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Abstract: The recognition of the dual binding mode of
propargyl and allyl alcohols to [Cp*Ru] fragments fostered
the development of a highly regioselective intermolecular
Alder-ene-type reaction of alkynes with 1,2-disubstituted
alkenes. The increased substrate scope opens new perspectives
in stereochemical terms. As the loaded catalyst is chiral-at-
metal, stereochemical information is efficiently relayed from
the propargylic site to the emerging C—C bond. This inter-
pretation is based on the X-ray structure of the first Cp*Ru
complex carrying an intact enyne ligand, and provides valuable
insights into bonding and activation of the substrates. Compu-
tational data draw a clear picture of the principles governing
regio- and stereocontrol.

During the course of our investigations into alkyne trans-
hydrogenation and trans-hydrometalation reactions we rec-
ognized a massive directing effect exerted by protic groups
XH (X=0, NR) in the vicinity of the reacting m bond.!*!
This effect originates from strong hydrogen bonding between
the XH substituent and the polarized [Cp*Ru-Cl] entity of the
catalyst as illustrated by complexes 1-4 (Figure 1).>% Impor-
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Figure 1. Experimentally confirmed peripheral hydrogen bonding and/

or donor/acceptor interactions in Cp*Ru complexes comprising protic
ligands. Cp* = pentamethylcyclopentadienyl.
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tantly, the crystal structure of 2 shows that a single [Ru-Cl]
unit is capable of entertaining two hydrogen bonds at the
same time.”! Alternatively, an OR (R=H, Me) group can
engage in a regular donor/acceptor interaction with the metal
center and is capable of creating synergy with hydrogen
bonding. The complexes 4 and 5 illustrate these possibil-
ities.[®7)

Details apart, peripheral patterns as manifested in 1-5
impose directionality on the ligand sphere of a loaded
catalyst. It is likely such preorganization can be advantageous
beyond alkyne hydrometalation. Herein we show how such
secondary interactions can be used to render alkene/alkyne
coupling of the Alder-ene-type stereoselective while increas-
ing the substrate scope of this valuable transformation.®'"

Ruthenium complexes such as [CpRu(MeCN);]* or
[Cp*Ru(cod)Cl] are known to engender oxidative cyclization
of alkenes and alkynes with formation of metallacycles, and
lead to 1,4-dienes by selective elimination of the exocyclic [3-
H atom.[®"3I The broad scope of this reaction notwithstand-
ing, it remains limited to the use of terminal olefins as
substrates, except for intramolecular and hence entropically
favored cases. Even amongst terminal olefins, the use of 1,1-
disubstitued alkenes was accomplished only recently. They
require a coordinating NHBoc group at the allylic position to
assist in their binding to the catalyst.[*6]

Under the proviso that formation of a peripheral hydro-
gen-bonding network of the types referred to above is fast
compared with oxidative cyclization, one can envisage that
neutral, as well as cationic [Cp*Ru] fragments, will preor-
ganize a generic pair of unsaturated alcoholic substrates A
and B in a head-to-head orientation (Scheme 1). Oxidative
cyclization followed by elimination of the exocyclic $-H atom
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Scheme 1. Peripheral interactions preorganize the ligands prior to
alkene/alkyne coupling and allow stereochemical information to be
relayed, no matter if neutral or cationic Cp*Ru complexes are used as
catalysts. The Cp* ligand to ruthenium in the putative intermediates is
not shown for clarity.
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affords an enol in the first place, which tautomerizes to the
corresponding aldehyde G. Since an interligand Ru-CIl--H-O
hydrogen bond amounts to 2-8 kcalmol ™' of energetic gain,!
it seemed reasonable to assume that otherwise unreactive 1,2-
disubstituted alkenes might be suitable substrates, even in
intermolecular settings. If so, the envisaged transformation
provides an opportunity to relay chiral information from the
propargylic site by a transiently chiral ruthenium atom to the
newly developing stereocenter.!'’ '

Proof of principle was attained by reaction of the
secondary propargyl alcohol 6 (R'=H) with crotyl alcohol
(7, R*=H, 2equiv) in CH,Cl, in the presence of either
catalytic [Cp*RuCl], (10) or [Cp*Ru(MeCN);]PF, (11)
(Table 1).1) In either case, the 1,4-anti-configured product 8

Table 1: Coupling of a propargyl and crotyl alcohol !

OR!
HO. NS
\/K a) see Table i
6 8 -
+
N

OR!

