42 \ \mu g/mL)$ and 4c $(EC_{50} 4.82 \ \mu g/mL)$ had better activities than those of carbendazim and fenamidone. Based on the above results, the strategy of introduction of spirocyclic butenolide scaffold into 2-aminoimidazolin-4-one derivatives was confirmed to be rational, and compounds 6e and 7h can be used as lead compounds to optimize further.

Table 2 The EC₅₀ (μ g/mL) values for compounds 5–7

					-		
Compd.	S.S	A.S	P.C	Compd.	S.S	A.S	P.C
3b			2.45	6f	3.65		
3c			7.42	6g	3.17		
4c			4.82	6h	2.86		
5e	9.29			6j	124.70		
6a	2.66			7f	10.41		
6d	6.30			7g	11.60		
6e	2.56	3.20		7h	6.50		7.51
CD	7.87	0.05	77.80				
FA	5.55	1.99	9.32				

In order to observe their action on S. scleotiorum and P. capsici, the spore germination inhibition experiments were carried out. Compounds 6e and 7h exhibited very weak inhibition activities against the spore germination of S. scleotiorum when treated with 50 µg/mL solution, while the spore germination of *P. capsici* was strongly inhibited when treated with 50 µg/mL compound 7h solution. The mycelian variances of P. capsici treated with compound 7h were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results by SEM showed that the excessive branching mycelium occurred, and the surface of hyphae was irregularly swelling (Figure 3, N), while the results by TEM indicated that the hyphal cell wall became thickening irregularly, the vacuole and the internal structure were damaged, and the membrane was also changed (Figure 3, P). These results suggested that this compound had a significant impact on the structure and function of the hyphal cell wall of P. capsici mycelium cell.^[26] The further mode of action is to be made clear with more experimental evidences in our laboratory.

Figure 3 Mycelium growth inhibition and cell variance of *P. capsici* treated with **7h**.

Conclusions

The novel fungicidal agents (*E*)-5-[1-(2-oxo-1-oxaspro[4.5]dec/non-3-en-3-yl)ethylidene]-2-aminoimidazolin-4-one derivatives, were designed and synthesized in moderate to excellent yields in four steps using α -hydroxyketone and diketene as raw materials and characterized by HR-ESI-MS,¹H NMR and X-ray diffraction. These compounds showed significant fungicidal activities against *S. scleotiorum* and *P. capsici* with EC₅₀ values of 2.56–11.60 µg/mL, and compounds **6e** and **7h** exhibited very weak inhibition activities against the spore germination of *S. scleotiorum*, while the spore germination of *P. capsici* was strongly inhibited when treated with compound **7h** solution. This compound had a significant impact on the structure and function of the hyphal cell wall of *P. capsici* mycelium cell.

Acknowledgement

This project was co-founded by the Ph.D Program of Ministry of Education, China (No. 20130008110003), and the National Natural Science Foundation of China (No. 21172254).

References

- [1] Gitterman, C. O. J. Med. Chem. 1965, 8, 483.
- [2] Miller, F. A.; Rightsel, W. A.; Sloan, B.; Ehrlich, J.; French, J. C.;

Bartz, Q. R. Nature 1963, 200, 1338.