—_— 1

b) NaBH,, MeOH OR
HO X
2
R?0 9

Entry R' R? Catalyst ~ 8/9®  d.rd  Yield [%6]

1 H H 10 5:1 12:1 69

2 H H 1 17:1 6:1 69

3 Ac H 10 n.d. n.d. <20

4 Ac H 11 3:1 2:1 quant (NMR)
5 H Ac 10 - - -

6 H Ac 1 - - -

[a] All reactions were carried out in CH,Cl, at 0°C using either [Cp*RuCl],
(10, 2.5 mol %) or [Cp*Ru(MeCN)]PF; (11, 10 mol %). [b] Determined by
"H NMR spectroscopy. [c] The anti/syn ratio (HPLC) of the major
regioisomer 8. [d] Yield of isolated 8, unless stated otherwise. n.d. =not
determined.

was formed as the major isomer with appreciable levels of
selectivity after reductive work up of the crude reaction
mixture.””! The neutral complex 10 led to the better stereo-
chemical outcome, whereas its cationic sibling 11 was more
imposing in regiochemical terms. This trend proved general
(see below). In line with the proposed model emphasizing the
critical role of hydrogen bonding, the conversion stalled upon
protection of crotyl alcohol (entries 5 and 6); likewise, O-
acylation of the propargylic partner basically halted the
reaction (entry 3) or led to poor selectivity (entry 4). Addi-
tional support comes from the observation that the use of
acetone or THF is detrimental when 10 is used as catalyst,
since these solvents are hydrogen-bond acceptors and hence
likely interfere with the crucial preorganization of the
ligands.!!

Table 2 compiles a number of representative cases.
Various propargyl alcohols of different steric demand on
either side of the triple bond reacted well (entries 1-9).
Interestingly, homopropargyl alcohols afforded the expected
head-to-head products with even better yields and selectiv-
ities (entries 10-13).’¥ Likewise, variation of the allylic
alcohol partner was possible, as long as its disubstituted
alkene is E-configured (entries 9, 12, and 13). It is mechanis-
tically telling that Z-crotyl alcohol derivatives did not react
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Table 2: Scope of the intermolecular hydroxy-directed alkene/alkyne
coupling.®

Entry  Product Cat. Yield Regio- d.r
[%]®  selectivity!d

1 HO Son 10 68 10:1 -
o Pt 0 6 50 12:1
3 1M 6 171 6:1
o Pl 0 6 61 12:1
5 noon2 16:1 8:1
6 o 94 0 18 g 10110
7 n 67¢ 5 410
OH
8 HO, 3 108 70 6:1 9:1
OH
9 Ho 10 67 5:1 1311
10 92 >20:1 >20:1

=
I
o]
4 4 4
. o
I

1 HO 10 86 11:1 >20:1
: OH
HO;/\)\/I\(
12 o : OH 10 92 >20:1 >20:1
Etou
HO\D\*(
13 10 85 >20:1 >20:1

2_3'
&
o
I

[a] Unless stated otherwise, all reactions were carried out in CH,Cl, at
0°C using either 10 (2.5 mol %) or 11 (10 mol %). For work up, the crude
mixture was treated with NaBH, in MeOH for 1 h. [b] Yield of the isolated
major regioisomer. [c] Determined by '"H NMR spectroscopy after
NaBH, reduction. [d] Diastereomeric ratio of the major regioisomer as
determined by HPLC. [e] Mixture of diastereomerically pure regioiso-
mers. [f] Determined after purification. [g] Using 3.5 mol % of the
catalyst.

well (see below). Excellent results were observed for the
functionalized products shown in entries 12 and 13, in which
the allylic alcohol partner carried either a lateral ester
substituent or an extra double bond. In the latter case,
peripheral hydrogen bonding also engenders a noteworthy
site selectivity, in that only the allylic alcohol subunit of the
substrate took part in the coupling event whereas a regular
alkene passed untouched (entry 13).

Valuable information can be deduced from the intra-
molecular reactions shown in Scheme 2. Although the use of
internal alkenes in cyclizations has precedent,®*! the trans-
formation of the enyne 12 into the product 14 is the first
example to show that chiral information residing exo to the
metallacycle is effectively transferred.'”! In contrast to the
intermolecular cases compiled in Table 2, in which both
substrates carry an OH group, only the chloride-containing
precatalyst 10 proved functional with the substrate 12, bearing
a single protic site, whereas the cationic complex 11 was
hardly selective. This result suggests that a propargylic OH
interacts well with a polarized [Ru—Cl] unit but is more

Angew. Chem. Int. Ed. 2017, 56, 1-7
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Scheme 2. a) 10 (2.5 mol %), CH,Cl,, 0°C, 86%, d.r.=11:1. b) 11

(10 mol %), CH,Cl,, 0°C, quant. (NMR), d.r.=2:1. c) 10 (0.27 equiv),
CH,Cl,, 0°C, 18 (35 %, see text). d) 10 (12.5 mol %), CD,Cl,, 0°C, 22
(quant., NMR). e) 10 (0.125 equiv), [Dg]THF, 0°C, 20 (quant., NMR).
THF =tetrahydrofuran, Ts = p-toluenesulfonyl.

reluctant to ligate the [Ru]" center in 11, probably for simple
geometric reasons.” That is why we propose the alignment
shown in E to explain the intermolecular cases catalyzed by 11
(see Scheme 1), wherein the crotyl alcohol makes the primary
contact to [Ru]*.! This coordination, in turn, acidifies the
OH proton and leads to peripheral hydrogen bonding with
the incoming propargyl alcohol. The inverse scenario with the
propargylic OH being docked onto the metal center is much
less likely.

In an attempt to study the selectivity-determining periph-
eral interactions in more detail, we reacted compound 15,
comprising a terminal rather than an internal alkene, with
stoichiometric [Cp*RuCl] (Scheme 2). Since the resulting
metallacycle 16 lacks exocyclic H atoms for B-hydride elim-
ination, this intermediate was deemed amenable to spectro-
scopic and/or crystallographic characterization. However, the
BCNMR spectrum suggested formation of four different
carbonyl-containing products. The major one (18) was
isolated as orange-red crystals and characterized by X-ray
diffraction (see the solid-state structure in the Supporting
Information). While the formation of a ruthenium diene
complex per se is not surprising, the ligand constitution in 18
is unusual in that it mandates formal loss of H, either before
or after cyclization; Scheme 2 shows a plausible scenario.

To block this unexpected escape route, the relevant
protons in 15 were formally replaced by methyl groups
(Scheme 2). As expected, exposure of enyne 19 to 10 in
CD,(l, afforded a single ruthenium complex, which proved
metastable and evolved into the cyclobutene 22, presumably
by reductive elimination of the metallacycle 21 and subse-
quent isomerization of the bridgehead olefin primarily
formed.”® Gratifyingly though, an intermediate derived
from 19 was sufficiently long-lived in [Dg]THF to allow
isolation in the crystalline form. To the best of our knowledge,
20 (Figure 2) is the first ruthenium complex comprising an
intact enyne ligand.

The firm binding of the alkyne unit in 20 is manifested in
the elongated C3-C4 distance [1.250(2) A]?” and the bending
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Figure 2. Structure of the complex 20 in the solid state.®® Thermal
ellipsoids shown at 50% probability.

of the acetylene away from linearity [C2-C3-C4 154.9(1)°]. As
expected, coordination of the triple bond is supported by tight
hydrogen bonding between the OH group and the chloride
(2.342 A).%¥) Since the resulting chelate structure locks the
adjacent methyl groups, C1 and C9, in different chemical
environments, it is predisposed for relaying stereochemical
information during cyclization from a propargylic center to
the newly developing C—C bond. Note that the tetrahedral
coordination sphere renders the Ru center in the piano-stool
complex 20 chiral." Binding of the alkene must also be
appreciable as judged from the extended C7-C8 distance
[1.406(2) A].”") Despite these clear signs of activation of
either & system, the enyne has not yet succumbed to oxidative
cyclization with formation of a planar ruthenacycle as
evidenced from the significant tilting of the alkene against
the alkyne unit (C3-C4----C7-C8 69.8°) and the nonbonding
C4---C7 distance (2.637(3) A). A clash between the pseudoax-
ial but slightly inwardly-bent methyl groups, C9 and C10, on
the rim seems to prevent further contraction and hence
spontaneous oxidative cyclization from occurring. NMR
spectra recorded at —50 °C show that these structural features
are largely maintained in solution. Warming of the sample to
ambient temperature, however, entails line broadening and is
suggestive of rapid exchange between at least two species. We
suppose that de-coordination/re-coordination of the alkene
accounts for this dynamic phenomenon.”” It is therefore
readily understood why more highly substituted alkenes are
handicapped substrates, particularly in intermolecular set-
tings. They qualify, however, if a proximal OH group assists in
binding (Table 2).

To understand the origin of the experimentally observed
regio- and diastereoselectivity of the ruthenium-catalyzed
coupling reaction with 7, we performed density-functional
theory (DFT) calculations at the SMD-MO06L/def2-TZVP
level of theory.'Y] Achiral but-2-yn-1-ol and chiral pent-3-yn-
2-ol were chosen as reaction partners. In the Supporting
Information, we describe the computational methods, the
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numerical results, and their interpretation in full detail. Here,
we only summarize the most pertinent points.

The DFT study confirmed that peripheral hydrogen
bonding is essential. Specifically, the head-to-head alignment
(1-A1) with two interligand hydrogen bonds is 4.9 kcalmol ™
more stable than the head-to-tail complex 1-A1" (Figure 3).
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Figure 3. Relative free energies (kcalmol™) for key species governing
the regioselectivity of the coupling reaction between 2-butyn-1-ol and
crotyl alcohol. For the nature of the intermediates and transition states
(TSs), see Figure 5. The Cp* ring on Ru is not shown for clarity.