- [3] Gallardo, G. L.; Pena, N. I.; Chacana, P.; Terzolo, H. R.; Cabrera, G. M. World J. Microb. Biot. 2004, 20, 609.
- [4] Fischer, R.; Himmler, T.; Nauen, R.; Reckmann, U.; Schmitt, W. In Proceedings of the International Plant Protection Congress, International Plant Protection Congress, Glasgow, 2007, pp. 100–103.
- [5] Liu, T.-X. Crop Protection 2004, 23, 505.
- [6] Fischer, R.; Bretschneider, T.; Erdelen, C.; Konze, J.; Loesel, P.; Drewes, M. W.; Feucht, D.; Kuck, K. H. *DE 10239479*, **2004** [*Chem. Abstr.* **2004**, *140*, 235593].
- [7] Fischer, R.; Lehr, S.; Feucht, D.; Loesel, P.; Malsam, O.; Bojack, G.;
 Auler, T.; Hills, M. WO 2005066125, 2005 [Chem. Abstr. 2005, 143, 153281].
- [8] Zhao, J. H.; Ji, M. H.; Xu, X. H.; Cheng, J. L.; Zhu, G. N. Chin. Chem. Lett. 2009, 20, 1307.
- [9] Song, F. J.; Liu, Y. H. J. Organomet. Chem. 2014, 694, 502.
- [10] Melikyan, G. S.; Hovhannisyan, A. A.; Hayotsyan, S. S. Synth. Commun. 2012, 42, 2267.
- [11] Muehlebach, M.; Boeger, M.; Cederbaum, F.; Cornes, D.; Friedmann, A. A.; Glock, J.; Niderman, T.; Stoller, A.; Wagner, T. *Bioorg. Med. Chem.* 2009, 17, 4241.
- [12] (a) Yang, K. X.; Lou, B. L.; Saneii, H. *Tetrahedron Lett.* 2002, *43*, 4463; (b) Bepary, S.; Youn, I. K.; Lim, H. J. *Eur. J. Org. Chem.* 2012, *43*, 2542.
- [13] (a) Ding, M. W.; Fu, B. Q.; Yuan, J. Z. *Heteroat. Chem.* 2005, *16*, 76;
 (b) Ding, M. W.; Li, H. X.; Xie, C. *Synlett* 2007, 2280; (c) Wang, Y.; Xie, H.; Pan, Y. R.; Ding, M. W. *Synthesis* 2014, *46*, 336.
- [14] Bourahla, K.; Paquin, L.; Lozach, O. Molecules 2011, 16, 7377.
- [15] Revanasiddappa, B. C.; Kalsi, J.; Jisha, M. S.; Jose, N.; Varghese, S. S. Indian J. Heterocycl. Chem. 2013, 22, 225.
- [16] Patel, J. B.; Desai, V. A. Int. J. Drug Design Discov. 2011, 2, 393.
- [17] Ivanna, S.; Dmytro, A.; Ewa, S.; Katarzyna, K. K.; Borys, Z.; Olexandr, V.; Andrezj, G.; Roman, L. *Bioorg. Med. Chem.* **2010**, *18*, 5090.
- [18] Huang, X. B.; Wu, D. Z.; Ding, J. C.; Zhang, X. C.; Liu, M. C.; Wu, H. Y.; Su, W. K. *Phosphorus, Sulfur, Silicon* **2010**, *185*, 117.
- [19] (a) Lei, J. P.; Han, J. T.; Xu, Z. H.; Dong, H. B.; Wang, M. A. Chin. J. Org. Chem. 2012, 32, 1993 (in Chinese); (b) Lei, J. P.; Dong, H. B.; Tang, B.; Wang, M. A. Chin. J. Pestc. Sci. 2012, 14, 669; (c) Tang, B.; Yang, M. Y.; Zhao, Y.; Kong, L. Q.; Wang, W. W.; Wang, M. A. Molecules 2015, 20, 13740.
- [20] Kiec-Kononowicz, K.; Szymanska, E. Farmaco 2002, 57, 909.
- [21] Yan, X. J.; Qin, W. C.; Sun, L. P.; Qi, S. H.; Yang, D. B.; Qin, Z. H.; Yuan, H. Z. J. Agric. Food Chem. 2010, 58, 2720.
- [22] (a) He, M. Q.; Leslie, T. M.; Sinicropi, J. A. Chem. Mater. 2002, 14, 2393; (b) Lacey, R. N. J. Chem. Soc. 1954, 832.
- [23] Lacey, R. N. J. Chem. Soc. 1960, 3153.
- [24] The crystal structure parameters for **5g** are: crystal size 0.45 mm× 0.45 mm×0.12 mm, M_r =411.49, $C_{23}H_{29}N_3O_4$, monoclinic, $P_{21/c}$, $-19 \le h \le 13$, $-14 \le k \le 15$, $-13 \le l \le 12$, a = 1.60054(15) nm, b = 1.25233(6) nm, c = 1.0884(2) nm, $\beta = 104.111(14)^\circ$, V = 2.1158(5) nm³, $D_c = 1.292$ g/cm³, $\mu = 0.089$ mm⁻¹, F(000) = 880, Z = 4, S = 1.029, $R_1 = 0.0503$, $wR_2 = 0.1184$ [$I > 2\sigma(I)$], $R_1 = 0.0652$, $wR_2 = 0.1289$ [all data].
- [25] Ding, M. W.; Sun, Y.; Liu, Z. J. Synth. Commun. 2003, 33, 1267.
- [26] Vargal, L.; Nagy, T.; Kovesdi, I. Tetrahedron 2003, 59, 655.

(Zhao, C.)