Similar free-energy differences are found along the reaction
path for the intermediates (1-A4 vs. 1-A4’, 4.0 kcalmol ') and
the rate-limiting transition states (1-TSps.ag VS 1-TSas.a¢»
3.9 kcalmol ™), for the same reason. The observed regiose-
lectivity is thus largely governed by the equilibrium between
the two isomeric catalyst/substrates complexes and their
relative free energies.

The DFT calculations also unraveled the origin of the
observed 1,4-anti selectivity. Once again, hydrogen bonding
plays an important role (Figure 4). In the initial step the
alkyne may approach either the Re-face or the Si-face of 7
(Figure 4). In the former case (1-TS,q.4,-cfl) the hydrogen
bond between 7 and [Ru-Cl] is
retained, whereas it is lost in the latter
case (1-TSsq.4,-cf2). Because this loss
results in significant enthalpic penalty
(7.6 kcalmol '), we considered only the
Re-face approach when analyzing the
origin of diastereoselectivity in the
ruthenium-catalyzed coupling of pent-
3-yn-2-ol and 7 in more detail. Com-
parison of the computed free-energy
profiles shows that incorporation of
a methyl substituent at the propargylic
position separates the diastereomeric
pathways in energetic terms (Figure 5):
all transition states are lower in free
energy on the route leading to the 1,4-
anti isomer. In essence, it is the steric
repulsion between the propargylic Me
group and the Cp* ring which renders
the formation of the 1,4-syn-isomer less
favorable. Note that this methyl group
is locked by the hydrogen bonding
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1-TSpq.a2 -cf1
15.8 keal mol”!

1-TSaq.a2-cf2
23.4 kcal mol!

Figure 4. Molecular structures of the transition state conformers 1-
TSp.az-cfl (left) and 1-TSu;.0-cf2 (right) for the reaction between 2-
butyn-T-ol and crotyl alcohol. Interligand H-bonds are indicated by
green lines and steric repulsions by red dashed lines. Free energies are
given relative to 1-Al.

array of the adjacent OH group with the chloride ligand on
ruthenium (compare complex 20). These steric effects are
discussed in more detail in the Supporting Information,
especially for 2-TS,s.a-

The ruthenium-catalyzed coupling reaction itself follows
the expected course (Figure 5), in that oxidative coupling via
2-TS ;.4 affords a high-energy metallacycle (2-A2) in the first
place, which then relaxes by conformational changes to the
more stable metallacycles 2-A3 (twisted) and 2-A4. Only the
latter is planar and stabilized by a direct O--Ru interaction.
Product formation then mandates rotation of the exocyclic
substituent derived from the alkene partner: an agostic
interaction between the metal center and the exocyclic H-
atom is in place in 2-AS as a prelude to 3-hydride elimination
with formation of the enol 2-A6. Interestingly, the computa-
tions suggest that concerted hydride elimination/reductive
elimination via 2-TS 5.4 is favored over a stepwise process.”

Furthermore, the DFT results explain the poor perfor-
mance of Z-crotyl alcohol as compared to E-crotyl alcohol. A
clash between the terminal Me group in Z-crotyl alcohol with

2-TSp3.a4
18.3

e (1,4-syn)-diastereomer

Figure 5. Free-energy profile (kcalmol™) for the diastereoselective ruthenium-catalyzed coupling
of pent-3-yn-2-ol and crotyl alcohol.
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the alkyne as well as a distortion of the nascent metallacycle
raise the activation barrier for C—C-coupling by no less than
8 kcalmol .

Opverall, this investigation shows how insights into the
origins of hydroxy-directed trans-hydrometalations of unsym-
metrical alkynes could be translated into a productive Alder-
ene reaction of extended scope. As the loaded catalyst is
chiral at ruthenium, stereochemical information is effectively
relayed from the propargylic site to the newly formed C—C
bond. The isolation of the first Cp*Ru complex, endowed
with an intact enyne ligand, together with in-depth computa-
tional studies draws a clear picture of the underlying
mechanism. Further studies into transformations benefitting
from secondary interactions in the periphery of the chosen
catalysts are underway and will be reported in due course.
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v high regioselectivity

Peripheral but quintessential: The ability
of hydroxy groups to engage in interli-
gand hydrogen bonding with the polar-
ized [Ru-Cl] unit of a catalyst powers
highly regioselective alkene/alkyne cou-
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V' ster ical relay

pling reactions. Stereochemical informa-
tion is relayed from the propargylic site to
the nascent C—C-bond through chiral-at-
metal ruthenium intermediates.
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